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A Moving Kriging Interpolation Response Surface Method
for Structural Reliability Analysis
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Abstract: In order to obtain reliable structural design, it is of extreme impor-
tance to evaluate the failure probability, safety levels of structure (reliability anal-
ysis) and the effect of a change in a variable parameter on structural safety (sensi-
tivity analysis) when uncertainties are considered. With a computationally cheaper
approximation of the limit state function, various response surface methods (RSMs)
have emerged as a convenient tool to solve this especially for complex problems.
However, the traditional RSMs may produce large errors in some conditions espe-
cially for those highly non-linear limit state functions. Instead of the traditional
least squares approximation, in the present paper, a new RSM is proposed which
employs moving Kriging interpolation, based on the axial experimental points se-
lected from the region where the most probable failure point (MPFP) is likely to
exist to construct the substitute response surface. The proposed method is illus-
trated by comparing with the results obtained from first order reliability method
(FORM) and other conventional RSMs with reference to specific structural relia-
bility analysis problems. The results show that the proposed method improves the
accuracy of the reliability analysis with a reasonable computational cost, and could
more quickly approach the exact solution.
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1 Introduction

Up to now, structural reliability analysis has received a great deal of attention to
guarantee the structural safety due to uncertainties in material properties, geometry,
boundary conditions, as well as in loads that should be considered in the structural
design. The failure probability or reliability index in some kind of limit state is
calculated as quantitative measures to cope with these uncertainties [Ditlevsen and
Madsen (1996); Kami and Szafran (2012)]. As is well known, simulation tech-
niques such as Monte Carlo method (MCS), moment methods including the first
order reliability method (FORM) and the second order reliability method (SORM)
provide a good methodology to perform structural reliability analysis. However,
MCS will consume tremendous computational efforts especially for lower failure
probability, and the most probable failure point (MPFP), parameter sensitivities (the
failure probability with respect to variables) cannot be directly obtained, which
results in difficulty to combine with optimization in the case of reliability-based
design optimization (RBDO) problems [Santos, Matioli and Beck (2012)]. The
FORM and SORM are another successful attempt to enhance the computational
efficiency and can be easily applied in RBDO problems, which are also proved to
consume too much computation time when a large number of random variables
involved, and the performance of FORM and SORM will be affected for implicit
limit state functions since the explicit formulation of those required gradients with
respect to the basic variables namely their direct or analytical differentiations are
not available [Kiureghian, Lin and Hwang (1987); Liu and Kiureghian (1991)].

The response surface method (RSM), as an alternative, is developed for this so-
lution. This method approximates the actual limit state function of the structure
through a number of deterministic structural analyses and then evaluates the fail-
ure probability by the FORM/SORM with the obtained explicit limit state func-
tion. The approximated points (composed of structural parameter values and the
responding value of limit state function) are commonly chosen according to the
experimental design method, and the traditional response surface approximation
is constructed on finite polynomial basis functions, with the result that it rarely
fits the actual limit state function exactly. The second best is as far as possible to
approximate the actual limit state function near the design point, where its con-
tribution to the total failure probability plays an important role. The design point
is initially unknown, thus serials of iterations including constructing the substi-
tute limit state function and the FORM/SORM procedure are required. Even this,
for the acute nonlinearity problem, the traditional RSM doesn’t show satisfactory
performance in computational accuracy and efficiency [Rajashekhar and Elling-
wood (1993); Guan and Melchers (2001); Bucher and Bourgund (1990)]. Many
RSM techniques are dedicated to reducing the number of structural analysis or im-
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proving the accuracy such as artificial neural network-based RSM [Cheng, Li and
Xiao (2008)], Kriging-based RSM [Kaymaz (2005)], moving least square (MLS)
approximation-based RSM [Kang, Koh and Choo (2010)], support vector regres-
sion (SVR) based RSM [Zhao, Liu and Ye (2011)] and etc.

Herein another efficient way to approximate the points, moving Kriging (MK) in-
terpolation method is employed to construct the equivalent limit state function for
the implicit response surface, which was introduced by Gu (2003) for the first time.
The Kriging interpolation is a well-known geostatical technique for spatial inter-
polation in geology and mining, and the application of the MK interpolation is still
in its early stages [Matheron (1963)]. Both MK interpolation method and MLS
method belong to some kind of ‘moving’ method which means response surface is
constructed on the varying sub-domain, but different from MLS method, which is
an approximant and does not pass through the interpolation points, MK interpola-
tion method satisfies the Kronecker’s delta property, and also its derivatives with
respect to the basic variables can be easily obtained at the same time as calculating
the function values. Kang and his coworkers applied the MLS approximation to
the RSM, which gave higher weight to the experimental points closer to the MPFP
through weigh functions so as to allow the response surface function to be closer to
the limit state function at the MPFP. A response surface based on linear polynomial
basis functions was constructed at first and a response surface based on quadratic
basis functions was formed using the axial experimental points selected from the
reduced region where the MPFP is likely to exist [Kang, Koh and Choo (2010)].
In this paper, an equivalent limit state function is generated by MK interpolation
method. In contrast with MLS method, it gives higher weight to the experimental
points closer to the MPFP through correlation functions. The proposed procedure
provides reasonably good results compared to those obtained by the conventional
LS-RSM, FORM, SVR and MLS approximation-based RSM.

2 Moving Kriging approximation [Gu (2003)]

As MLS method does, the MK interpolation method approximates the distribution
function u(x) within a sub-domain Ωx (Ωx ∈Ω, Ω is the whole definition domain).
Thus these values can be interpolated based on all nodal values of {x1,x2, · · · ,xn}
within the sub-domain, and n is the total number of the nodes in Ωx. The MK in-
terpolation uh(x) postulates a combination of a linear regression model a stochastic
error

uh(x) =
m

∑
j=1

p j(x)a j + z(x) = pT (x)a+ z(x) (1)
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where p j(x) is a known basis function of x (usually polynomial). Coefficients a j

are regression parameters required to be determined, and z(x) is supposed to be a
stationary stochastic process with mean zero, variance σ2, and non-zero covariance.

The covariance matrix of z(x) is defined as

cov{z(xi),z(x j)}= σ
2R[R(xi,x j)] (2)

where σ2 is a given scale factor. R[R(xi,x j)] is the correlation matrix, and R(xi,x j)
is the predefined correlation function between any two of the n nodes xi and x j. A
widely used correlation function is a Gaussian function

R(xi,x j) = exp(−θr2
i j) (3)

where

ri j =
∥∥xi−x j

∥∥ (4)

and θ > 0 is a given correlation parameter.

Given a set of nodes {x1,x2, · · · ,xn} and function values at these nodes Us =
{u(x1),u(x2), · · · ,u(xn)}T , u(x) at any x(x ∈ Ω) can be estimated using the lin-
ear (or polynomial) predictor

û(x) = cT (x)Us = {c1(x),c2(x), · · · ,cn(x)}


u(x1)
u(x2)

...
u(xn)

 (5)

At the same time, according to the linear regression model Eq. (1), Us is determined
by

Us = Pma+Z (6)

where Pm is an n×mmatrix of p j(x) ( j = 1, · · · ,m) values of the given nodes
{x1,x2, · · · ,xn} and Z is an n× 1 matrix of the corresponding errors in the linear
regression model , i.e., Eq. (1). They are evaluated as

Pm =


p(x1)
p(x2)

...
p(xn)

=


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...
p1(xn) p2(xn) · · · pm(xn)

 (7)

Z = {z1(x),z2(x), · · · ,zn(x)}T (8)
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where

p(x) = [p1(x), p2(x), · · · , pm(x)] (9)

and p(x) is a 1×n vector of the known m basis functions in Eq. (1). In general, a
linear basis namely p(x) in one dimension is given by

p(x) = {1,x}, m = 2 (10)

and a quadratic basis by

p(x) = {1,x,x2}, m = 3 (11)

whereas a linear basis in two dimensions is provided by

p(x) = {1,x,y}, m = 3 (12)

Thus, for any point x ∈ Ωx, the error φ(x) produced by the linear (or polynomial)
predictor upon the given nodes can be calculated as

φ(x) = û(x)−uh(x) = cT (x)Us−uh(x) = cT (x)(Pma+Z)− [pT (x)a+ z(x)]
= cT (x)Z− z(x)+{PT

mc(x)−p(x)}T a
(13)

Assuming û(x) as random, to obtain the best estimation, û(x) should be the unbi-
ased estimation of uh(x). In view of the generality of coefficient a, the following
constraints should be satisfied

PT
mc(x)−p(x) = 0 (14)

and the mean squared error (MSE) of the predictor averaged over the random pro-
cess can be evaluated. It is obtained by picking n×1 vector c(x) to minimize

MSE[û(x)] = E[φ(x)2] = E[cT (x)Us−uh(x)]2

= E[cT (x)Z− z(x)]2
(15)

where E[•] =
∫

Ω
•dx
/∫

Ω
dx is the average of •.

To implement the best linear unbiased predictor at x, we use the notation

RQ =


1 R(x1,x2) · · · R(x1,xn)

R(x2,x1) 1 · · · R(x2,xn)
...

...
. . .

...
R(xn,x1) R(xn,x2) · · · 1

 (16)
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for the n×n matrix of correlation between the z′s at the given nodes, and

r(x) = {R(x,x1), · · · ,R(x,xn)} (17)

for the 1×n matrix of correlation between the given nodes and x. With these def-
initions, we can solve the optimization problem. The goal is to minimize formula
(15) with respect to c(x) subject to the constraint Eq. (14). Introducing Lagrange
multipliers as the ordinary Kriging interpolation method does, the constrained opti-
mization problem can be converted to an unconstrained problem. According to the
regulations of functional analysis and optimization, the following moving Kriging
interpolation model can be obtained and more details can refer to the related Ref.
[Gu (2003)]

uh(x) = pT (x)â+ rT (x)R−1
Q (Us−Pmâ) (18)

where

â = [PT
mR−1

Q P]−1PT
mR−1

Q Us (19)

For convenience of presentation, we define the following notations

Sâ = (PT
mR−1

Q P)−1PT
mR−1

Q (20)

Sb̂ = R−1
Q (I−PmSâ) (21)

where I is an n×n identity matrix. And thus Eq. (18) can be rewritten as

uh(x) = [pT (x)Sâ + rT (x)Sb̂]Us (22)

or

uh(x) = Φ(x)Us =
n

∑
k=1

ϕk(x)uk (23)

where φk(x) and Φ(x) are the shape function and its responding matrix respectively,
which are given by

Φ(x) = {φ1(x),φ2(x), · · · ,φn(x)} (24)

φk(x) =
m

∑
j=1

p j(x)Sâ jk +
n

∑
i=1

rk(x)Sb̂ik (25)

where Sâ jk is the element at the j-th row and k-th column of Sâ, Sb̂ik is the element at
the i-th row and k-th column of Sb̂. The partial derivatives of shape function φk(x)
against Xi (in one dimension Xi is x, and in two dimension is x or y, see the above
definition of p(x)) then can be calculated as

φk,Xi =
∂φk(x)

∂Xi
=

m

∑
j=1

∂ p j(x)
∂Xi

Sâ jk +
m

∑
j=1

∂ rk(x)
∂Xi

Sb̂ jk (26)



A Moving Kriging Interpolation Response Surface Method 475

Kronecker’s delta property

The delta property is the inherent characteristic of the MK shape functions which
cannot be found in general MLS approximations. Replacing x with any node of
interest x j in Eq. (25), where j = 1, · · · ,n, it will lead to the following Kronecker’s
delta property

φk(x j) = δk j (27)

Choice of the correlation

The parameter θ has a significant effect on the Kriging quality. The ‘optimal’ value
of θ depend strongly on the data Us. For simplicity, θ was chosen in our work as
Ref. [Gu (2003)] does to satisfy the following condition

1×10−6 ≤ |R| ≤ 1×10−1 (28)

3 MK interpolation based response surface

3.1 Response surface method [Rajashekhar and Ellingwood (1993); Guan and
Melchers (2001)]

The limit state function subjected to a given condition is often defined as

g(X) = g(x1,x2, · · · ,xn) = 0 (29)

where xi(i = 1,2, · · · ,n) is the basic random variables, n is the number of random
variables, X = (x1,x2, · · · ,xn) is the vector of the random variables. In general,
g(X) is described in implicit forms. The response surface method is applied in
which the original limit state function g(X) is replaced by an explicit polynomial
function

∼
g(X), a common used form as Eq. (30) on the basis of basic random

variables. a,bi and ci are the 2n+1 unknown coefficients, which can be obtained by
regression methods such as least squares estimates, evaluated using the information
obtained at the sampling points chosen in the vicinity of the mean values of basic
random variables , that is, the sampling points are selected to be located at µµµ and
µµµ ±k •σ , where µµµ = (µ1,µ2, · · · ,µn) and σσσ = (σ1,σ2, · · · ,σn) are vectors of the
means and the standard deviations of random variables X, k = (k1,k2, · · · ,kn), ki =
0 or k(i = 1,2, · · · ,n) and only one element of k equals k, k is an arbitrary factor,
and • is the dot product. In order to improve the accuracy and efficiency of RSM,
many sampling schemes are explored to choose the fitted points. Amongst the
factorial experimental design and fully saturated experimental design method are
widely used.

∼
g(X)≈ a+

n

∑
i=1

bixi +
n

∑
i=1

cix2
i (30)
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In order to best arrive at the original limit state surface, the fitted points are com-
monly chosen as an adaptive interpolation scheme. A simple adaptive scheme as
the fully saturated experimental design method does involves a set of iterations:

1. Use the Hasofer-Lind algorithm [Madsen, Krenk and Lind (1986); Hasofer
and Lind (1974)] or other FORMs to obtain the design point XD on the initial
estimated response surface

∼
g(X);

2. Update the location of experimental design points. Their new centre point
XM is obtained by line interpolation as Eq. (31) through the design point
(XD,g(XD))and the mean vector point (µµµ,g(µµµ)). The new centre point XM
is thus located on the original limit state surface g(X) = 0.

XM = µµµ +(XD−µµµ)
g(µµµ)

g(µµµ)−g(XD)
(31)

Then a new surface using XMas the centre point is obtained and the above procedure
is repeated till convergence criterion on the reliability index is satisfied.

3.2 Moving Kriging interpolation based response surface

Considering the delta property is the inherent characteristic of the MK shape func-
tions which cannot be found in general MLS approximations, a moving Kriging
interpolation based response surface method (MK-RSM) maybe make more accu-
racy. The MK-RSM is thus explored in this paper. It generates the points in the
similar way as the basic response surface method does. In addition, to avoid great
numbers dominate those small ones and eliminate numerical calculation difficulties
and the requiring of MK interpolation, all the random variables are transformed to
standard normal random variables before performing MK -RSM procedure. More
details will be given in the next section.

In order to obtain a better fit of the response surface, the value of the parameter
k is lowered as subsequent updating of the centre point in subsequent cycles of
response surface updating, and gradually chosen from the set such as {4.0, 3.0, 2.0,
1.0, 0.5, 0.2, 0.1, · · ·}. According to Eq. (23), a linear basis is chosen to construct
the substitute limit state function as

g̃(X) = Φ(X)Us =
n

∑
k=1

φk(X)gk (32)

The Gaussian function is chosen as the correlation function in this work. As the
distance of fitted points is varying as the updating, the coefficient of correlation
function is also varying as the sampling points and chosen in terms of Eq. (28).
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4 Calculation of reliability index and its sensitivity

4.1 Calculation of reliability index

The FORM and the SORM have been proved to provide a rational measure of the
reliability. The FORM often has adequate accuracy and is widely applied in reli-
ability analysis. In the FORM, the reliability analysis requires a transformation T
from the original random variable vector X to an equivalent system of independent
and standard normal random variable vector U, and then the limit state function
g(X)in the X space can be mapped into g(U) in the U space.

For a component of the random variable vector X, xi, in the limit state function, if
it is an independent normal random variable, it can be transformed into a standard
normal random variable ui as the following

ui = T (xi) =
xi−µi

σi
(i = 1,2, · · · ,n) (33)

where µi and σi are the mean and standard deviation of the random variable xi.

When a non-normal random variable xiis involved, the transformation into a stan-
dard normal random variable ui can be conducted by the following Rackwitz-
Fiessler transformation [Rackwitz and Fiessler (1978)]:

FX(xi) = Φ(ui) (34)

where FX(·) is the non-normal cumulative probability and Φ(·) is the standard nor-
mal cumulative probability; that is to say, ui can be formulated as

ui = T (xi) = Φ
−1(FX(xi)) (35)

In our application, the substitute limit state function g̃(X) is simultaneously mapped
into the standard normal space

g̃(X) = g̃[R(X),Q(X)]

= g̃{R[T−1(u)],Q[T−1(u)]}= g̃(u)
(36)

where R represents the resistance and Q represents the load effect.

After that, all the random variables are transformed into statistically independent
standard normal ones and herein grouped as a vector u = (u1,u2, · · · ,un)

T . In the
uncorrelated normal space u, only the linear Taylor-expansion items of the limit
state equation at the design point are considered, then the reliability index β is
the shortest distance in U space from the origin to the limit state surface given by
g̃(u) = 0. A design point u∗ nearest to the origin on the limit state surface could
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be found to calculate the reliability index. It is a minimization problem described
as the following

minimize
g̃(u)=0

‖u‖ (37)

and then the reliability index can be calculated by

β =
√

u∗T u∗ (38)

Any MPFP or design point search algorithm developed for first-order reliability
analysis or general optimization procedure can be used to solve Eq. (37). In this
paper, the Hasofer-Lind algorithm is employed to conduct the reliability analy-
sis because of its simplicity and efficiency. The iterative Hasofer-Lind algorithm
[Madsen, Krenk and Lind (1986); Hasofer and Lind (1974)] is formulated as

ui+1 =

(
uT

i ni +
g̃(ui)

‖∇g̃(ui)‖

)
ni (39)

where

∇g̃(u) =
(

∂ g̃(u)
∂u1

,
∂ g̃(u)
∂u2

, · · · , ∂ g̃(u)
∂un

)T

(40)

and

n =− ∇g̃(u)
‖∇g̃(u)‖

(41)

where the vector n is defined as the normalized steepest descent direction of g̃(u)at
u. Considering Eq. (40) and according to Eqs. (33)-(36), ∇g̃(u) can be calculated
by

∂ g̃(u)
∂u j

=
∂ g̃
∂x j

∂x j

∂u j
=

∂ g̃
∂x j

∂T−1

∂u j
( j = 1,2, · · · ,n) (42)

where, according to Eq. (32), ∂ g̃
∂x j

can be computed as

g̃x j(X) = Φx j(X)Us =
n

∑
k=1

φk,x j(X)gk (43)

Substituting Eq. (43) into Eqs. (39) and (40), iterating until the reliability index β

satisfies a convergent criterion, the design point u∗ will be simultaneously obtained.
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4.2 Sensitivity estimation

Sensitivity analysis of the random variables is conducted to determine to what ex-
tent each random variable has effect on the reliability index. The sensitivity index
is defined as a measure to quantify the influence of each basic random variable,
which is related with reliability index and the standard normal random variables
and given by [Chakraborty and Bhar (2006)]

αi =
∂β

∂ui
=

aiσui

σG
(44)

In the first order reliability analysis method, g̃(u), in fact, is handled as some kind
of a linear approximation ˜̃g(u) of the basic standard normal random variables in the
following form˜̃g(u) = a0 +a1u1 + · · ·+anun (45)

Considering σui = 1(i = 1,2, · · · ,n) in the Uspace, the sensitivity index can be
rewritten as

ααα = (α1, · · ·αn)
T = (

∂β

∂u1
, · · · , ∂β

∂un
)T = (

a1

σg
, · · · , an

σg
) =

∇ ˜̃g∥∥∇ ˜̃g
∥∥ (46)

Contrasting with Eq. (41), it can be found that

ααα =−n (47)

Thus, along with the iterative Hasofer-Lind algorithm, the sensitivity indices can
be simultaneously obtained.

4.3 Procedure of the proposed method

Summing up the above MK interpolation-based reliability analysis method, we
present the following procedure to perform the reliability analysis

1. Select the means of random variables X as the initial centre point, and select
another 2n experimental points around the centre point totally 2n+1 points
as depicted in Section 3.1, where k = 4.

2. Transform the experimental points from X space to the U space as a normal
vector u using the Rackwitz-Fiessler transformation Eq. (34). According
to the average distance of the obtained 2n+ 1 experimental points and Eq.
(28), choose the correlation parameter θ . Construct the linear basis MK
interpolation response surface g̃(u)(K) of the limit state function, where K
denotes the K-th outer iteration, and one outer iteration corresponds to one
set of sampling experimental points.
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3. In accordance with Hasofer-Lind algorithm, compute the partial derivatives
of current g̃(u)(K) according to Eq. (42), substitute them into Eqs. (39)-(41)
and iterative until satisfying a converging criterion, e.g. |u∗i+1−u∗i |/|u∗i | <
1e−3, obtain the reliability index β (K) , its sensitivities and the design point
u∗(K), transform it back to the original space as X∗(K).

4. Determine whether the outer iteration is convergent to a criterion such as∣∣u∗(K)−u∗(K−1)
∣∣/|u∗(K−1)|< 1e−3, if it is satisfied, stop the outer iteration

and the result is the reliability index and its sensitivities in the last outer
iteration. Otherwise, return to Step 1, change the value of k, select X∗(K) as
the new centre point, update the experimental points and repeat Steps (1)-(4).
As indicated in Section 3.2, the value of k generally decreases successively,
e.g., in the second outer iteration, a reasonable value of k is 2, and in the
following outer iterations, k = 1.

5 Numerical examples

Three numerical examples borrowed from Ref. [Kang, Koh and Choo (2010);
Melchers and Ahammed (2004)] are used to demonstrate the accuracy and the com-
putational effectiveness of the MK interpolation RSM. For comparison, the relia-
bility analysis results calculated by LS-RSM, MLS-RSM, FORM or SVR-RSM are
presented and the FORM results are referred to exact ones.

The first example concerns non-linear limit state function in two variables. The
second example is related with the reliability analysis of a finite element problem
with an implicit limit state. The third example pays attention to a highly non-linear
limit state involved six non-normal variables.

Example 1: a nonlinear limit state function

The limit state function is formulated as

G(u) = exp[0.4(u1 +2)+6.2]− exp(0.3u2 +5)−200 (48)

where u1 and u2 are independent and standard normal random variables, i.e., u1 ∼
N(0,1), u2 ∼ N(0,1).

The solutions given by FORM, LS-RSM, MLS-RSM are referred from Ref. [Kang,
Koh and Choo (2010)], and results obtained by FORM are supposed to be the exact
solution. We compare and analyze the results of MK-RSM and conventional RSMs.
For the limit state function Eq. (48) expressed in explicit form, it is also considered
as an implicit function to construct the substitute response surface in the RSM.
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As Ref. [Kang, Koh and Choo (2010)] does, the histories of the reliability index
obtained in each outer iteration of the above methods are plotted in Fig.1 and com-
pared. It can be seen that the reliability index provided by MK-RSM converges
faster to the exact value than the LS-RSM and MLS-RSM. Among the errors of the
reliability index calculated by these methods in the first outer iteration, the max-
imum is obtained by the LS-RSM and the minimum is MK-RSM. Although the
LS-RSM and MK-RSM start the iteration with the same number initial experimen-
tal points (5= 1+2n), the MK-RSM exhibits less error.

Figure 1: Example 1: comparisons of the histories of the reliability index per iter-
ation

The reliability index, its sensitivities to each random variable and the MPFP cal-
culated by the LS-RSM, MLS-RSM and the proposed MK-RSM are presented and
compared in Table 1 to check the accuracy of these methods. As a measure of the
efficiency of the method, the number of function evaluations (NFE), the errors with
respect to the exact results obtained by the FORM are also listed in Table 1.

All the reliability indices resulted from the three methods gradually approach the
exact solution as the iterations increase, and the MK-RSM obtains nearly the same
value as the FORM does, whereas the LS-RSM produces the maximum error (0.048
%). On the MPFP and sensitivities of reliability index to the random variables,
compared to the reliability index itself, the three methods make greater errors and
they exhibit different precision. The LS-RSM, MLS-RSM and MK-RSM produces
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a maximum error of 10.371%, 0.35% and 1.122% respectively on the MPFP and
a maximum sensitivity error of 10.418%, 0.345% and 1.118% respectively, thus
MLS-RSM and MK-RSM are more accurate than the conventional LS-RSM. On
the efficiency of the above methods, the MLS-RSM needs 12 (= (1+ n) + (1+
2n)+ 1× 4) NFE to find the solution. The LS-RSM needs a total of 6 iterations
leading to 30 (= 6× (1 + 2n)) NFE, which is larger than the 27 NFE required
by FORM, whereas the MK-RSM needs only 15 (= 3× (1 + 2× 2)) NFE and
converges more rapidly than the LS-RSM methods. Its reliability indices of second
and third iteration are 2.7088 and 2.7099 respectively, which is fast approaching
the exact value. The obtained reliability index in the first iteration is 2.5437, which
is closer to the exact solution than the other two methods. This first nonlinear
example proves that the proposed MK-RSM provides nearly the same results as
the exact solution in terms of the accuracy of the reliability index, and the close
computational efficiency and accuracy of the MPFP and sensitivities to the random
variables within a reduced number of structural analyses as MLS-RSM.

Example 2: 10-bar truss problem

A 10-bar truss problem (Fig. 2) widely used in the field of optimization and re-
ported in a number of papers is presented, which involves finite element analysis
and implicit limit function.

Figure 2: A 10-bar truss structure
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The limit state function of element 1 in Fig. 2 is given by

G(A) = σallow−|σ(A)| (49)

with the following characteristics

Ai ∼ N(10,0.52)(in.2) or Ai ∼ N(64.52,1.272)(cm2)

σallow = 2.5×104(psi) or 172.4MPa

where the section areas of the 10 truss elements are normally distributed random
variables [Kang, Koh and Choo (2010)].

Figure 3: Example 2: comparisons of the histories of the reliability index per iter-
ation

As Example 1 does, Fig. 3 shows and compares the historical results of each
method until the convergence criterion is satisfied within 4 iterations. The relia-
bility index, MPFP and sensitivities calculated by the LS-RSM, MLS-RSM and
proposed MK-RSM are listed and compared in Table 2. The reliability indices and
sensitivities obtained by the three methods are gradually approach the exact solu-
tion as the iterations increase, and the MK-RSM produces highest accuracy in terms
of the reliability index, MPFP and sensitivities compared with the other two meth-
ods. At the same time, the MK-RSM rapidly converges to the exact solution with a
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series of the reliability index values of 4.9669, 4.8080 and 4.8083 in the first three
iterations. The LS-RSM is less efficient than the MLS-RSM and MK-RSM, since
it requires 84 NFE, whereas the other two needs 34 NFE and 63 NFE respectively.

Table 2: Comparison of analysis results of example 2
Exact solution
(FORM)

LS-RSM MLS-RSM MK-RSM

Reliability
index

4.8083 4.8084 4.8089 4.8083

MPFP 7.6658,9.9949
9.7302,10.0075
10.0350,9.9949
9.5916,10.2997
10.0212,9.9855

7.6636,9.9949
9.7326,10.0075
10.0346, 9.9949
9.5986,10.2946
10.0209,9.9857

7.6651, 9.9949
9.7300, 10.0075
10.0354, 9.9949
9.5928, 10.2981
10.0212, 9.9855

7.6655,9.9949
9.7305,10.0075
10.0350,9.9949
9.5924,10.2990
10.0212,9.9855

Sensitivity -1.9418,-0.0043
-0.2244,0.0063
0.0291,-0.0043
-0.3397,0.2493
0.0177,-0.0121

-1.9436,-0.0042
-0.2225,0.0062
0.0287,-0.0042
-0.3339,0.2451
0.0174,-0.0119

-1.9422, -0.0043
-0.2245, 0.0063
0.0294, -0.0043
-0.3387, 0.2479
0.0176, -0.0120

-1.9420,-0.0043
-0.2242,0.0063
0.0291,-0.0043
-0.3391,0.2487
0.0176,-0.0121

NFE 90 84 34 63

Example 3: A highly nonlinear limit state function with non-normal random
variables

A highly nonlinear limit state function shown in Eq. (50) with non-normal random
variables of various distributions borrowed from Ref. [Melchers and Ahammed
(2004)] is presented. The random variable parameters are listed in Table 3.

Table 3: Random variables and their parameters

Variable Mean Standard deviation Distribution
X1 4.0 0.1 Weibull
X2 25000 2000 Lognormal
X3 0.875 0.1 Gumbel
X4 20.0 1.0 Uniform
X5 100.0 100.0 Exponential
X6 150.0 10.0 Normal
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Table 4: Comparison of analysis results of example 3

Exact solution
(FORM)

SVR-RSM MK-RSM

Reliability
index

2.6697 2.67 2.6701

MPFP 4.0054, 24205
0.8227, 19.581
514.42, 155.86

4.006,24234
0.824,19.59
517.40,155.68

4.0053,24204
0.8204,19.617
513.86,155.85

Sensitivity -0.0404, -0.1365
-0.1609, -0.1151
0.9447, 0.2193

-0.0395,-0.131
-0.156,-0.112
0.948,0.213

-0.0408,-0.1367
-0.1725,-0.1052
0.9438,0.2190

NFE 12 156 65

g(X) = X1X2X3X4−X5X2
6 /8 = 0 (50)

Considering the strong adaptability of SVR-RSM in approximating the highly non-
linear limit state function, the results produced by the FORM, SVR-RSM and MK-
RSM are presented and compared in Table 4. The accuracy and efficiency of the
results obtained by the MK-RSM is similarly demonstrated in this example, which
rapidly approaches and makes a good agreement with the exact solution. Espe-
cially, contrasting with the SVR-RSM, with less NFE (65 NFE against 156 NFE of
SVR-RSM), MK-RSM produces more accuracy in terms of the MPFP and sensi-
tivities, which will play an important role in the successive RBDO.

6 Conclusions

The RSMs have emerged as a computationally cheap tool to solve complex relia-
bility analysis problems, whose induced errors in terms of reliability index, MPFP
and sensitivities will determine the success of reliability analysis and the following
RBDO. Thus, a novel RSM method, based on MK interpolation, is proposed in this
paper. The MK interpolation has the characteristic of Kronecker’s delta property,
which means its good approximation for the limit state function. The results of the
numerical examples have demonstrated that the MK-RSM improves the accuracy
of the reliability index, MPFP and sensitivities, and more quickly approaches the
exact solution. The deficiency is that the NFE required in the MK-RSM is greater
that that in the MLS-RSM, but smaller than in the LS-RSM, therefore, further ef-
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forts should be made to develop new sampling strategy, which will help to shorten
the computational time.
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