
Copyright © 2013 Tech Science Press CMES, vol.94, no.3, pp.239-260, 2013

On Macroscopic Behaviors of Shape Memory Alloy
Thick-walled Cylinder Under Combined Internal Pressure

and Radial Temperature Gradient

Bingfei Liu1, Guansuo Dui2,3, Lijun Xue2, Benming Xie1

Abstract: Analytical solutions are derived for the macroscopic behaviors of a
Shape Memory Alloy (SMA) thick-walled cylinder subjected to internal pressure
and radial temperature gradient. The Tresca transformation criterion and linear
hardening are used. Equations are given for the radial and circumferential stresses,
transformation strains and martensite volume fractions at both the elastic step and
the transformation step. Numerical results are presented and in good agreement
with the finite element simulations.
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1 Introduction

Over the last two decades, as a new type of functional materials, Shape Mem-
ory Alloys (SMAs) have been utilized in various fields such as aerospace [Liang,
Davidson, Scjetky and Straub (1996)] naval [Garner, Wilson, Lagoudas and Re-
diniotis (2000)] biomedical applications such as surgical instruments [Ilyin Dudin
and Makarova (1995)] medical implants [Martynova and Savi (1991)] and fixtures
[Gyunter, Wilson, Lagoudas and Rediniotis (1995)] due to their interesting behav-
iors such as the shape memory effect, superelasticity and biocompatibility. Due to
this interest, this list of SMA applications continues to expand

As the number and complexity of SMA applications has grown, so has the need for
models capable of capturing the unique behavior of SMAs. The study of SMA con-
stitutive models has been the subject of a number of research papers [Müller and
Xu (1991); Boyd and Lagoudas (1996); Lagoudas, Bo and Qidwai (1996); Qidwai
and Lagoudas (2000); Müller and Seelecke (2001); Kim, Jang and Choi (2002);
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Machado and Savi (2003); Langelaar and Keulen (2004); Kuribayashi, Tsuchiya,
You, Tomusb, Umemorob, Ito and Sasaki (2006); Auricchio, Conti, Morganti and
Reali (2010); Mirzaeifar, Shakeri, DesRoches and Yavari (2011); Liu, Dui and
Zhu (2011, 2012); Chen, Peng, Chen, Wang, Wang and Hu (2012); Tablesh, Atli,
Rohmer, Franco, Karaman, Boyd and Lagoudas (2012)]. Among various shapes
in which SMAs are used, the SMA cylindrical shells are of particular interest in
applications including spinal vertebrae spacers Machado and Savi (2003), special
cardiovascular stents [Kuribayashi, Tsuchiya, You, Tomusb, Umemorob, Ito and
Sasaki (2006)], and active catheters [Langelaar and Keulen (2004)], which are
in the form of thin shells Due to easiness in installation and their ability to re-
sist temperature the form of thick shells such as SMA short cylinders or rings has
many engineering applications, e.g. the SMA pipe couplings [Jee, Hana and Jang
(2006); Tablesh, Atli, Rohmer, Franco, Karaman, Boyd and Lagoudas (2012)], tube
wall joints [Xua and Song (2004)], and active stiffener strips [Kim, Jang and Choi
(2002)] Replacing current steel pressure vessel designs with polymer matrix com-
posite pressure vessels for high pressure applications will yield significant weight
reductions and can reduce the size and weight of fuel, hydraulic and auxiliary sys-
tems. An investigation of adaptive long thick composite cylinders utilizing active
SMA composite layers for use in high-pressure vessel application is presented in
Paine, Rogers and Smith (1995)

As for the research of thin shells, Li and Sun (2002) studied the superelastic re-
sponse of nano-grained SMA microtubes under uniaxial tension. Their experimen-
tal results show that the nucleated macroscopic martensite band in a microtube
under uniaxial loading takes the shape of a spiral that surrounds the tube axis for
several circles. Feng and Sun (2007) studied the response of SMA microtubes
subjected to a combined tensile and torsional loading experimentally. He and Sun
(2009) studied the effect of tube geometry on the helix-shaped deformation do-
mains that are observed in SMA tubes during the stress-induced martensitic phase
transformation of the material under uniaxial stretching. As for the thick-walled
cylinders made of SMAs, Mirzaeifar, Shakeri, DesRoches and Yavari (2011) an-
alyzed the pseudoelastic response of a thick-walled SMA cylinder subjected to
internal pressure for both plane strain and plane stress conditions. The cylinder
was partitioned into a finite number of annular regions and closed-form solutions
were provided for the equilibrium equations in each annulus. The global solu-
tion was obtained by enforcing stress continuity at the interface of the annular re-
gions and by numerically solving the system of algebraic equations derived. The
solutions were in excellent agreement with the results of a finite element analy-
sis. A SMA pipe coupler was designed, fabricated and tested in Tablesh, Atli,
Rohmer, Franco, Karaman, Boyd and Lagoudas (2012). Two alloy systems are
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considered: commercially-available NiTiNb couplers and in-house developed NiTi
couplers. The coupling pressure is measured and an axisymmetric finite element
model including SMA constitutive equations is also developed Tabesh Liu, Boyd
and Lagoudas (2013) also presented an analytical solution for the pseudoelastic re-
sponse of a shape memory alloy (SMA) thick-walled cylinder subjected to internal
pressure. The behaviors of such materials under combined internal pressure and
radial temperature gradient, however, was not discussed

In the current work, the analytical solution of the pseudoelastic response of SMA
thick-walled cylinders subjected to internal pressure and radial temperature gradi-
ent is presented. It is wellknown that under tensile loads, SMAs exhibit inhomoge-
neous deformations, and coupling the problem with temperature, of course, makes
the solution even more complex. In order to get the analytical solution, a thermo-
dynamically constitutive model for SMAs is developed that incorporates the Tresca
transformation criterion, associated flow rule and linear hardening. This model is
simplified for the assumptions of plane stress and plane strain in the SMA cylinder.
The Tresca flow rule requires the transformation strain to be equal and opposite in
the circumferential and radial directions, thereby enabling a closed-form solution
for the equilibrium equation. The radial and circumferential stresses, transforma-
tion strains and volume fractions of martensite are obtained and compared with the
finite element simulations

2 Constitutive model for NiTi SMA cylinder

According to Boyd and Lagoudas (1996) and Qidwai and Lagoudas (2000), the
Gibbs free energy for an SMA material as a function of Cauchy stress tensor σ ,
temperature T and a set of internal variables γ is give in the following form:

G(σσσ ,T,ε t,ξ ) =− 1
2ρ

σσσ : S : σσσ − 1
ρ

σσσ : [ααα(T −T0)+ εεε
t]

+ c[T −T0−T ln
T
T0

]− s0T +G0 +
1

2ρ
ηεεε

t : εεε
t

(1)

where S is the compliance tensor, ααα is the coefficient of thermal expansion tensor,
ρ is the material density, c is the specific heat s0 and G0 are the values of entropy
and Gibbs energy at a reference state, the subscript ‘0’ represents the reference state
and η is the hardening modulus. We assume that the elastic compliance, thermal
expansion, and specific heat are the same for the austenite and martensite phases.
The entropy and reference energy are written using the rule of mixtures as:

s0(ξ ) = sA
0 +ξ (sM

0 − sA
0 )

G0(ξ ) = GA
0 +ξ (GM

0 −GA
0 )

(2)
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The set of internal variables contains the transformation strain tensor εεε t and marten-
site volume fraction ξ to represent the changes in the microstructure of the material
is

γγγ = {εεε t,ξ} (3)

The second law of thermodynamics in terms of Clausius-Planck inequality is

−ρĠ−ρsṪ − εεε : σ̇σσ ≥ 0 (4)

Using the chain rule with G, we have

−(ρ ∂G
∂σσσ

+ εεε) : σ̇σσ −ρ(
∂G
∂T

+ s) : Ṫ −ρ
∂G
∂γγγ

: γ̇γγ ≥ 0 (5)

The existence of a thermoelastic loading path with independent stress and temper-
ature rates along which the second law inequality has to be satisfied implies that

∼ ε =−ρ
∂G
∂σ

and s =−∂G
∂T

(6)

Therefore the constitutive relations for the SMA material will be

εεε = S : σσσ +ααα(T −T0)+ εεε t

s = 1
ρ

σσσ : ααα + c ln( T
T0
)+ s0

(7)

This explicitly results in additive decomposition of strains

εεε
e = εεε−ααα(T −T0)− εεε

t (8)

Based on the reduced form of the second law, a transformation dissipation potential
is defined to be given by

Dt =−ρ
∂G
∂γγγ

: γ̇γγ ≥ 0 with ΓΓΓ = -ρ
∂G
∂γγγ

then ΓΓΓ : γ̇γγ ≥ 0 (9)

Then the following generalized forces can be defined

σσσ
eff =−ρ

∂G
∂εεε t = σσσ −ηεεε

t (10)

ΘΘΘ =−ρ
∂G
∂ξ

= ρ∆s0T −ρ∆G0 (11)
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where ∆s0 = sM
0 −sA

0 , ∆G0 =GM
0 −GA

0 the superscripts A and M denote the austenitic
and martensitic phases, respectively The terms with ∆indicate the difference of the
corresponding quantity in martensite and austenite phases

It is assumed that a transformation function exists that defines the boundary of the
thermoelastic region as

ϕ(ΓΓΓ) = ϕ(σσσ eff,ΘΘΘ) = 0 (12)

Within which all admissible material states, thermoelastic or transforming obey

ϕ(ΓΓΓ) = ϕ(σσσ eff,ΘΘΘ)≤ 0 (13)

Application of the principle of maximum transformation dissipation results in the
transformation evolution equations and Kuhn-Tucker conditions as below

ε̇
t = λ

∂ϕ

∂σσσ eff and ξ̇ = λ
∂ϕ

∂ΘΘΘ
(14)

λ ≥ 0, ϕ(σσσ eff,ΘΘΘ)≤ 0, λϕ(σσσ eff,ΘΘΘ) = 0 (15)

We can conclude that

ε̇εε
t = ξ̇

1
∂ϕ

∂ΘΘΘ

∂ϕ

∂σσσ eff (16)

Therefore the transformation dissipation potential will be

Dt = ΓΓΓ : γ̇γγ = σσσ
eff : ε̇εε

t +ΘΘΘξ̇ = (
1

∂ϕ

∂ΘΘΘ

σσσ
eff :

∂ϕ

∂σσσ eff +ΘΘΘ)ξ̇ = πξ̇ ≥ 0 (17)

where π is the generalized thermodynamic force conjugate to martensite volume
fraction ξ . A general form for the transformation function, it is proposed that

ϕ(ΓΓΓ) = ϕ(σσσ eff,ΘΘΘ) = [ϕ̂(σσσ eff)+ΘΘΘ]2−Y 2 (18)

where Y is a measure of internal dissipation due to microstructural changes during
phase transformation, therefore

ε̇εε
t = 2λ [ϕ̂(σσσ eff)+ΘΘΘ]

∂ ϕ̂(σσσ eff)

∂ΘΘΘ

ξ̇ = 2λ [ϕ̂(σσσ eff)+ΘΘΘ]

(19)

From the equations above we can conclude that

ε̇εε
t = ξ̇

∂ ϕ̂(σσσ eff)

∂σσσ eff (20)
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Applying the Kuhn-Tucker conditions in equation (14-15) on the general form of
the transformation function (18) results in

ε̇εε
t = ξ̇

∂ ϕ̂(σσσ e f f )

∂σσσ e f f

ϕ(σσσ e f f ,ΘΘΘ)≤ 0 ⇒ −Y ≤ ϕ̂(σσσ e f f )+ΘΘΘ≤ Y

ξ̇ 6= 0⇒ ϕ(σσσ e f f ,ΘΘΘ) = 0⇒
{

ϕ̂(σσσ e f f )+ΘΘΘ = Y f orward
ϕ̂(σσσ e f f )+ΘΘΘ =−Y reverse

(21)

The Tresca transformation criterion can be defined as

ϕ̂(σσσ eff) = HmaxMax{
∣∣∣σ e f f

1 −σ
e f f
2

∣∣∣ , ∣∣∣σ e f f
2 −σ

e f f
3

∣∣∣ , ∣∣∣σ e f f
1 −σ

e f f
3

∣∣∣} (22)

where Hmax is the maximum transformation strain in a uniaxial stress test σ
e f f
1 ,

σ
e f f
2 and σ

e f f
3 are the real principle values of the symmetric second order tensor

σσσ e f f . Given σσσ eff = diag{σ e f f
rr ,σ e f f

θθ
,σ e f f

zz } in the polar coordinate system and as-
suming σ

e f f
θθ

> σ
e f f
zz > σ

e f f
rr which can be the case for the special condition of an

axisymmetric SMA cylinder under internal pressure, it follows that

Φ̂ΦΦ(σσσ eff) = Hmax(σ e f f
θθ
−σ

e f f
rr ) (23)

And therefore from equation (20)

∂ Φ̂ΦΦ(σσσ eff)

∂σσσ eff = Hmax

 −1 0 0
0 +1 0
0 0 0

 (24)

which means

ε
t
zz = 0, ε

t
θθ =−ε

t
rr (25)

According to the Tresca transformation criterion, no transformation occurs in the
axial direction for the axisymmetric SMA cylinder under internal pressure and also
the transformation strains in the radial and circumferential directions have equal
and opposite values. It is worth noting that this result is in accordance with the
assumed volume-preserving nature of the phase transformation

ε
t
zz + ε

t
θθ + ε

t
rr = 0 (26)

The Tresca equivalent stress for the current problem is

σθ −σr=σ
f wd(rev)

y (27)
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Figure 1: Schematic response of SMAs under a psuedoelastic loading and unload-
ing path

It is well-known that under tensile loads, SMAs exhibit inhomogeneous deforma-
tions, and coupling the problem with temperature, of course, makes the solution
even more complex. In order to get the analytical solution, a three dimensional con-
stitutive model for the SMAs is provided that incorporates Tresca transformation
criterion and flow rule allowing for linear hardening equations. The 1D isothermal
pseudoelastic response of the SMA is schematically depicted in Fig. 1. As seen in
Fig. 1 [Tabesh, Liu, Boyd and Lagoudas (2013)] the Tresca equivalent stress can
be expressed that, during transformation,

σ
f wd(rev)

y (T ) = σ
f wd(rev)

s (T )+
σ

f wd(rev)
f (T )−σ

f wd(rev)
s (T )

Hmax ε
t
θ (28)

whereσ
f wd

s (T ), σ
f wd
f (T ), σ rev

s (T ), σ rev
f (T )are the critical stresses for the start and

finish of forward/reverse transformations in the SMAs and they are assumed as
linear functions of temperature

σ
f wd

s (T ) =CM(T (r)−Ms)

σ
f wd
f (T ) =CM(T (r)−M f )

σ
rev
s (T ) =CA(T (r)−As)

σ
rev
f (T ) =CA(T (r)−A f )

(29)

where Ms, M f , As, A f are the critical transformation temperatures, CA, CM are the
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slopes of stress-temperature phase diagrams T (r) is the temperature at the current
point.

3 Thermal stresses in a thick-walled cylinder

3.1 Elastic analysis

  

                                                   (a)                                             (b)  
Figure 2: The SMA cylinder under Internal pressure and radial temperature gradi-
ent

A state of axial symmetry is considered in the problem if an SMA cylinder under in-
ternal pressure and radial temperature gradient (Fig. 2a). The boundary conditions
for the cylinder considered in this case, with inner radius T = Ta, σr =−P, r = aand
outer radius T = Tb, σr = 0, r = b. It is assumed that the axial displacement, w
(and therefore the axial strainεzz), does not change through the thickness. Then the
strain-displacement relations, assuming small displacement gradient in polar coor-
dinates system, can be simplified. Similarly, the general form of equilibrium equa-
tions in polar coordinates can be reduced for axisymmetric conditions as shown in
Fig. 2 (b). Then for the present problem, the strain-displacement relations and the
equilibrium equations are given by

εr =
∂u
∂ r

,εθ =
u
r
,εz =

∂w
∂ z

∂σr

∂ r
+

1
r
(σr−σθ ) = 0

(30)

where σθ and σr are circumferential/tangential stress and radial stress, respectively.
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εr, εθ and εz are the radial, tangential and axial strain, respectively. u is the displace-
ment in the radial direction, r is the radial coordinate

If the coefficient of linear expansion is denoted by α , the dilatation produced by
a rise in temperature T is equal to αT . It is assumed that the elastic modulus of
martensite is equal to the austenite case, as E = EM = EA. Subtracting this from
each strain component in the generalized Hooke’s law, we have the elastic stress-
strain equations:

ε
−
r αT =

1
E
(σr−υ (σθ +σz))

ε
−
θ

αT =
1
E
(σθ −υ (σr +σz))

ε
−
z αT =

1
E
(σz−υ (σr +σθ ))

(31)

where υ is the poisson’s ratio and σz is the axial stress

Algebraic manipulation of the above equations results in
∂u
∂ r

=−υεz +(1+υ)αT +
(1+υ)

E
((1−υ)σr−υσθ )

u
r
=−υεz +(1+υ)αT +

(1+υ)

E
((1−υ)σθ −υσr)

(32)

for a linear elastic cylinder. Also, under the 2D plane conditionsεz =−
υ

E
(σr +σθ ); σz = 0 f or plane stress

σz = υ (σr +σθ ); εz = 0 f or plane strain
(33)

If we assume a steady state distribution of temperature, T satisfies the Laplace
equation ∇2T = 0, the solution of which may be written as

T (r) = Tb +(Ta−Tb)
ln(b/r)
ln(b/a)

(34)

where Ta and Tb are the temperatures at the inner and the outer surfaces respectively.
It is convenient at this stage to introduce a dimensionless parameter β defined as

β =
α(Ta−Tb)

2(1−υ)
(35)

The elastic analysis for the model can be easily got by elasticity with the boundary
conditions. The following expressions can be obtained

σr =−(P−βE)(
b2

r2 −1)(
b2

a2 −1)−1−βE
ln(b/r)
ln(b/a)

σθ = (P−βE)(
b2

r2 +1)(
b2

a2 −1)−1 +βE
1− ln(b/r)

ln(b/a)

(36)
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When P and β are increased to critical values, yielding may begin anywhere in the
cylinder depending on the ratio of these parameters. We shall be concerned here
with the situation where σz is the intermediate principal stress in the element that
yields. If Tresca’s yield criterion is adopted, yielding will depend on the magnitude
of the stress difference

σθ −σr = (P−βE)
2b2/r2

b2/a2−1
+

βE
ln(b/a)

(37)

The yield function can be obtained as

F(r) =(P− α(Ta−Tb)

2(1−υ)
E)

2b2/r2

b2/a2−1
+

α(Ta−Tb)E
2(1−υ) ln(b/a)

−CMTb +CMMs−CM(Ta−Tb)
ln(b/r)
ln(b/a)

(38)

 

 

    (a) ( )fwd rev
sP P<           (b) ( ) ( )

2
fwd rev fwd rev

sP P P≤ <  

A  (A+M) / A  

Figure 3: Transformation distributions of the SMA cylinder

The loading of the internal pressure occurs in elastic and transformation steps with
regards to the martensitic transformation, as schematically shown in Fig.3. The
SMA cylinder is assumed to be at a homogeneous temperature Tb > Ta > A f , thus
it is initially fully austenitic as seen in Fig. 3 (a). According to (38), as the pressure
increases, the Tresca equivalent stress also increase, with the maximum being at



On Macroscopic Behaviors of Shape Memory Alloy Thick-walled Cylinder 249

the inner radius, r = a. Therefore, the transformation to martensite starts at the
inner radius as soon as the Tresca criterion σθ −σr|r=a = σ

f wd
s , then the yielding

begining pressure is obtained as

P f wd
s = βE− βE

2ln(b/a)
(1− a2

b2 )+
1
2
(CMTb−CMMs+CM(Ta−Tb)

ln(b/r)
ln(b/a)

)(1− a2

b2 )

(39)

So when internal pressure P < P f wd
s , the stress distribution can be obtained by (36)

and the martensite volume fraction ξ = 0

3.2 Analysis of forward transformation

Futher increase in the pressure results in propagation of the forward transformation
front, denoted by r = c, through the thickness of the cylinder as seen in Fig. 3
(b). At a pressure between P f wd

s ≤ P < P f wd
2 , the cylinder consists of an inner

ring, which has a mixture of martensite and austenite (1 ≥ ξ ≥ 0a ≤ r ≤ c), and
an outer ring, which is completely austenite (ξ = 0c < r < b). For this case, the
pressure P f wd

2 denotes the finish critical pressure of the step when the inner radius
is completely transformed to martensite.

Combining the kinematic equations Hook’s law (32), the equilibrium equation (30),
the total strain can be expressed as

du
dr

+
u
r
=−2υεz +

1−2v
2G

1
r

d
dr

(r2
σrr)+2(1+υ)αT (r) (40)

where G = E/(2+2v). This differential equation is valid throughout the cylinder,
the transforming inner ring and the elastic outer ring as schematically shown in Fig.
3(b)

The outer ring c < r≤ b is elastic austenite. Thus, the problem can be solved using
Lame’s solution and the boundary conditions σr(c) = −Pc, σθ −σr|r=c = σ

f wd
s

Therefore
σr =−(Pc−βE)(

b2

r2 −1)(
b2

c2 −1)−1−βE
ln(b/r)
ln(b/c)

σθ = (Pc−βE)(
b2

r2 +1)(
b2

c2 −1)−1 +βE
1− ln(b/r)

ln(b/c)

(41)

Pc = βE− βE
2ln(b/a)

(1− c2

b2 )+
1
2
(CMTb−CMMs +CM(Ta−Tb)

ln(b/r)
ln(b/a)

)(1− c2

b2 )
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(42)

The radial displacement at the outer surface, u(b), can be found from (32). This
enables one to integrate equation (40) from a point within the cylinder to the outer
radius where the radial stress and displacement are known, that is

u
r
=−υεz +(1+υ)αT

+
(1+υ)

E

(
(Pc−βE)(b2/r2 +1−2υ)

b2/c2−1
+

βE(1−υ)+(2υ−1)βE ln(b/r)
ln(b/c)

)
(43)

u(b) =−bυεz +(1+υ)b2
αTb +b

(1+υ)

E

(
2(Pc−βE)(1−υ)

b2/c2−1
+

βE(1−υ)

ln(b/c)

)
(44)

(ru)′

r
=

∂u
∂ r

+
u
r
=−2vεz +

1−2v
2G

1
r

∂ (r2σr)

∂ r
+2(1+υ)αT (r) (45)

Then

(ru)′ =−2rvεz +
1−2v

2G
∂ (r2σr)

∂ r
+2(1+υ)αrT (r) (46)

ru|rb = −r2vεz
∣∣r
b +

1−2v
2G

r2
σr

∣∣∣∣r
b
+2(1+υ)α

r∫
b

rT (r)dr (47)

ru−bu(b) =− r2vεz +
1−2v

2G
r2

σr +2(1+υ)α{1
2

r2Tb−
(Ta−Tb)r2

4ln(b/a)
]}

+b2vεz−
1−2v

2G
b2

σr(b)−2(1+υ)α{1
2

b2Tb−
(Ta−Tb)b2

4ln(b/a)
]}

(48)

Combining (44) and (48) this leads to

ru =−r2vεz +
1−2v

2G
r2

σr +2(1+υ)α{1
2

r2Tb−
(Ta−Tb)r2

4ln(b/a)
]}+K (49)

where

K =(1+υ)b2
αTb +b2 (1+υ)

E
[
2(Pc−βE)(1−υ)

b2/c2−1
+

βE(1−υ)

ln(b/c)
]

−2(1+υ)α[
1
2

r2Tb−
(Ta−Tb)r2

4ln(b/a)
]

(50)
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Then the total strain can be obtained by

εθ =
u
r
=−vεz +

1−2v
2G

σr +2(1+υ)α{1
2

Tb−
(Ta−Tb)

4ln(b/a)
]}+ K

r2 (51)

Then the transformation strain ε t
θ
= εθ − εe

θ
can be got by

ε
t
θ =

1− v
2G

(σr−σθ )+2(1+υ)α{1
2

Tb−
(Ta−Tb)

4ln(b/a)
]}− (1+υ)αT (r)+

K
r2 (52)

Considering the Tresca’s yield function (28), the transformation strain can be ex-
pressed as

ε
t
θ =
−1−v

2G σ
f wd

s +2(1+υ)α{1
2 Tb− (Ta−Tb)

4ln(b/a) ]}− (1+υ)αT (r)+ K
r2

1+A
(53)

where A = 1−υ2

E
(σ

f wd
f −σ

f wd
s )

Hmax .
According to (28), (30) and (53), the response can be given by

∂σr

∂ r
=

1
r
[σ f wd

s +
σ

f wd
f −σ

f wd
s

H

− 1−v
2G σ

f wd
s +2(1+υ)α{ 1

2 Tb− (Ta−Tb)
4ln(b/a) ]}− (1+υ)αT (r)+ K

r2

1+A
]

(54)

Integrating the function (54) leads to

r∫
c

∂σr

∂ r
dr = σr(r)−σr(c) = F lnr|rc +

1
2
(lnr)2B

∣∣∣∣r
c
− 1

2
K(CmMs−CmM f )

H(1+A)
r−2
∣∣∣∣r
c

(55)

where

F =
CMTb−CMMs +CM(Ta−Tb) lnb

1+A

+
CMMs−CMM f

H(1+A)
α(1+υ)[Tb−

(Ta−Tb)(4lnb+1)
2ln(b/a)

]

B =
−CM(Ta−Tb)

1+A
+

CMMs−CMM f

H(1+A)
2α(1+υ)

(Ta−Tb)

ln(b/a)
where σr(c) can be got by (41) Therefore

σr(r) = F ln
r
c
+

1
2

B[(lnr)2− (lnc)2]− 1
2

K(CmMs−CmM f )

H(1+A)
(

1
r2 −

1
c2 )+σr(c)

σθ (r) = σr(r)+σ
f wd

s +

(CmMs−CmM f )

H

−1−v
2G σ

f wd
s +2(1+υ)α{1

2 Tb− (Ta−Tb)
4ln(b/a) ]}− (1+υ)αT (r)+ K

r2

1+A
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(56)

The critical radius ccr and the critical pressure P f wd
2 can be obtained by using the

boundary conditions σθ −σr|r=a = σ
f wd
f and σθ −σr|r=c = σ

f wd
s

4 Numerical results

The analytical results for plane strain are discussed in this section. The structural
response of the SMA cylinder depends on the radial temperature gradient and inter-
nal pressure as well as material properties and geometry. Therefore, the following
groups are given for loading of the cylinder: the internal radius a= 10mm the exter-
nal radius b= 30mm, the radial temperature gradient from internal radius Ta = 60◦C
to the outer radiusTb = 100◦C. The material parameters controlling the response of
the structure plotted in this section are given in table 1.

Table 1: Parameters used in calculation for SMA cylinder [Tablesh, Atli, Rohmer,
Franco, Karaman, Boyd and Lagoudas (2012)]

v E CM Ms M f As A f α Hmax Ta Tb

0.4 85Gpa 10MPa/◦C -50◦C -70◦C 40◦C 60◦C 0.00001 0.032 60◦C 100◦C

The numerical results by finite element (FE) program (ANSYS) of SMA cylinder
under combined internal pressure and radial temperature gradient are presented in
this part. Considering symmetry, the FE program can be applied to a 1/4 part of
the cylinder with the fixed constraints at both x direction and y direction. The
FE model is described in Fig. 4 and the stresses and martensite volume fractions,
obtained numerically with FE program are presented in the following figures.

Fig. 5 demonstrates the thermo-elastic stress components through the thickness
of the cylinder under internal pressure P = 100Mpa with the radial temperature
gradient from Ta = 60◦C to Tb = 100◦C. As seen in Fig. 5 the numerical results
are in good agreement with the FE results, and all the thermo-elastic stresses are
continuous.

Fig. 6 shows the plot of thermo-elastic stress distributions through the thickness of
the SMA cylinder under the internal pressure P = 100Mpa and the varying radial
temperature gradient from Ta = 60◦C to different values of Tb(60◦C,80◦C,100◦C).
As seen in Fig. 6 (a), the circumferential stresses have descending distributions
through the thickness of the SMA cylinder There is a positive effect on the cir-
cumferential stresses at the inner part (r ≤ 18mm) of the cylinder by the increasing
values of Tb, and shows a negative effect at the outer part (r ≥ 18mm). As seen in
Fig. 6 (b), the radial stresses decrease with increasing values of Tb.
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Figure 4: Transformation distributions of the SMA cylinder

Figure 5: Thermo-elastic stress distribution for the SMA cylinder under the internal
pressure P = 100Mpa and the radial temperature gradient Ta = 60◦C, Tb = 100◦C
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(a) (b)

Figure 6: Thermo-elastic stress distribution for the SMA cylinder under the inter-
nal pressure P = 100Mpa and the radial temperature gradient from Ta = 60◦C to
different Tb

Figure 7: The yielding beginning internal pressures for the SMA cylinder under the
radial temperature gradient with constant Ta = 60◦C and changing Tb from 60◦C to
100◦C
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Figure 8: Distribution of the stresses and martenite volume fraction for the SMA
cylinder under the radial temperature gradient Ta = 60◦C, Tb = 100◦C and different
inner pressures.
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Figure 9: Distribution of the stresses and martenite volume fraction for the SMA
cylinder under P=1000MPa and the radial temperature gradient from Ta = 60◦C
and to different Tb

The yielding beginning internal pressure of this model can be calculated by (39).
With constant Ta = 60◦C and changing Tb from 60◦C to 100◦C, the different values
of the corresponding pressures can be shown in Fig. 7 As seen in the Fig. 7, the
yielding beginning internal pressures decrease with the increasing values of Tb.

Fig. 8 shows the stress and the martensite volume fraction distributions through
the thickness of the SMA cylinder under different inner pressures P=600, 1000,
1228.5MPa and the radial temperature gradient from Ta = 60◦C to Tb = 100◦C. As
seen in Fig. 8 (a-c), the body of the cylinder is composed of an inner transforming
region and an outer elastic region. The circumferential stress and the axial stress
components have ascending distributions in the inner transforming region and fol-
low descending distributions in the outer elastic region. The highest circumferential
stress occurs at the interface between the transforming and elastic regions. Marten-
sitic volume fraction distributions, calculated by the present method, are shown
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in Fig. 8 (d) The numerical results show good agreement with the finite element
results.

Fig. 9 shows the stress and the martensite volume fraction distributions through the
thickness of the SMA cylinder under the inner pressure P=1000MPa and varying
radial temperature gradient from Ta = 60◦C to different values of Tb(60◦C,80◦C,
100◦C). As seen in Fig. 9 (a-c), different stress components are obtained There is
a positive effect on the circumferential and axial stresses by the increasing values
of Tb in the outer elastic region of the cylinder, and shows a negative effect in the
inner transforming region For the radial stresses, the distributions are nearly the
same. The martensitic volume fraction distributions, which are shown in Fig. 9 (d),
decrease with the increasing values of Tb.

5 Conclusions

An analytical model were provided for the circumferential stress, radial stress, and
martensite volume fraction of a pseudoelastic SMA thick-walled cylinder subjected
to internal pressure and radial temperature gradient. The SMA constitutive model
was derived using a free-energy function and a Tresca-based transformation crite-
rion. It was shown that the stress distributions and the martensite volume fraction
distributions can be substantially decreased or increased depending on both increas-
ing internal pressures and varying temperature fields. There was a good agreement
between the analytical results and the FE numerical results. The analytical solu-
tion can provide an effective engineering tool to predict the deformation response
of such components and design mechanism, such as actuators, which require high
controllability.
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