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Abstract: The main aim in this paper is a computational study devoted to the
sensitivity gradients and probabilistic moments of the effective elastic parameters
for the rubber-filled polymers. The methodology is based on least squares recovery
of the polynomial functions relating the effective tensor components and the given
input design/random parameters. All numerical experiments are provided with re-
spect to Young’s moduli of the elastomer constituents. Computational analysis is
possible thanks to the application of the Response Function Method, which is en-
riched in our approach with the weighting procedures implemented according to
the Dirac-type distributions. The homogenized elasticity tensor components are
derived with the use of the variational upper and lower bounds for 2 D idealization
of the composite and also thanks to the computational solution to the plane strain
cell problem solved on the elastomer’s Representative Volume Element. Sensitivity
analysis results in the first order gradients of the effective tensor, while probabilistic
moments consist of up to the fourth order probabilistic moments and coefficients
of the tensor; all numerical experiments are carried out in the FEM-oriented code
MCCEFF and also using the symbolic computer algebra system MAPLE. This ap-
proach is straightforwardly applicable in deterministic and probabilistic optimiza-
tion of polymers filled with rubber or carbon particles; it gives also the basis to
further homogenization-based experiments with more advanced constitutive laws
like Mullins theory.
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1 Introduction

It is widely known that polymers filled with rubber particles have random inter-
nal micro- and nanostructures [Jeulin and Ostoja-Starzewski (2001)], so that their
mechanical modeling with the use of a homogenization procedure is well justi-
fied. We introduced here an effective medium with iso- or orthotropic character
fulfilling some equivalence criteria [Christensen (1979); Milton (2002), Kamiński
(2005)] instead of the real hierarchical heterogeneous structure with various levels
and different types of an uncertainty. These criteria are developed starting from a
simple spatial averaging of the RVE through some algebraic approximations for the
upper and lower bounds as well as using the Finite Element Method solution to the
so-called cell problem. The basic difference to the previous numerical experiments
and theories with homogenization is that now the rubber particle embedded into
the polymeric matrix has Young’s modulus the few times smaller and, effectively,
elasticity tensor components. The rubber particles in this context do not form a
reinforcement to the matrix, but rather some kind of a filler (in the framework of
elastic range by only). Nevertheless, prediction of the homogenized characteristics
as well as their sensitivity gradients with respect to material parameters of the initial
components and/or their probabilistic moments coming from a randomness in ori-
ginal materials characteristics is an important and challenging problem [Kamiński
(2013); Kamiński and Lauke (2012); Ma et al. (2011)]. A solution to that issue
would allow for a more optimal choice of the components for the specific appli-
cations of rubber-filled polymers as well as the homogenization-based reliability
and durability predictions for such materials and structures. Let us note that alter-
natively to the homogenization method, one may employ the Voronoi Cell Finite
Element Method (VCFEM) to provide direct micromechanical numerical mode-
ling of the composites or porous materials as well [Dong and Atluri (2012)] and
this alternative could be considered in the nearest future for further stochastic de-
velopments.

The main aim of this work is to contrast various homogenization methods for
rubber-filled polymers in terms of sensitivity and randomness of the elastic cha-
racteristics of their constituents. Computational symbolic algebra plays a dominant
role because we employed analytical and semi-analytical methods to accomplish
this goal. Sensitivity analysis performed for the Young’s moduli of both compo-
nents and the filler’s particles volume ratio enables to determine the most decisive
design parameters for the different homogenization methods included in this com-
parison. Semi-analytical technique is based on the Least Squares Method (LSM)
recovery of the response functions relating the homogenized tensor components
with design/random input parameters. It is introduced using the deterministic Fi-
nite Element Method (FEM) experiments carried out using the homogenization-
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oriented 4-noded plane strain element of the system MCCEFF (Monte-Carlo Con-
stants EFFective) and based on the effective modules method [Kamiński (2005);
Kamiński (2009); Kamiński (2013)]. The sets of such experiments’ results are
transferred thanks to the usage of the weighted version of the LSM into the re-
sponse functions and, further, into the additional probabilistic moments calculated
via the generalized stochastic perturbation technique. This technique has been cho-
sen as the very fast and accurate, which was proved before by the comparative
tests with the Monte-Carlo simulation technique [Kamiński and Lauke (2012)]. It
is remarkable that this methodology may be used at the same time to determine
both sensitivity gradients and probabilistic moments of the homogenized tensor
in the presence of some input design/random variables. The Dirac distribution of
the weights in the neighborhood of a mean value of the input parameter is pre-
ferred since the expectation of the chosen input parameter significantly prevails; it
follows also previous computational experiments with polymeric composites with
the reinforcing fibers. The response functions were assumed here in the polyno-
mial form, so that it could be verified in the MAPLE experiments how an order of
the given polynomial influences the expectations, coefficients of variation, skew-
ness and kurtosis of the homogenized tensor components. Finally, the dependence
of probabilistic moments and coefficients of this tensor on the initial uncertainty
sources was verified quantitatively and it was checked additionally whether the ho-
mogenization method preserves Gaussian distribution in-between input and output
random quantities. The key novel aspect here is an application of the generalized
stochastic perturbation technique in its Weighted Least Squares Method (WLSM)
version, where Dirac weighting procedure guarantees and speeds up probabilistic
convergence as satisfactory numerical stability of the results; contrary to the pre-
vious studies [Kamiński (2009)], we used consecutively 10th order approximation
for all the computed probabilistic moments and coefficients of the composite’s ef-
fective properties.

2 Governing equations

2.1 Homogenization methods

Let us consider a plane cross-section of the particle-filled composite with linearly
elastic and transversely isotropic properties of the components. The Representative
Volume Element (RVE) Ω of Y (Y ⊂ ℜ2) as well as the section of this composite
in the plane x3 = 0 are shown in Fig. 1.

The region Ω contains two perfectly bonded, coherent and disjoint subsets Ω1
(filler) and Ω2 (matrix), and let the scale between corresponding geometrical di-
ameters of Ω and Y be described by the small parameter ε >0. The parameter ε
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Figure 1: Periodic two-component composite idealization

indexes all the tensors written for the geometrical scale of Ω, and let ∂Ω denote
the external boundary of Ω, while ∂Ω12 is the interface boundary between the Ω1
and Ω2 regions. Further, it is assumed that the composite is periodic in a random
sense if, for an additional ω belonging to a suitable probability space – there exists
some specific geometrical transformation in-between Ω and the entire composite
Y. Next, let us introduce two different coordinate systems: y = (y1,y2) at the micro
scale of the composite and x = (x1,x2) at the macro-scale. A periodic state function
F was defined in the region Y:

Fε (x) = F
(x

ε

)
= F (y) . (1)

This expression makes it possible to describe the macro functions (connected with
the macro-scale of a composite) in terms of micro ones and vice versa. The elasti-
city coefficients can be defined, for instance, as

Cε
i jkl (x) =Ci jkl (y) . (2)

fulfilling the symmetry, boundedness and ellipticity conditions. Moreover, for any
of the composite constituents, this tensor is defined as

Ci jkl (x) = E (x)
{

δi jδkl
ν (x)

(1+ν (x))(1−2ν (x))
+(δikδ jl +δilδ jk)

1
2(1+ν (x))

}
.

(3)

Because we introduce

Ai jkl(x) = δi jδkl
ν(x)

(1+ν(x))(1−2ν(x))
+(δikδ jl +δilδ jk)

1
2(1+ν(x))

(4)
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then the first partial derivatives of the elasticity tensor with respect to the Young’s
modulus in the homogeneous material are equal to

∂Ci jkl

∂e
= Ai jkl, (5)

and any higher order partial derivatives are equal to 0. Further, the effective ten-
sor C(e f f )

i jkl is introduced as a tensor that replaces Cε
i jkl with C(e f f )

i jkl in the following
equilibrium equations:(
Cε

i jkl εkl (uε)
)
, j
= 0; x ∈Ω (6)

εi j (uε) = 1
2

(
uε

i, j +uε
j,i

)
; x ∈Ω (7)

Cε
i jkl(x) = χ1(x)C

(1)
i jkl +(1−χ1(x))C(2)

i jkl (8)

with uε as displacements, where u0 is obtained as a solution for a weak limit of
uε with ε → 0. The tensors C(e f f )

i jkl and C(e f f )
i jkl are the elasticity tensor components

of the fiber filler or particle and the matrix, respectively, while the characteristic
function appearing in the above equation is defined as

ψ1(x) =
{

1, x ∈Ω1
0, x ∈Ω2

, (9)

with the following displacements boundary conditions on all the external edges of
the RVE

uε = 0; x ∈ ∂Ωu ≡ ∂Ω (10)

and these corresponding to the stresses given at the fiber-matrix interface

σi jn j = pi; x ∈ ∂Ωσ ≡ ∂Ω12 (11)

The homogenization problem is to find the limit of the solution uε with ε tending to
zero [Bensoussan et al. (1979); Sanchez-Palencia (1980); Fish and Chen (2001)].
A variational statement equivalent to the equilibrium problem (6-10) is to find a
displacement uε fulfilling the following equation:∫
Ω

Ci jkl
( x

ε

)
εi j(u)εkl(v) dΩ =

∫
∂Ωσ

pivid (∂Ω), (12)

where vector function v (or vi, i=1,2) in the above relation is any admissible vector
displacement function fulfilling the boundary conditions given in Eqn. (11). The
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limiting solution is called further homogenization function χ(pq) (p,q=1,2) - a so-
lution to the local problem (6-10), where the following stress boundary conditions
are applied at the interface [Kamiński (2005)]:

σi j
(
c(pq)

)
n j = [Ci jpq]n j = F(pq)i ; x ∈ ∂Ω12, (13)

and where n j is the component of the unit vector normal to the particle-matrix
boundary directed to the particle interior; [Ci jpq] denotes the difference of the elas-
ticity tensor for the matrix and the particle

[Ci jpq] =C(m)
i jpq−C(p)

i jpq. (14)

The stress boundary conditions corresponding to different homogenization prob-
lems are specified in Tab. 1 for three independent homogenization functions.

Table 1: The components of the interface forces F(pq)i

χ(11) χ(12) χ(22)

F(pq)1 C(2)
1111−C(1)

1111 C(2)
1212−C(1)

1212 C(2)
1122−C(1)

1122

F(pq)2 C(2)
2211−C(1)

2211 C(2)
1212−C(1)

1212 C(2)
2222−C(1)

2222

Then, an equivalent homogeneous orthotropic elastic material is obtained, charac-
terized by the tensor

C(e f f )
i jkl =

1
|Ω|

∫
Ω

(
Ci jkl +Ci jmnεmn

(
χ(kl)

))
dΩ. (15)

From the engineering point of view the most interesting issue is the effectiveness of
such a characterization of C(e f f )

i jkl , which can be approximated as the difference be-
tween upper and lower estimates and, on the other hand, sensitivity of the effective
tensor with respect to material characteristics of the constituents. It can be proved
that there exist such tensors inf

(
Ci jkl

)
and sup

(
Ci jkl

)
[Christensen (1979)] that

inf
(
Ci jkl

)
≤C(e f f )

i jkl ≤ sup
(
Ci jkl

)
(16)

It is well known that the theorem of minimum potential energy gives the upper
bounds of the effective tensor, whereas the minimum complementary energy ap-
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proximates the lower bounds. Thanks to the Eshelby’s formula, the explicit equa-
tions for the bulk κ and shear moduli µ are given as follows:

supκ =

[
N
∑

r=1
vr (κu +κr)

−1
]−1

−κu

sup µ =

[
N
∑

r=1
vr (µu +µr)

−1
]−1

−µu

(17)

where κu, µu have the following form:{
κu =

4
3 µmax

µu =
3
2

(
1

µmax
+ 10

9κmax+8µmax

)−1 (18)

N stands here for a total number of composite constituents, where vr, 1 ≤ r ≤ N
denote their volume fractions. Further, lower bounds for the elasticity tensor are
obtained as

infκ =

[
N
∑

r=1
vr (κl +κr)

−1
]−1

−κl

inf µ =

[
N
∑

r=1
vr (µl +µr)

−1
]−1

−µl

(19)

where it holds that{
κl =

4
3 µmin

µl =
3
2

(
1

µmin
+ 10

9κmin+8µmin

)−1 (20)

It should be noted that

κl =
El

3(1−2υl)
, µl =

El

2(1+υl)
, λl = κl− 2

3 µl (21)

C(l)
αβγδ

= δαβ δγδ λl +
(
δαγδβδ +δαδ δβγ

)
µl (22)

where El is lower bound on the Young’s modulus and νl is the same bound on the
Poisson’s ratio.

Finally, let us define two fundamental problems P1 and P2, whose solution was
provided here [Kamiński (2009)]:

P1 : Find
∂ αC(e f f )

i jkl
∂hα for α ∈ N, where h = h(x) = {E1,E2} , where

h(x) = χ1(x) h1 +(1−χ1(x)) h2. (23)
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P2: Find µα

(
C(e f f )

i jkl

)
where α ∈ N, b(x;ω) = {E1 (ω) ,E2 (ω)} , where

µα (b(x;ω)) = ψ1(x) µα (b1(ω))+(1−ψ1(x)) µα (b2(ω)) . (24)

with µα (b(x;ω)) being αth order central probabilistic moment of b(x;ω) and ψ1
from Eqn (9).

2.2 Stochastic generalized perturbation method in homogenization

To provide the stochastic perturbation technique based on the Taylor series expan-
sion we denote the random vector of the problem as b(ω) and we assume that it has
M components, so that mth order central probabilistic moment is obviously given
by

Cov(br,bs) =

+∞∫
−∞

+∞∫
−∞

(br−E[br])(bs−E[bs])g(br,bs)dbrdbs, r,s = 1, ...,M (25)

with g(br,bs) as the probability density function (PDF) of the component bp. Ac-
cording to the main philosophy of this method, all functions in the basic determin-
istic problem (heat conductivity, heat capacity, temperature and its gradient as well
as the material density) are expressed similarly to the following finite expansion of
a random tensor function C(e f f )

i jkl [Kamiński (2013)]:

f
(

C(e f f )
i jkl

)
= f 0

(
C(e f f )0

i jkl

)
+θ

∂C(e f f )
i jkl

∂b

∣∣∣∣∣∣
b=b0

∆b+ ...+
θ n

n!

∂ nC(e f f )
i jkl

∂bn

∣∣∣∣∣∣
b=b0

∆bn, (26)

where θ is a given perturbation parameter (taken usually as equal to 1), while the
nth order variation is given as follows:

θ
n
∆bn = (δb)n = ε

n (b−b0)n
. (27)

We postpone for a simplicity in all further equations notation the fact that all partial
derivatives are determined at the expectation of the input random variable (provided
formerly only in Eqn. (26)). The expected values for C(e f f )

i jkl are exactly given using
the 10th order expansion as [Kamiński (2013)]

E
[
C(e f f )

i jkl

]
= f 0

(
C(e f f )0

i jkl

)
+

M
∑

p=1

θ 2

2
∂ 2C(e f f )

i jkl
∂b2

p
µ2 (bp)+

M
∑

p=1

θ 4

4!
∂ 4C(e f f )

i jkl
∂b4

p
µ4 (bp)+

+
M
∑

p=1

θ 6

6!
∂ 6C(e f f )

i jkl

∂b6
p

µ6 (bp)+
M
∑

p=1

θ 8

8!
∂ 8C(e f f )

i jkl
∂b8

p
µ8 (bp)+

M
∑

p=1

θ 10

10!
∂ 10C(e f f )

i jkl
∂b10

p
µ10 (bp)
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(28)

where the central moments of the component p of random vector b may be obvi-
ously simply recovered here as

µm (bp) =

{
0; m = 2k+1

σm (bp)(m−1)!!; m = 2k
(29)

for any natural k ≤ 1with σm (bp) denoting mth power of the standard deviation
for the variable bp. Usually, according to some previous convergence studies, we
may limit this expansion to the 10th order and, consecutively, for all the moments
of an interest here. Quite similar considerations lead to the expressions for higher
moments, like the variance, third and fourth order central probabilistic moments
(see Appendix). Finally, one may recover the coefficient of variation α , kurtosis γ

and the skewness β from their well-known definitions as

α

(
C(e f f )

i jkl

)
=

√√√√√Var
(

C(e f f )
i jkl

)
E2
[
C(e f f )

i jkl

] , κ

(
C(e f f )

i jkl

)
=

µ4

(
C(e f f )

i jkl

)
σ4
(

C(e f f )
i jkl

) −3,

β

(
C(e f f )

i jkl

)
=

µ3

(
C(e f f )

i jkl

)
σ3
(

C(e f f )
i jkl

) , α,β ,γ,δ = 1,2.

(30)

Further, we provide a mathematical basis for the Least Squares Method (LSM)
adjacent to the fourth order tensor in both non-weighted (NLSM) and weighted
(WLSM) versions [Kamiński (2013)]. We use a polynomial approximation of the
sth order (indexed by β here) through n numerical tests of the homogenization
problem solved around the mean value of the given design parameter h; a result we
obtain n different pairs

(
hα ,C

(e f f )(α)
i jkl

)
for α=1,...,n. We look for the following as

polynomial approximation:

C(e f f )
i jkl

∼= D(β )
i jklh

β = f
(
Di jkl,h

)
β = 1, ...,s; s < n; i, j,k, l = 1,2,3. (31)

We introduce for this purpose the residuals in each trial point and each component
of the homogenized tensor, i.e.

ri jkl(α) =C(e f f )(α)
i jkl − f

(
Di jkl,hα

)
α = 1, ...,n; i, j,k, l = 1,2,3. (32)

Therefore, the goal is to determine the coefficients Di jkl and it is done by a mini-
mization of the weighted residuals functional provided as

Si jkl =
n

∑
α=1

wααr2
i jkl(α) α = 1, ...,n; i, j,k, l = 1,2,3. (33)
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So that

∂Si jkl

∂D(β )
i jkl

=−2
n

∑
α=1

wααri jkl(α)

∂ f
(
Di jkl,hα

)
∂Di jkl(β )

β = 1, ...,s; i, j,k, l = 1,2,3. (34)

Further, we adopt the following notation:

Ji jkl = Ji jkl
αβ

=
∂ f
(
Di jkl,hα

)
∂D(β )

i jkl

α = 1, ...,n; β = 1, ...,s; i, j,k, l = 1,2,3. (35)

and we form the modified equations as

n

∑
α=1

s

∑
β=1

Ji jkl
αβ

wααJi jkl
αβ

D(β )
i jkl =

n

∑
α=1

Ji jkl
αβ

wααC(e f f )(α)
i jkl ,

α = 1, ...,n; β = 1, ...,s; i, j,k, l = 1,2,3.

(36)

obtaining the matrix normal equations((
Ji jkl

)T
w Ji jkl

)
Di jkl =

(
Ji jkl

)T
w C(e f f )

i jkl , i, j,k, l = 1,2,3. (37)

This equations system (with the dimensions n x s) is solved symbolically in the
system MAPLE for each component of the homogenized tensor separately to de-
termine n coefficients of the polynomial expansion of the homogenized tensor with
respect to the given h (multicomponent vector or a single variable). Obviously, we
replace h with b in probabilistic analysis. After numerical solution to this equation,
a final polynomial approximation is obtained and such a form of the approxima-
ting function is well justified by the numerical experiments performed in the next
section. The main aim of the weighting procedure inserted into the least squares
approximation for the homogenized tensor components with respect to the input
design variable is to speed up the numerical convergence for the sensitivity coeffi-
cients of the homogenized tensor together with the polynomial order.

Algebraic determination of the response function – effective elasticity tensor com-
ponents versus design parameters – enables, after simple normalization, to calculate
sensitivity coefficients in the problem P1. There holds

dC(e f f )
i jkl

dh
=

1
|Ω|

∫
Ω

∂Ci jkl

∂h
dΩ+

1
|Ω|

∫
Ω

∂Ci jmn

∂h
εmn
(
χ(kl)

)
dΩ

+
1
|Ω|

∫
Ω

Ci jmn
∂εmn

(
χ(kl)

)
∂h

dΩ.

(38)
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Considering further computational efforts it is seen that the first component of the
R.H.S. summation may be determined analytically, the second – via the combina-
tion of analytical differentiation with the additional FEM experiments, while the
last one – with the use of semi-analytical method presented in this paper, for in-
stance.

3 Numerical analysis

3.1 Deterministic analysis

We solve in this section the problem P1 given by Eqn. (23) and the numerical
analysis of the periodic particle composite homogenization is entirely performed
for analytical formulas using symbolic analysis system MAPLE, v. 13. Elastic
parameters of the rubber particle are taken as E1=1.0 MPa, ν1=0.4998, while for
the polymer matrix E2=4.0 GPa and ν2=0.34 were used. The sensitivity gradi-
ents of various estimates for the homogenized tensor computed with respect to
the Young’s moduli of both components were compared as a simple spatial ave-
raging method (‘Spatial averaging’) as well as two-dimensional upper and lower
bounds (‘Lower bounds’ and ‘Upper bounds’) on the homogenized tensor. The
sensitivity gradients resulting from the analytical derivations are determined and
presented with respect to the filler’s volume fraction vp and are collected in Figs.
3, 5, 7 with addition to C(e f f )

1111 , C(e f f )
1122 and C(e f f )

1212 , respectively. Sensitivity analy-
sis based on the Response Function Method was performed using the same mean
values of the elastic parameters and specifically for the filler volume ratio equal
to 0.465. The homogenization oriented FEM program MCCEFF is employed and
its internal automatic mesh generator is used to prepare a discretization with 144
quadrilateral 4-noded plane strain finite elements and 153 nodes – full periodicity
cell with centrally located round filler (Fig. 2). We carried out 11 independent
numerical tests for E1 and E2 separately, taking the following two sets of vari-
ability of these parameters: [0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5] MPa and
[1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5] GPa. The gradients coming from this
analysis are contrasted in Figs. 4, 6 and 8 to enable a direct comparison with
Figs. 3, 5, 7, and further – in addition to the order of the polynomial response
function marked on the horizontal axes. These gradients are computed using three
various numerical schemes – in the ULSM (Unweighted Least Squares Method)
(the weights distribution is [1,1,1,1,1,1,1,1,1,1,1]) as well as WLSM (its weighted
version) methodologies consistent with triangular and Dirac distributions of the
weights around the mean value of the design parameter (the sets [1,2,3,4,5,6,5,4,3,
2,1] and [1,1,1,1,1,6,1,1,1,1,1], correspondingly).

A general result obtained for all components of the homogenized tensor according
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Figure 2: Finite Element Method discretization of the RVE

Figure 3: Sensitivity gradients of C(e f f )
1111 with respect to the particle (left) and matrix

(right) Young’s modulus
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Figure 4: Response Function Method sensitivity gradients of C(e f f )
1111 with respect

to the particle (left) and matrix (right) Young’s modulus; LSM – Least Squares
Method, WLSM – Weighted Least Squares Method

Figure 5: Sensitivity gradients of C(e f f )
1122 with respect to the particle (left) and matrix

(right) Young’s modulus
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Figure 6: Response Function Method sensitivity gradients of C(e f f )
1122 with respect

to the particle (left) and matrix (right) Young’s modulus; LSM – Least Squares
Method, WLSM – Weighted Least Squares Method

Figure 7: Sensitivity gradients of C(e f f )
1212 with respect to the particle (left) and matrix

(right) Young’s modulus
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Figure 8: Response Function Method sensitivity gradients of C(e f f )
1212 with respect

to the particle (left) and matrix (right) Young’s modulus; LSM – Least Squares
Method, WLSM – Weighted Least Squares Method

to all the methods is that all sensitivity gradients are positive with respect to both
particle and matrix elastic moduli; the only exception is in case of upper bounds
of C(e f f )

1122 determined with respect to E2. This fact is independent of the filler ratio
and of a determination way of this tensor. It means of course that the larger the
elasticity moduli of both components, the larger the effective elasticity tensor com-
ponents, which agree perfectly with an engineering intuition. Further, we notice
that the gradients computed for the upper and lower bounds and quite insensitive to
this filler ratio (considering additional algebraic equations), while spatial averages
of the elasticity tensor shows positive sensitivity to E1 and negative – to E2, except
once more C(e f f )

1122 – the larger the filler, the larger the influence on the homogenized
tensor and the smaller the influence (and resulting gradient) of the matrix, which
is confirmed by the right diagrams of Figs. 3 and 5. Absolute maximum results
we compute for the gradients of C(e f f )

1122 determined with respect to E1in case of the
upper bounds of the elasticity tensor, while total minimum is noticed for the same
component, while E2 is the design input parameter in upper bounds’ symbolic de-
termination. However, the gradients of upper bounds not necessarily have greater
values than these computed for the corresponding lower bounds - upper bounds re-
turn larger gradients for C(e f f )

1111 and C(e f f )
1122 with respect to E1 and smaller sensitivity

coefficients in case of E2, while inverse relation is observed for C(e f f )
1212 . The gradi-

ents of the averaged elastic tensor have intermediate values for the first components
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of the elasticity tensor, whereas reach minimum and maximum, correspondingly,
for C(e f f )

1212 while computed with respect to E1 and E2.

The gradients computed via the Response Function Method FEM experiments keep
for the first two components two-side bounded by the corresponding gradients of
the 2D upper and lower bounds for the effective tensor. As usually, the component
C(e f f )

1212 is an exception, where smaller gradients than these corresponding to the
bounds are noticed for E1, while decisively larger – when E2 is considered. We can
notice moreover that for this specific volume ratio practically all the components’
gradients of the homogenized tensor are significantly larger when computed with
respect to E2 than for the Young’s modulus of the rubber filler. This observation
has an engineering importance because Young’s modulus of the matrix may be
modified rather easily – by a proper design of the elastomer composition. The
RFM-FEM technique appears to be the very efficient one from the computational
point of view since practically no changes with respect to the RFM polynomial
order are noticed in case of E2 gradients; so that a type of the LSM has no matter
for this part of numerical analysis. Slightly different situation is observed for the
gradients with respect to E1, where these differences are counted in the percents –
in-between the lowest and the highest order (except the component C(e f f )

1212 ). The
least numerical stability of the results is documented for the ULSM (unweighted)
data series, while the best – for the Dirac distribution of the weights and this method
is advised for further numerical experiments, with both sensitivity and probabilistic
moments. The very interesting observation can be made from the gradients of the
component C(e f f )

1212 , where they seem to diverge together with the approximating
polynomial order and this is due to the fact that practically both analyzed response
functions to filler and matrix Young’s modulus are of a linear nature, while higher
order approximations bring some numerical inconsistencies only.

3.2 Probabilistic illustration

Probabilistic analysis focused on a solution to the problem P2 formulated in Eqn.
(25) was provided using a combination of the systems MCCEFF and MAPLE to
compute up to the fourth order probabilistic moments and the coefficients of the
effective elasticity tensor. Finite Element Method solution to the cell problem was
carried out on the same mesh as in the previous section with the sensitivity analysis.
The Young’s moduli of the rubber and the matrix were defined as the input Gaussian
random variables separately, because both Poisson’s ratios demonstrate very small
random dispersion in engineering practice. Moreover, Poisson’s ratio of the rubber
particle is almost equal to the upper physical limit of this parameter, so that its ran-
domization according to one-sided and evidently non-Gaussian distribution is very
challenging, quite separate computational issue (even with the Monte-Carlo simu-
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lation scheme). Both input variables are represented using 11 points discrete sets
(including expectation, as before in Sec. 4.1) and homogenized tensor components
are identified from 11 independent FEM tests with varying Young’s modulus. Input
coefficients of variation (COV) of both Young’s moduli are additional input param-
eters of this study and are taken from the interval [0.0,0.10] during computations of
C(e f f )

i jkl expectations, coefficients of variation, skewness and kurtosis, see Figs. 9-20
below. Considering previous numerical illustrations with the LSM technique, the
Dirac distribution weighted version of the MAPLE implementation was employed,
where mean value had six times higher weight than any other point around it. Poly-
nomial approximations of various orders (from the 1st to the 9th) were tested to
verify how this order influences probabilistic convergence of the coefficients and
moments under consideration. Analogously to the sensitivity gradients they are
presented independently with respect to the particle Young’s modulus (left series
of Figs. 9-20) and – to the matrix modulus – all right graphs in these figures. It is
necessary to mention that when one considers randomization of both moduli at the
same time it is enough just to add all higher than zeroth perturbation order terms to
each other into the probabilistic moments correspondingly and then, recalculate all
the coefficients because of the lack of a correlation in-between E1 and E2.

Figure 9: Expected values of C(e f f )
1111 (Pa) with respect to the particle (left) and matrix

(right) Young’s modulus

Expected values (E(C(e f f )
i jkl )) of the effective elasticity tensor are very stable with

respect to both random input variables. Although the curves obtained for various
polynomial approximations demonstrate high nonlinearity, the vertical axes show
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Figure 10: COV of C(e f f )
1111 with respect to the particle (left) and matrix (right)

Young’s modulus

Figure 11: Skewness of C(e f f )
1111 with respect to the particle (left) and matrix (right)

Young’s modulus
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Figure 12: Kurtosis of C(e f f )
1111 with respect to the particle (left) and matrix (right)

Young’s modulus

Figure 13: Expected values of C(e f f )
1122 (Pa) with respect to the particle (left) and

matrix (right) Young’s modulus
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Figure 14: COV of C(e f f )
1122 with respect to the particle (left) and matrix (right)

Young’s modulus

Figure 15: Skewness of C(e f f )
1122 with respect to the particle (left) and matrix (right)

Young’s modulus
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Figure 16: Kurtosis of C(e f f )
1122 with respect to the particle (left) and matrix (right)

Young’s modulus

Figure 17: Expected values of C(e f f )
1212 (Pa) with respect to the particle (left) and

matrix (right) Young’s modulus
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Figure 18: COV of C(e f f )
1212 with respect to the particle (left) and matrix (right)

Young’s modulus

Figure 19: Skewness of C(e f f )
1212 with respect to the particle (left) and matrix (right)

Young’s modulus



Parameter Sensitivity and Probabilistic Analysis 433

Figure 20: Kurtosis of C(e f f )
1212 with respect to the particle (left) and matrix (right)

Young’s modulus

that these are quite marginal variations. Practically, they are independent of in-
put coefficient of variation, which is consistent with the Monte-Carlo simulation
results in this area [3], and of course expectations in randomization of E1 and E2
separately are exactly the same. It is also seen that the lowest orders of an expan-
sion may bring some underestimation for the expectations (see Figs. 9 and 13),
while for some intermediate orders one can get some small computational incon-
sistencies (cf. Fig. 17), resulting from the end oscillatory character of the response
functions itself. These expected values usually decrease together with an increas-
ing input coefficient of variation, which may be important for the random inputs
having large random deviations (these corresponding to the Young’s modulus are
most frequently smaller than 0.15). Coefficients of variation (COV) collected in
Figs. 10, 14 and 18 show that input polynomial order has practically no influence
on their final value, independently of the input coefficient of variation for both in-
put variables; verification of this fact was a motivation to extend computational
domain to α ∈ [0.0,0.15]. Definitely, an uncertainty of the matrix modulus E2 is
more influential on overall randomness of the homogenized tensor, because COVs
in this case are more than three times larger for C(e f f )

1111 , just only not more than 20%
- for C(e f f )

1122 . The case of C(e f f )
1212 is very specific as the output COV with respect to

E1 equals almost 0 and significant numerical discrepancies may occur in this ex-
traordinary situation – it means that this component of the effective tensor remains
almost deterministic while randomizing Young’s modulus of the filler. Further, all
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the output coefficients except this specific case are linearly dependent on the input
coefficients and, further, are equal to 0 for the lack of any input randomness (a
verification of determinism consequence in a structural response).

The behavior of higher order coefficients like skewness in Figs. 11, 15, 19 and
kurtosis – cf. Figs. 12, 16 and 20 is essentially more complex as they all depend on
input coefficient of variation, approximation order and may be even negative. First
observation that can be made is that precise determination of the skewness needs
generally higher polynomial order than expectations and coefficients of variation –
very stable results with relative error in the range of one percent are obtained here
for the largest approximation order. Skewness in all cases starts from 0 (adjacent
to the deterministic situation, where α=0) and its absolute value monotonously
increases for the first two components of the homogenized tensor with no singu-
larities (at least within the given computational domain), where definitely larger
absolute values are obtained during randomization of E1. Some numerical discrep-
ancies are noticed for β

(
C(e f f )

1212

)
similarly to the moments analyzed before, appar-

ent especially for the 7th (E1) and the 6th (E2) order polynomial response function.
Independently from the specific component of the homogenized tensor and analy-
sis order, its difference to 0 even for the largest value of the input COV is so small
that we can conclude that the output homogenized tensor has almost symmetrical
distribution, where the corresponding medians are equal to the expected values. A
somewhat different situation is observed for the kurtosis, where a positive and also
negative results, depending of course on the response function order, are noticed
for the given effective tensor component and the given input random variable.

Generally however, the resulting values of kurtosis are significantly closer to 0 than
the skewnesses, so that (taking into account a linear relation of the output ver-
sus input coefficients of variation) computed probability distributions of the homo-
genized tensor have almost the same shape as the bell-shaped Gaussian PDF. Of
course, we need to exclude the results obtained for the component C(e f f )

1212 , where
higher order analyses present mostly numerical discrepancies (in the view of the
linear response functions to both E1 and E2) and it also confirms this conclusion.
The perturbation-based formulas start here from a product of the fourth central
probabilistic moment and first as well as second order partial derivatives of the ho-
mogenized tensor, so that lower order approximations may accidentally equal 0 for
any input coefficient of variation α . If such a lower order response function can
be predicted from an analytical model similar to that implemented in the FEM pro-
cedure or it follows our engineering modeling experience, we can really postpone
higher orders easily. Probabilistic convergence of both skewness and kurtosis for
the first two components of the homogenized tensor is very regular in the sense that
each new order brings smaller contribution to the overall results, so that 8th or 9th
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order approximations practically show no real differences here for any input coeffi-
cient α . Nevertheless, all numerical probabilistic results attached collected together
show that the resulting effective tensor components have Gaussian distributions as
for other composites while randomizing Young’s moduli of the components, so
that they may be uniquely determined with good accuracy using only their first
two probabilistic characteristics. It is necessary to mention that this situation may
change a little bit for larger input random fluctuations of the specified variables
or significantly - just in case of other randomness’ sources during homogenization
procedure.

4 Concluding remarks

(1) Computational analysis presented above confirms that the generalized stochas-
tic perturbation technique based on the Weighted Least Squares Method is really
very efficient tool for a common determination of the sensitivity gradients and pro-
babilistic moments of the homogenized elasticity tensor, also for rubber-filled poly-
mers. The very detailed sensitivity analysis has shown that the gradients under
consideration do not depend on the polynomial response function order and are
accurate even for lower order approximations (except linear approximation); the
same conclusion may be drawn for the expected values and coefficients of varia-
tion in case of the homogenization with an uncertainty in both Young’s moduli of
the composite constituents. Skewness and kurtosis for the homogenized tensor de-
pend both on the response function order and both input coefficients of variation.
However their combination for various input parameters in this study show that the
homogenization process preserves Gaussian distribution from input to the output
random variables.

(2) Computational study presented in this paper gives also the answer to the key
issue in the Stochastic perturbation-based Finite Element Method based on the Re-
sponse Function Method [Kamiński (2013)] – how to determine the order of the
approximating polynomial. We suggest to minimize this order as much as possi-
ble to preserve good fitting into the set of trials points taken from the several FEM
experiments (not too small) and to avoid any local end oscillations of the resulting
function (not too high). Mathematical condition that can be explored further is to
minimize the integral of this polynomial calculated numerically or symbolically
over a computational domain corresponding to recovery of the response function
itself. It can be also done automatically in the symbolic computing environment of
such a program like MAPLE.

(3) The stochastic generalized perturbation technique is much faster and more ef-
ficient than the Monte-Carlo simulation technique [Cruz and Patera (2011)] in this
specific context, where large computational efforts are obviously necessary to de-
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termine higher order statistics. Further, it means that all higher probabilistic mo-
ments may be derived analytically from the first two for this tensor, where the
stochastic perturbation technique appeared to be many times very accurate. Further
computational studies in the area of homogenization of rubber-filled polymers may
focus on 3D analysis with larger Representative Volume Elements, on higher order
homogenization techniques [Fish and Chen (2001)] application, on other types of
composites [Fu et al. (2009)] as well as on more realistic nonlinear constitutive
models [Gehant et al. (2003); Miehe et al. (2011)].
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Appendix

The variance of the effective elasticity tensor is derived from a definition and
the 10th order stochastic perturbation technique (with the RHS summation over
p=1,...,M) as

Var
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The additional perturbation – based third central probabilistic moment of this tensor
is derived as (with analogous summation over independent p=1,...,M contributions)
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