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Topological Design of Structures Using a Cellular
Automata Method

Yixian Du1,2,3,4, De Chen1, Xiaobo Xiang1, Qihua Tian 1, Yi Zhang1

Abstract: Topological design of continuum structures usually involves numer-
ical instabilities, such as checkerboards and mesh-dependency, which degenerate
the manufacturability, the efficiency and the robustness of the optimal design. This
paper will propose a new topology optimization method to suppress numerical in-
stabilities occurred in the topology optimization of continua, according to the prin-
ciple of error amplifier and feedback control in the control system. The design
variables associated with topological design are updated based on the Cellular Au-
tomata (CA) theory. A couple of typical numerical examples are used to demon-
strate the effectiveness of the proposed method in effectively suppressing numerical
instabilities occurred in the numerical procedure of topology optimization.
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1 Introduction

Topology optimization has been one of the most important but challenging tech-
niques in the area of structural optimization [Bendsøe and Sigmund (2003)]. Topo-
logical optimization has drawn much consideration over the past two decades, and
many different methods have been developed for a number of engineering appli-
cations [e.g. Kang and Tong (2008); Li and Atluri (2008); Du, Luo, Tian and
Chen (2009); Luo, Tong, Luo and Wang (2009); Luo, Luo, Tong, Gao and Song
(2011)]. Compared with size and shape optimization, topology optimization has a
broader design space to satisfy more harsh design requirements. The aim of topol-
ogy optimization is to automatically distribute a given amount of material in the
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design domain to achieve the best material layout by optimizing the design objec-
tive under specific design constraints. The typical methods for topology optimiza-
tion include the homogenization method [Bendsøe and Kikuchi (1988)], the SIMP
method [Zhou and Rozvany (1991); Bendsøe and Sigmund (1999)], nodal density-
based methods [Matsui and Terada (2004); Kang and Wang (2011); Wang, Luo and
Zhang (2012); Luo, Zhang, Wang and Gao (2013)] and the level-set based method
[Wang, Wang and Guo (2003); Allaire, Jouve and Toader (2004); Luo, Tong and
Wang (2008)]. With the development of modern computational techniques, topol-
ogy optimization is now a more preferable industrial design tool in the stage of
conceptual design.

Despite its recent development, numerical instabilities in the design are still open
topics in the community of topology optimization [Sigmund and Petersson (1998)].
These numerical problems, e.g. checkerboards, local minima, mesh-dependency
and gray-scale element, will result in topological designs that are unacceptable in
practical engineering. The checkerboards problem refers to the formation of re-
gions of alternating solid and void elements ordered in a checkerboard-like fash-
ion, which should be caused by improper computational modeling with low-order
finite elements [Diaz and Sigmund (1995)], with over-stiffness local regions in the
structure. To a large extent, local minima appear for the nonrestricted 0-1 topology
optimization problems. The schemes that employed tend to convexify the problems
and produce reproducible designs. Convergence proofs of algorithms producing it-
erates to solve convex programs are common, while for nonconvex problems the
statements usually only ensure the algorithm iterates’ convergence to a nearby sta-
tionary point (which certainly need not be similar to a global solution). The mesh-
dependence [Sigmund and Petersson (1998)] means a finer finite element mesh will
lead to a design with more complex topological geometry. To overcome these short-
comings, there have been a lot of research endeavors with a view to solving these
numerical problems [Jog and Haber (1996); Haber and Bendsøe (1996); Petersson
and Sigmund (1998); Poulsen (2003); Bruggi (2008); Kang and Wang (2011); Luo,
Zhang, Wang and Gao (2013); Du and Chen (2012); Zakhama, Abdalla, Smaoui,
and Gürdal (2009); Li and Atluri(2008); Luo and Zhang (2012)]. And many valu-
able results are got through these methods.

This paper proposes a Cellular Automata (CA) algorithm to update the design vari-
ables without using the design sensitivity analysis to simplify the numerical pro-
cedure, according to the active cellular and its neighbors’ state information. The
concept of CA model for topology optimization was presented by Kita and Toyoda
(2000). The hybrid cellular automaton (HCA) algorithm for structural optimiza-
tion was presented by Tovar and co-workers (2004), which combined elements of
the cellular automaton (CA) paradigm with the method of finite element analy-
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ses (FEA). Faramarzir and Afshar (2012) presented a two-phase, hybrid, Cellular
Automat-Linear Programming (CA-LP) method for both size and topology opti-
mization of planar truss structures, to achieve the minimum weight of structures
under stress, nodal displacement, cross-sectional area and kinematic stability con-
straints.

In this work, we present a new updating rule for design variables in topology opti-
mization of continua, which is based on the CA theory and inspired by the principle
of feedback control and the error amplifier in the control system. Compared with
classical gradient-based optimization methods, this updating scheme does not need
to calculate the sensitivity information of the objective function. And in contrast to
the widely used Genetic Algorithms (GA) method [Mark, Colin, James, Adenike
and Kazuhiro(2000); Wang and Tai (2005)]. The proposed algorithm computation-
ally efficient and can effectively suppress the mesh-dependence and the gray-scale
element. Basing on the SIMP material description, the design domain is discretized
into a regular lattice of cellular automata. According to the strain energy density
level at each iteration, the material quantity is added or removed depends on the
updating rule that drives the actual strain energy density level to the desired value.
The computational efficiency of the updating scheme is illustrated by three typical
numerical examples. The right selection of error amplification coefficient might
dramatically improve the convergence of the updating rule presented in this work.

The following sections are arranged as follows: Section 2 describes the topology
optimization model using CA; Section 3 presents a new updating rule of design
variables, and numerical examples to show the efficiency and accuracy of the new
updating rule, followed by discussion and conclusions in Section 5.

2 Structure topology optimization model using CA

Topology optimization is often formulated as a material distribution problem, in
which solid and void phases are indicated by discrete values 1 and 0, respectively.
As we all know, the topology optimization of continua belongs to a family of integer
programming problems with 0 and 1 discrete design variables in fact, which many
gradient-based optimization algorithms cannot be directly applied to. To overcome
this drawback, the discrete model is usually required to be relaxed to make material
properties continuously dependent on the local amount of material. SIMP has been
widely used, as a result of its conceptual simplicity, implementation easiness and
computational efficiency.
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2.1 Material interpolation scheme

In SIMP, a density-stiffness interpolation scheme is used to represent the nonlin-
ear dependency between elemental densities and material properties. To recover
the original 0 and 1 discrete material distribution, a power-law scheme [Bendsøe
and Sigmund (1999)] is usually applied to penalize the intermediate densities to
push the intermediate densities towards its binary bounds (0/1). The SIMP can be
generally written as

Ee(xe) = Emin + xp
e (E0−Emin) (1)

ρe(xe) = xeρ0 (0≤ xe ≤ 1) e = 1,2, · · · ,n (2)

where Ee and E0 denote the actual and initial Young’s Modulus of the e−th element,
respectively; p is the penalty factor (typicallyp =3); Emin is the elastic modulus of
the element without material; ρ0 is the material’s density of solid state, ρe is the
material density of the eth element, xe is its design variable, namely, the element’s
relative density, and n is the number of the structural elements. In addition, the
design variable ρe need to be iteratively updated, and so the Young’s Modulus is
also reevaluated for the structural analysis of the next iteration; In order to insure
the stability of numerical calculation, Emin = E0/1000 is used in this work.

2.2 Mathematical model of topology optimization

Cellular Automata models have been used to simulate complex biological and phys-
ical phenomena for many years. It is an idealization of a physical system in which
space and time are discrete, and physical quantities can take values on a finite set.
In the previous research, the HCA method inspired in the bone remodeling pro-
cess combines local evolutionary design rules with finite element analyses [Tovar,
Niebur and Renaud (2004); Tovar, Neal and Glen (2004)]. It has been demonstrated
to be an efficient computational non-gradient technique for the topology design of
structures, since they can get the optimal topology without checkerboards. This
methodology has been proven to be a globally convergent under certain assump-
tions with a fixed point iteration scheme and is appropriate for structural topology
design problems.

In this paper, the proposed method using finite element analyses to evaluate the
stress states of cellular based on the principles of fully stressed design, which makes
the none-vacant cellular tend to fully stressed gradually by the cellular model iter-
ation. Since all the elements are in the state of maximum strain energy density that
the material can bear, the optimal topology can thus be obtained.

The state αe(t) of the e-th cellular in the t-th iteration is defined by the design vari-
able xe(t) and the state field variables Ue(t). In this paper, we define the cellulars’
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relative density xe as a design variable and the strain energy density Ue as a state
field variable. Each cellular state can be written as

αe(t) =
{

xe(t)
Ue(t)

}
(3)

For the design problem of a rigid structure, the mechanical energy that the struc-
ture stored can be defined as the total strain energy U . So if the structural has a
high stiffness value, it means that it can stored a fewer strain energy. For a two-
dimensional structure defined on a design domainΩ, Ucan be expressed as follows:

U =
∫

Ω

1
2

σ
T

εdΩ (4)

where σ and ε are the corresponding stress and the strain field vectors under the
load, respectively.

The objective of the optimization problem is to obtain the minimum difference
between the cellular’s strain energy density and the target values that are pre-
established. Thus, the topology optimization model based on the CA can be written
by

min
x

:
n

∑
e=1
|Ūe−U∗e |

s.t. : Ku = F
0≤ xe ≤ 1 e = 1,2, · · · ,n

(5)

where U∗e and Ue are the local strain energy density of the e-th cellular and the
average strain energy density of the neighboring cellulars around it; K is the global
stiffness matrix, u and F are the global displacement and force vectors, respectively;
xe is the relative density of the e-th cellular. The average value Ue of the cellular
can be calculated by

Ue =

Ue +
NN

∑
i=1

Ui

NN +1
(6)

where Ui is the cellular i’s strain energy density of the neighbors. NN is the number
of neighbors defined by the CA neighbor type.

The design domain of the structure is discretized by using the finite element method.
According to the theory of the finite element analysis, the strain energy of a cellular
is calculated by

SEe =
∫

Ve

1
2

uT
e
(
BT

e DBe
)

uedv =
1
2

uT
e keue (7)
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where D is the elastic matrix; Be is the element’s strain matrix; ue is the element’s
displacement matrix and ke is the element’s stiffness matrix. Therefore, the strain
energy density in Eq. (6) is written as

Ue =
SEe

Ve
=

uT
e keue

2Ve
(8)

where Ve is the element volume.

3 Updating rule of the design variables

3.1 Neighbor types of the cellular automata

CA is essentially a space-time discretization mathematical model, which consists
of finite cellulars with specified state information. At certain iteration, the state
information of the active cellular only associated with its neighbors. Theoretically,
the cellular space in the cellular automaton can be unlimitedly extended. However,
it is impossible to realize this expansion by using the computation procedure. In
practice, the size of the neighbor is often limited to the adjacent cellulars, but can
also be reasonably extended. The most commonly adopted neighbor types are the
“Von Neumann Type”, which includes four neighboring cellulars (NN=4), and the
“Moore Type”, which includes eight cellulars (NN=8). The neighbor cellulars can
also be reduced down to an “Empty Type” (NN=0) or extended to the “Extended
Moore Type” including 24 cellulars. Figure 1 shows the common neighbor types
in the two-dimensional cases.

                                     
(a) Empty (NN=0)    (b) Neumann (NN=4)      (c) Moore (NN=8)  (d) Extended Moore (NN=24) 

Figure 1: Neighbor types of cellular automata.

To overcome the shortcoming that cannot be unlimitedly extended in practice, it
is important to extend the design domain. Four common neighbor types of the
boundary cellular are indicated in Figure 2. In the Fixed type, the neighbor is
completed with cellulars having a pre-assigned fixed state. An adiabatic type is
obtained by duplicating the value of the cellular in an extra virtual neighbor. While
in the Reflecting type, the state of the opposite neighbor is replicated by a virtual
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(a) Fixed          (b) A diabatic           (c)Re�ecting          (d) Periodic 

Figure 2: Neighbor types of the boundary cellular

cellular. The Periodic type is applied for the condition that the design domain is
assumed to be wrapped in a torus-like shape. In this work, the Fixed type is applied,
where the extra cellulars are considered to be empty without physical or mechanical
properties.

In order to make use of finite element analysis to evaluate the field states in CA, the
design domain is discretized into quadrilateral elements with four nodes. Therefore,
when the optimization model iteratively changes based on the proposed updating
rule of design variables, there is an unique mapping relationship between the state
of cellular in the topology optimization model and the finite element mesh. The
change of material distribution (e.g., the Young’s Modulus) in the design domain
leads to the change of the structure (e.g., the strain energy), which complete the
transformation from the finite element mesh to the cellular element.

3.2 Updating the design variables

The updating aim is to minimize the difference between the average strain energy
density value and the pre-given value. The updating is accomplished by using the
active cellular’s state information and the local state information of the neighbors.
The updating rule for the design variables at (t+1)-th iteration step can be written
as

xe(t +1) = xe(t)+∆xe(t) (9)

where the increment of the cellular’s relative density at the iteration is defined as

∆xe(t) = f (U (t)
e −U∗e ) (10)

where the function f (U (t)
e −U∗e ) is the local control rule of the CA algorithm, which

leads to the distribution of the material. The literature [Tovar, Niebur and Renaud
(2004)] has proposed four different kinds of control strategies: the two-position
control, the linear control, the integration control and the differentiation control.
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The two-position control and the proportion control are two fundamental control
methods, while the proportion-integration-differentiation (PID) control method is
a complicated feedback control methd. It has been commonly used in the control
field. The mathematical formula of the PID can be written as

∆xe(t) = cP× (U (t)
e −U∗e )+ cI×

∫ t

0
(U (τ)

e −U∗e )dτ + cD×
d(U (t)

e −U∗e )
dt

(11)

where cp, cI and cD are the proportion, integration and differentiation controls’
gains, respectively. The computational efficiency of the PID control has been
shown in several engineering applications.

Based on the principle of feedback control and the error amplifier in the control
system, this paper proposes a new updating rule of the design variables. The main
idea of this method is regarding the difference between the average strain energy
density value U (t)

e and the pre-established value U∗e as the error value of the feed-
back in each optimization step of the CA model, and then controlling the increment
of the elements’ relative density based on the error value.

The mathematical formula of this method can be written as

∆xe(t) =
1− e−ke×(U

(t)
e −U∗e )

1+ e−ke×(U
(t)
e −U∗e )

(12)

where ke is the error amplification coefficient and its value is determined by the
feedback signal, and it depends on the difference between the average strain energy
density value and the pre-established value in this work. Figure 3 gives the graph
of this method with different ke.

As Figure 3 shows, this method can make the intermediate feedback error close to
-1 or 1. Using this approach, it can make the elements’ relative density variations
close to 0 or 1, which is therefore important to make the topological design approx-
imate to the integer programming problem with 0 and 1 discrete design variables.
With the increasing of the error amplification coefficient, the curves are approx-
imately close to a smoothed Heaviside step function. The smoothed Heaviside
function can get better results when they are included to update the element den-
sities. In this way, the high-relative error single cellulars are enhanced. As if the
feedback signal is bigger than zero, it means that the corresponding cellular’s strain
energy density is relatively high, and it is the cellular that with high stress. This
incremental of the cellulars’ relative density should be polarized to 1 because its
contribution is very higher. For the low-relative error single, the effect is opposite,
which means that these cellulars’ corresponding incremental of relative density is
weakened.
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Figure 3: Graph of the design variable updating rule

To describe the optimized effectiveness intuitively, the mass fraction Q is presented
in this paper. It refers to the ratio between the optimized structure’s mass M(t) after
a certain iteration step and the initial mass of the solid design domain M0. So it can
be written as

Q =
M(t)
M0

=

(
N

∑
e=1

xe(t)ve

)/
N

∑
e=1

ve =
1
N

N

∑
e=1

xe(t) (13)

where ve is the volume of the element, N is the total number of elements used to dis-
cretize the design domain. A lower mass fraction Q represents at better optimized
result.

3.3 Convergence criterion

The convergence criterion depends on the type of local control rule used to up-
date the design variables. In this paper, the convergence criterion is introduced as
follows

|∆M(t)|+ |∆M(t−1)|
2

≤ ε (14)

where ∆M(t)=M(t)−M(t−1), and it refers to the mass’ relative variation between
the t-th and the (t−1)-th iteration, namely, M(t)and M(t−1), respectively. ε is a
small fraction of the total mass of the solid structure M0, and ε=0.001M0 is used in
this paper.
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3.4 Flowchart of the proposed method

The flowchart of the proposed method is displayed in figure4. It contains four steps,
and each step is explained as follows

Step 1. Set the initial value. Define the design domain, material’s property and
load parameters, discretize the design domain with finite cellulars, and then set the
initial value of the cellular.

Step 2. Structural analysis. The structural numerical analysis is completed. Set
boundary conditions, define loads, construct elemental stiffness matrix, assemble
the global stiffness matrix, and then solve the state equation.

Step 3. Optimization. In this step, the optimization is performed using the updating
rule of the design variables. During the optimization, the variables are updated,
and the iteration is being processed until the corresponding convergence criterion
is satisfied.

Step 4. Convergence. If the convergence criterion is satisfied, the optimization will
stop. Otherwise, it will return to the second step to continue the optimization.

 

Figure 4: Flowchart of the Hybrid Cellular Automata algorithm
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4 Numerical examples

Three topology optimization numerical examples are presented in this section to
demonstrate the effectiveness of the proposed method, and the capability to sup-
press the numerical instabilities of checkerboards and mesh-dependence. In the
former two examples, three methods are used to solve the given problem, namely,
the proposed method in this paper, the proportion control method and the PID con-
trol method. The former two examples are employed to analysis the effect of dif-
ferent error amplification coefficients, the comparison between optimal topologies
obtained by these three methods and the effect of the checkerboards’ suppression.
In the last example, the proposed approach will be used to illustrate its suppression
effect for the numerical instability of mesh-dependence.

4.1 Numerical example 1: The optimization of the cantilever

 
Figure 5: Design domain of a cantilever beam structure

As indicated in Figure 5, the design domain of the problem is a 0.8m×0.5m rect-
angle, discretized with 80×50 low-order quadrilateral finite elements . The ma-
terial’s Young’s Modulus E is 210 GPa and Poisson’s ratio v is 0.3. The load
F is 1000 N, located at the middle point of the right side of the structure. The
left side of the structure is fixed. The initial design of the structure is a homoge-
neous distribution of solid material with the value of 1.0. The total strain energy
is U0 =78.019Nmm, while each cellular’s objective value of local strain energy is
U∗e =U0/(80×50)=1.950×10−2N/mm3.
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Table 1: Effect of different keon the optimal topologies

The coefficientke 5 10 50 100 150

Optimal topologies

Strain energy 93.401 93.254 93.544 93.115 94.278
Iteration Number 64 38 15 53 44
The mass ratio 0.493 0.486 0.475 0.476 0.481

(1) Results and analysis

Table 1 shows the optimal topologies and the corresponding data with different
error amplification coefficientske. Figures 6 and 7 indicate the structural strain
energyU and the mass ratio F of the optimal topology, respectively. From table 1,
it can be seen that different ke can cause different results. When the value of ke
is relatively small (e.g. ke = 5 or 10) or is relatively large (e.g. ke = 100 or 150),
the corresponding iteration numbers are bigger and the mass ratios are larger than
that of ke = 50. But the optimal topological strain energy for each ke is nearly 93.5.
In addition, from Figures 6 and 7, it can also be seen that if the value of the error
amplification coefficient is too large, the structural strain energy and mass ratio
curves show strong oscillation phenomenon.

So we can draw the conclusion that when the error amplification coefficient ke is
equal to 50, it can produce better optimal topology, and needs a lesser iteration
number. More importantly, the proposed method can effectively suppress the nu-
merical instability phenomenon of checkerboards.

(2) Comparison with different methods

Table 2 indicates the comparison result between three different methods: this pa-
per’s proposed method, the proportion control and the PID control for the given
example. Figures 8 and 9 are the corresponding iterative curves of strain energy
and mass ratio, respectively.

Table 2 shows that the strain energies U of the optimal structures obtained by the
three methods are all approximate to 93. But compared with the other two conven-
tional methods, the total iteration number is 15 while the other two methods need
17 and 16 iteration steps, respectively. So the proposed method converges relatively
fast. From the final mass ratio Q, we can get the similar conclusion that the new
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Figure 6: Iterative curves of structure strain energy with differentke

 
Figure 7: Iterative curves of mass ratio with differentke

Table 2: Comparison with different methods

Methods Strain energy U Iterations t Mass ratioQ
The proposed method 93.544 15 0.475
The proportion control 93.215 17 0.479

The PID control 93.996 16 0.476
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approach can lead to a lighter topology design if the other conditions are kept the
same. From Figure 8 and Figure 9, we can see that the iterative history curves of
strain energy and mass ratio are similar, respectively. It means that the proposed
method is effective in overcoming the numerical difficulties.
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Figure 8: Iterative curves of strain energy with different methods

4.2 Numerical example 2: The optimization of the Michell structural

Figure 10 shows the design domain of a Michell type structure with a 0.6m×0.3m
rectangle, discretized with 60×30 quadrilateral finite elements. The material’s
Young’s Modulus E is 210 GPa and Poisson’s ratio v is 0.3. The vertical load
F is 1000N is applied on the bottom middle node. And the initial design of the
structure is a homogeneous distribution of solid material with the value of 1.0. The
total strain energy is U0 =28.571Nmm, while each cellular’s objective value of
local strain energy is U∗e =U0/(60×30)=1.587×10−2N/mm3.

Table 3 gives the optimal topologies by the proposed method with different error
amplification coefficients. Figures 11 and 12 indicate the structure’s strain energyU
and the mass ratio F of the optimal design, respectively. Similarly, if other condi-
tions are kept the same, a better design with 18 iterations and mass ratio (0.454) can
be obtained when ke is equal to 50. In addition, the convergence of the structural
strain energy and mass ratio are conservative and remain stable in the optimiza-
tion. This example further shows that the proposed method can conduct topology
optimization without experiencing the numerical instability of checkerboards.
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Figure 9: Iterative curves of mass ratio with different methods

 
Figure 10: Design domain of the Michell type structure

Table 3: The effect of differentke on the optimal topologies

The coefficient ke 5 10 50 100 150

Optimal topologies

The strain energy 35.031 35.178 35.337 34.751 37.966
Iteration number 83 52 18 22 71
The mass ratio 0.475 0.464 0.454 0.456 0.460
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Figure 11: Iterative curves of structure strain energy with differentke

 
Figure 12: Iterative curves of mass ratio with differentke
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Table 4 shows the comparison result of the three different methods, namely, the pro-
posed method, the proportion control and the PID control of this example. Figures
13 and 14 are the corresponding iterative curves of strain energy and mass ratio,
respectively. From Table 4, as well as Figure 13 and Figure 14, it can be found that
these three methods can get similar optimal topologies. But the proposed method
converges relatively fast (i.e. 18 steps). From this example, a conclusion can also
be drawn that the proposed updating rule for design variables is efficient in the
numerical procedure.

Table 4: Comparison with different methods

Methods Strain energy U Iteration number t Mass ratioQ
The proposed method 35.337 18 0.454
The proportion control 35.374 21 0.454

The PID control 35.574 21 0.455
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Figure 13: Iterative curves of strain energy with different methods

From the above discussions, it can be seen that when the proposed methodology is
applied in the topology optimization of continuum structures, it can lead to better
topological designs with less iterations, lower mass ratio and the final strain en-
ergy is more approximate to the objective value, and can effectively suppress the
numerical instability of checkerboards.
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Figure 14: Iterative curves of mass ratio with different methods

4.3 Numerical example 3: The optimization of the MBB-beam

 

Figure 15: Design domain of the MBB-beam

As shown in Figure 15, the design domain of a MBB type beam is with a 1.20m×0.20m
rectangle area. The material’s Young’s Modulus E is 210 GPa and Poisson’s ratio
v is 0.3. The load F is 1000 N, located at the middle point of the upper side. The
initial design of the structure is a homogeneous distribution of solid material with
the value of 1.0. The total strain energy is U0 =257.1431Nmm.

This numerical example is given to further demonstrate the ability of the proposed
method in overcoming the mesh-dependence in the topology optimization. Table
5 indicates the optimal topologies when the design domain is discretized into four
different numbers of elements, namely, 180 ×30, 240 ×40, 300 ×50 and 360 ×60.
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Figures 17 and 18 are the corresponding iterative curves of strain energy U and
mass ratio Q with different elements, respectively.

Table 5: Optimal topologies with different elements

Finite
elements

Optimal topologies Strain en-
ergy U

Iteration
Number t

Mass ra-
tio Q

180×30  269.729 20 0.42

240×40  275.000 22 0.405

300×50  276.157 18 0.404

360×60  278.736 20 0.395
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Figure 16: Iterative curves of strain energy with different elements
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Figure 17: Iterative curves of mass ratio with different elements

As can be seen from Table 5, the optimal topologies’ final strain energy, the total
iterations and the mass ratio are 275, 25 and 0.4, respectively. The most impor-
tant point is that we can obtain the identical topology designs, although the de-
sign domain is discretized with four different numbers of finite elements. All the
optimal topologies are distinct and there is not any numerical instability of mesh-
dependence in optimization procedures. On the other hand, the optimal topologies
remain unchanged subject to the refinement of the finite elements. It indicates that
the proposed method is robust in the optimization. Figures 16 and 17 also show that
when this approach is applied to the topology optimization of continuum structures,
the strain energy and mass ratio’s changing process are similar to the conventional
methods, respectively. Therefore, this example denotes that the proposed method
can effectively suppress the mesh-dependence.

5 Conclusions

Based on the CA theory and inspired by the principle of feedback control and the er-
ror amplifier in the control system, this paper proposes a new topology optimization
approach. The core aspect of this algorithm is to obtain the optimal design by the
full stress design criteria, while avoid the calculation of the sensitivity information
in the design process. The numerical examples show that the optimal topologies
obtained by using the proposed method are with higher rigidity and less iterations,
when the parameter of error amplification coefficient is appropriate. More impor-
tantly, the new updating rule can overcome numerical instability problems such as
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checkerboards and mesh-dependence. The proposed method can be extended to
handle more complex topology optimization problems from the point of practical
engineering applications.
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