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Accuracy of Quarter-point Element
in Modeling Crack-tip Fields

G. P. Nikishkov1

Abstract: Accuracy of the quarter-point and transition elements is investigated
on one- and two-dimensional problems with inverse square-root singularity. It is
demonstrated that most coefficients of the stiffness matrix of the quarter-point el-
ement are unbounded. However, numerical integration produces finite values of
these coefficients. Influence of several parameters on the error in determining the
stress intensity factor is studied. Solution accuracy can be improved using special
distribution of element sizes and increasing the element integration order in the
radial direction.

Keywords: Finite element method, linear fracture mechanics, quarter-point ele-
ment.

1 Introduction

The quarter-point singular element has been employed in finite element modeling
of crack-tip fields for several decades. It was proposed by Henshell and Shaw
(1975) and Barsoum (1976, 1977). They showed that by shifting midside nodes of
a quadratic isoparametric element to quarter-side positions it is possible to model
exactly square-root singularity of the strains and stresses near the crack tip. Hib-
bitt (1977) and Ying (1982) demonstrated that the strain energy of a quarter-point
element degenerated into a triangle is always bounded. Lynn and Ingraffea (1978)
generalized the quarter-point element to the so-called transition element. Tran-
sition elements are located in the finite element mesh at some distance from the
crack tip and exactly represent the square-root singularity with the pole at the crack
tip. Midside nodes of transition elements are placed at positions between quarter-
and mid-point. The placement of midside nodes depends on the distance of the
transition element from the crack tip.

While this study considers the use of quarter-point elements with the finite ele-
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ment discretization, same elements are employed in other methods that are used
in fracture mechanics modeling. For example, Wang and Yao (2011) use shifting
of nodes to quarter-point positions in a multipole dual boundary element method
for three-dimensional crack problems. Direct computation of stress intensity fac-
tors using the displacement discontinuity at the crack face with the quarter-point
boundary elements is performed by Nikishkov, Park, and Atluri (2001), Dong and
Atluri (2013a) and Dong and Atluri (2013b) who model three-dimensional cracks
with the symmetric Galerkin boundary element method.

Some papers have discussed computational aspects of application of quarter-point
elements to fracture mechanics problems. Harrop (1982) considered the optimum
size of quarter-point crack tip element and stated that the singular element should
not be too large since it represents just the inverse square-root and constant terms of
the radial stress field. Fawkes, Owen, and Luxmoore (1979) compared several types
of singular elements for modeling crack tip fields. They concluded that elements
with analytical representation of asymptotic fields and quarter-point elements are
both suitable for such purposes. Murti and Valliappan (1986) found that with the
use of transition elements, the optimum quarter-point element size is 0.15–0.25 of
the crack length for a 5% error bound. Lim, Johnston, and Choi (1991) demon-
strated that no optimal transition element size exists. Yavari, Moyer, and Sarkani
(1999) showed that for large crack-tip elements using transition elements has no
improving effect; however when crack-tip elements are small, transition elements
can improve the accuracy. Saouma and Schwemmer (1984) investigated accuracy
of the quarter-point element depending on several parameters, including integration
order, number of elements around the crack tip, effect of transition elements, and
relative size of the singular element. They recommend using two by two integration
rules and employing four to eight elements around the crack tip. It was found that
transition elements have little effect unless extremely small quarter-point elements
are used.

This paper studies accuracy of modeling crack-tip displacement fields using the
quarter-point singular element and transition elements. Unlike authors of previous
publications where finite cracked specimens were considered, we perform finite
element analysis of singularity problems with known solutions.

Our contribution includes the following. One-dimensional problem is proposed
which allows to investigate pure radial behavior of the quarter-point element. We
demonstrate that most stiffness coefficients of the quarter-point element are un-
bounded and the integration order does not affect its performance. New distribu-
tion of element sizes is proposed. It provides equal radial increments of stresses per
element and increases accuracy of the stress intensity factor, especially in cases of
small crack-tip elements. It is shown that using more integration points in radial di-
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rection of finite elements (except quarter-point elements) provides better accuracy
for problems with small crack-tip elements.

The paper is organized as follows. First, the one-dimensional case is investigated
using a specially constructed inverse square-root singularity problem. We derive
the relation for location of midside node for modeling the singularity in crack-
tip and transition elements in a way slightly different from Lynn and Ingraffea
(1978). It is demonstrated that coefficients of the stiffness matrix of the quarter-
point element are unbounded. However, numerical solution can be obtained due to
numerical integration which produces finite stiffness coefficients. New element size
distributions are proposed that are based on equal function increment per element
and equal derivative of function increment per element. It is shown that solution
accuracy can be improved using special distribution of element sizes and increasing
integration order for ordinary or transition elements.

An elasticity problem for a circular area near a crack tip with boundary tractions
computed from asymptotic stress fields is used for accuracy investigation of a
quarter-point element in two-dimensional case. As in the one-dimensional case,
stiffness coefficients of the two-dimensional quarter-point element are unbounded
except for coefficients in columns an rows related to quarter-point nodes. Compu-
tation of the strain energy for a circular crack-tip area using quarter-point elements
produces energy values which are very close to the theoretical ones. Special distri-
bution of element sizes in the radial direction and elevated integration order in the
radial direction help to improve accuracy of the stress intensity factor computation.

2 One-dimensional singular element

Study of quarter-point and transition elements on one-dimensional problems allows
performing some important derivations analytically. When numerical experiments
are performed it is easier to investigate influence of problem parameters on results
in one-dimensional problems than in problems with two or three dimensions.

2.1 Location of the midside node

Let us consider a one-dimensional boundary value problem with a singular point
S on the left of the problem domain. Unknown displacement u has an inverse
square root singularity for its derivative du/dx ∼ 1/

√
r, where r is distance from

the singular point. To use the finite element method to solve this problem it is
necessary to model u ∼

√
r displacement behavior. Modeling

√
r displacement

can be achieved using three-node finite elements with midside nodes shifted from
their central positions. Fig. 1 shows a one-dimensional element with three nodes,
located at distance s from a singular point and with unit length. Coordinate x and
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Figure 1: Singularity modeling using shift of a midside node. Displacement deriva-
tive du/dx tends to infinity at point S.

displacement u are specified in a parametric form

x = ∑Nixi ,

u = ∑Niui .
(1)

Here xi, ui are nodal values of coordinate and displacement. Shape functions Ni are
quadratic polynomials of a local coordinate ξ with range [−1,1]:

N1 =−
1
2

ξ (1−ξ ),

N2 = 1−ξ
2,

N3 =
1
2

ξ (1+ξ ).

(2)

If the midside node is located at the element center p = 0.5, then coordinate x and
displacement u are interpolated by quadratic polynomials of x. Shifting the midside
node allows changing interpolation functions expressed through x. To find location
p of the midside node that provides modeling of the inverse square root singularity
at point x = −s, we can take into account that the derivative of displacement with
respect to x is infinite at this point:

du
dx

=
du
dξ

dξ

dx
→ ∞ at x =−s. (3)

Since derivative du/dξ is finite for bounded displacements ui, the displacement
derivative approaches zero at the singularity point when

dx
dξ
|x=−s = 0. (4)

Substituting node coordinates in Equation (1) we obtain the dependence of x on
local coordinate ξ ,

x = (
1
2
− p)ξ 2 +

1
2

ξ + p. (5)
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After differentiation of the above equation, the condition of zero derivative (4) be-
comes

(1−2p)ξ +
1
2
= 0. (6)

If the singularity point is at node 1 then location of midside node p can be obtained
by substituting ξ =−1 into Equation (6):

p =
1
4
. (7)

For nonzero value of s it is necessary to express ξ from Equation (6) and substitute
it into (5) with x =−s. This produces the quadratic equation for parameter p,

2p2− (1−2s)p+
1
8
− s = 0, (8)

the appropriate root of which gives the location of the midside node p for the deriva-
tive singularity at point S,

p =
1
4

(
1−2s+2

√
s2 + s

)
. (9)

Elements with shifted midside nodes at p > 1/4 are usually called transition ele-
ments. Such elements are located between the singular quarter-point element and
ordinary elements in the mesh.

To confirm that the singularity order is correct it is possible to express local coor-
dinate ξ though x and p using (5) and substitute it into second relation of (1). For
example, for the quarter-point element p = 1/4, displacement u depends on x as

u =
1
2
(
2−3

√
x+ x

)
u1 +

(
2
√

x− x
)

u2 +
1
2
(
x−
√

x
)

u3. (10)

2.2 Stiffness matrix of the quarter-point element

The stiffness matrix of a one-dimensional finite element is determined by comput-
ing the integral over element line L,

[k] =
∫
L

E
[

dN
dx

]T [dN
dx

]
dx, (11)

where E is Young’s modulus and [dN/dx] is a vector composed of derivatives of
nodal shape functions. Considering that derivatives of shape functions in local and
global coordinate systems are related by[

dN
dξ

]
=

[
dN
dx

]
dx
dξ

, (12)
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Figure 2: One-dimensional quarter-point element.

the integral for the stiffness matrix in the local coordinate system is

[k] =
1∫
−1

E
[

dN
dξ

]T [dN
dξ

](
dx
dξ

)−1

dξ , (13)

For a quarter-point element of length h, as shown in Fig. 2, derivative dx/dξ is
determined from Equation (5) with p = 1/4,

dx
dξ

=
h
2
(1+ξ ) (14)

and coefficients for integration of the stiffness matrix are

[k] =
1∫
−1


(
−1

2 +ξ
)2

ξ −2ξ 2 −1
4 +ξ 2

4ξ 2 −ξ −2ξ 2

Sym
(1

2 +ξ
)2

 2E
h(1+ξ )

dξ (15)

Integration produces the analytical expression for the stiffness matrix of one-dimensional
quarter-point element

[k] =
E
2h

 9G−16 −12(G−2) 3G−8
−12(G−2) 16(G−2) −4(G−2)

3G−8 −4(G−2) G

 ,
G = log2− log0.

(16)

All entries of this stiffness matrix are unbounded. However, the quarter-point ele-
ment correctly models rigid body displacement since the sum of coefficients in any
row of the stiffness matrix is zero.

Gauss integration rule is usually used for integration of finite element stiffness ma-
trices, typically with two or three points for quadratic elements. Such integration
produces finite values for unbounded stiffness coefficients. Dependence of stiffness
coefficient k33 on the number of integration points NG for one-dimensional quarter-
point element with h = 1 and E = 1 is presented in Fig. 3. It can be seen that even
for a large number of integration points the stiffness coefficients ki j have modest
magnitudes.
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Figure 3: Dependence of the stiffness coefficient k33 on the number of Gauss inte-
gration points NG for one-dimensional quarter-point element.
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Figure 4: One-dimensional inverse square-root singular problem.

2.3 Solution of one-dimensional singular problem

It is easier to experiment with a quarter-point element in the one-dimensional case.
This had never been done before since a crack can not be explicitly introduced in
one dimension. We propose an artificially constructed problem where the inverse
square-root singularity in function derivative is caused by a distributed load with
singularity. This singular problem is shown in Fig. 4. One-dimensional beam has
unit length and unit cross-sectional area. It is constrained at x = 0 and subjected to
singular distributed load Q(x) = 0.25x−3/2 and concentrated force P = 0.5 at x = 1.
It is not difficult to check that for Young’s modulus E = 1 the exact solution of this
problem is u =

√
x.

First, the singular problem of Fig. 4 is solved in closed form using one quarter-point
finite element with analytical expressions for the stiffness matrix and load vector.
The analytical stiffness matrix is given by relation (16). Element load vector { f} is
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equal to the sum of nodal equivalent of the distributed load plus concentrated force,

{ f}=
1∫
−1

[N]T Q(ξ )
dx
dξ

dξ +{p}, (17)

where [N] is a row matrix of the nodal shape functions, Q(ξ ) is the distributed load
expressed through local coordinate ξ (noting that x = (1+ ξ )2/4), and {p} is a
vector containing concentrated force P = 0.5.

Because of displacement constraint for the first node u1 = 0, it is necessary to
express equilibrium equations just for nodes 2 and 3. Taking entries of the stiffness
matrix (16) and integrating loads (17) for nodes 2 and 3, we arrive at the following
equation system:

8(G−2)u2−2(G−2)u3 = 2(G−1)

−2(G−2)u2 +
1
2

Gu3 =
1
2
(3−G)

(18)

This equation system has the solution:

u2 =
1
2
+

1
4(G−2)

, u3 = 1 (19)

The solution approaches the exact results as G→ ∞.

It is possible to consider problem solution using one singular quarter-point element
and several ordinary elements. An equation system is assembled from element
contributions. Analysis of the elimination process for unknowns indicates that G
entries eliminate each other inside the quarter-point element and do not propagate to
other elements. Thus the solution is independent of G except for the displacement
value at the quarter-point node u2. Since the solution does not depend on the G
value then the number of integration points for estimation of stiffness matrix of
quarter-point element does not affect results of the singular problem provided that
we do not use one-point integration.

2.4 Distribution of nodes near singular point

When the singular quarter-point element is used together with ordinary quadratic
elements or transition elements, the solution can be affected by both singular el-
ement size and size distribution of other elements. In some publications such as
[Barsoum (1977)], element size distribution follows an arithmetic progression with
first term equal to the quarter-point element size. We propose to consider two ele-
ment size distributions based on constant displacement difference and constant dis-
placement derivative difference per element. Later it will be demonstrated that con-
stant displacement difference per element produces elements with sizes described
by arithmetic progression.
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Figure 5: Distribution of n elements over the interval [0,1]. The size of the first
(singular) element is x1.

Constant derivative difference per element can be related to an error indicator
[Zienkiewicz (2005)] that is based on an averaging of the nodal solution for neigh-
boring finite elements. The stress at the node can be obtained as a weighted least
squares approximation using the reduced integration points in elements around the
node. The difference between the finite element solution and the least squares ap-
proximation at the node gives an estimate of the local error. For larger solution
gradient change, the local error becomes larger. Equal derivative difference per
element can provide approximately equal local errors.

Let us find placement of element boundaries for n three-node elements on interval
[0,1], as shown in Fig. 5. The size of the singular quarter-point element is x1. It
is required to find placement of element boundaries x1 . . .xn−1 based on adopted
conditions.

2.4.1 Constant displacement increment per element

The condition of constant displacement increment per element leads to the follow-
ing equation for element boundaries:

√
xi+1−

√
xi =

1
n
. (20)

The evident solution of this equation is a quadratic function for location of element
boundaries

xi =

(
i
n

)2

. (21)

According to quadratic solution, the singular element size is 1/n2 and element sizes
follow an arithmetic progression. Thus using arithmetic progression for element
sizes in the vicinity of the square-root singular point means constant increment of
displacement per element, which has no justification from accuracy point of view.

If sizes of several first elements are already defined, then next element boundary
location is determined by the equation

√
xi+1−

√
xi =

1−√xi

n− i
. (22)
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Solving this equation with respect to xi+1, we obtain a recurrent relation for element
boundaries

xi+1 =

(
1+(n− i−1)

√
xi

n− i

)2

. (23)

When size of the quarter point element is specified not equal to 1/n2, the above
relation allows determination of sizes of all other elements to satisfy the condition
of constant function increment.

2.4.2 Constant displacement derivative increment per element

The second criterion for subdivision of the interval [0,1] into finite elements is
based on constant difference of displacement derivative per element. Since deriva-
tive du/dx = 1/(2

√
x) is infinite at point x = 0 the size of the singular element x1

should be specified. Locations of element boundaries x2 . . .xn−1 can be found from
the condition

1
√

xi+1
− 1
√

xi
=

1
n− i

(
1− 1
√

xi

)
, (24)

which provides the following expression for xi+1:

xi+1 =

(
(n− i)

√
xi

(n− i−1)+
√

xi

)2

(25)

If the singular element size is x1 = 1/n2, then locations of element boundaries xi

are described by the rational function

xi =

(
1

n+1− i

)2

. (26)

Comparison of placement of element boundaries xi according to criteria of constant
displacement derivative increment and constant displacement increment is shown
in Fig. 6 for different sizes of singular elements 0.01, 0.1, and 0.2.

2.5 Investigation of accuracy

The problem presented in Section 2.3 and illustrated in Fig. 4 is used to investigate
solution accuracy using one singular quarter-point element and several ordinary or
transition elements. Since quarter-point and transition elements can model a solu-
tion precisely, then using appropriate finite element parameters, we should be able
to obtain results with errors due to restricted mantissa in the computer represen-
tation of numbers. The one-dimensional solution domain [0, 1] is discretized into
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Figure 6: Coordinate of element boundaries xi as a function of element number
i for different sizes of singular elements (x1 = 0.01, 0.1, and 0.2). Solid lines:
equal increments of displacement derivative, dashed lines: equal increments of
displacement.

eight elements (n = 8), comprising one quarter point elements and seven ordinary
or transition elements.

Influence of the following parameters on the solution precision is investigated:

Quarter-point element size h;

Number of Gauss integration points in elements (excepting the quarter-point
element);

Element types – ordinary or transition elements in addition to the quarter-point
element;

Distribution of element sizes – arithmetic progression (AP), equal function in-
crement per element (EF), or equal derivative increment per element (ED);

Results of finite element solution of the one-dimensional inverse square-root sin-
gular problem are presented in Table 1 as error of displacement at node located
at x1 = h. While indirect estimation of displacement at the quarter-point node is
possible on the basis of (19), we prefer to use direct value at the right end of the
quarter-point element. Computation of the stiffness matrix of the quarter-point el-
ement is always performed using two Gauss integration points, since the solution
does not depend on the integration precision (except the quarter-point node that we
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Table 1: Errors (percent) in solution of one-dimensional singular problem. So-
lution domain [0, 1] is divided into one quarter-point element of size h and seven
ordinary or transition elements. Elements (except quarter-point) are integrated with
NG Gauss integration points. Element subdivisions: AP – arithmetic progression,
EF – equal function difference per element, ED – equal derivative difference per
element.

Q-point and ordinary elements Q-point and transition elements

h NG AP EF ED AP EF ED

1/8 2 -0.0461 -0.0093 -0.0055 0.0096 -0.0071 -0.0041
1/8 3 -0.0016 -1.32e-04 -6.85e-05 -9.88e-04 -1.68e-04 -2.97e-06
1/8 8 -5.85e-11 -1.26e-13 -2.81e-12 9.03e-12 -4.87e-13 -2.34e-12

1/64 2 -1.0266 -0.2921 0.4595 -0.0500
1/64 3 -0.1373 -0.0356 -0.0495 -1.92e-04
1/64 8 -3.82e-06 -9.55e-07 -2.70e-08 -9.96e-11
1/64 16 -3.89e-13 -3.54e-11 -6.00e-13 -3.36e-11

1/512 2 -14.0280 -12.0054 -2.3113 5.2445 5.2267 -0.5891
1/512 3 -7.1735 -5.6140 -1.0258 1.6200 1.0949 -0.0849
1/512 8 -0.1380 -0.0685 -0.0123 0.0014 6.12e-04 -7.55e-07
1/512 16 -1.39e-04 -3.39e-05 -6.13e-06 -8.66e-09 -1.07e-09 -1.18e-09
1/512 32 -9.54e-11 -5.89e-12 -1.18e-09 -1.73e-13 -1.57e-14 -1.18e-09

ignore). Results for the EF element distribution with h = 1/64 are not given in the
table since for h = 1/n2 the element distributions AP and EF are exactly same and
results are also same.

After analysis of Table 1 we conclude that:

Solution error increases with decrease of the quarter-point element size pro-
vided that constant number of elements is used;

Solution accuracy becomes higher with increase of number of Gauss integration
points NG for evaluation of element stiffness matrices;

Use of transition elements increases solution accuracy compared to that using
ordinary elements;

Distribution of element boundaries according to the criterion of equal deriva-
tive difference per element (ED) provides better accuracy compared to other
element boundary placements.
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From an accuracy point of view, the most favorable quarter-point element size is
h = 1/n, where n is the number of elements. However, even in this case the use
of transition elements and ED element subdivision reduce solution error by ten
times for number of integration points NG = 2 compared to using elements of equal
size. Using Gauss integration NG = 8 provides a practically precise solution (since
computer mantissa contains 15 digits, the error 10−13% corresponds to machine
precision). Using more Gauss integration points for stiffness evaluation (up to NG =
32), it is possible to have almost maximally precise results in all cases. Using small
number of integration points, as usually done in finite element modeling, can lead to
considerable errors for smaller sizes of the quarter-point element. For h = 1/n2 and
NG = 2 the error is larger than 1% for ordinary elements with arithmetic progression
distribution (AP). Decrease of the singular element size to h = 1/n3 causes 14%
solution error for the same number of integration points and element distribution.

The universal recipe for obtaining accurate solution results of the one-dimensional
singular problem includes using transition elements with ED distribution of element
sizes and eight Gauss points for integration of element stiffness matrices.

3 Two-dimensional singular element

In linear elastic fracture mechanics, the state of a symmetrical crack is characterized
by a stress intensity factor that is a scaling coefficient for the crack-tip asymptotic
fields. Accuracy of the stress intensity factor depends upon the quality of represen-
tation of the asymptotic displacement and stress fields. Two-dimensional singular
quarter-point elements are routinely used for modeling crack-tip fields. Results of
modeling depend on finite element types and finite element mesh. We explore here
stiffness matrix of the quarter-point element, computation of strain energy in the
near crack tip region, and accuracy of stress intensity factor determination.

3.1 Stiffness matrix of the quarter-point element

Consider a two-dimensional quarter-point element shown in Fig. 7. The element
has size h in x-direction and size 2l in y-direction. Nodes 1, 7, and 8 are located
at the xy coordinate origin, and midside nodes 2 and 6 are shifted to quarter-side
positions. The element has symmetry with respect to x-axis.

Stiffness matrix of the element of Fig. 7 can be obtained in closed form. We are
not going to derive analytical expressions for entries of the stiffness matrix because
they are cumbersome. Instead we want to investigate whether stiffness matrix en-
tries are bounded or not. Coefficients of the stiffness matrix [k] for two-dimensional
isoparametric elements can be expressed as:
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Figure 7: Two-dimensional quarter-point element.

kmn
ii =

1∫
−1

1∫
−1

(
(λ +2µ)

∂Nm

∂xi

∂Nn

∂xi
+µ

∂Nm

∂xi+1

∂Nn

∂xi+1

)
detJ dξ dη ,

kmn
i j =

1∫
−1

1∫
−1

(
λ

∂Nm

∂xi

∂Nn

∂x j
+µ

∂Nm

∂x j

∂Nn

∂xi

)
detJ dξ dη .

(27)

Here kmn
i j are stiffness matrix coefficients with subscripts i j corresponding to coor-

dinates xy and superscripts mn corresponding to local node numbers from 1 to 8, λ

and µ are the Lame constants, detJ is the determinant of the Jacobian matrix, and
Ni are nodal shape functions depending on local coordinates ξ , η :

Ni =
1
4
(1+ξ ξi)(1+ηηi)−

1
4
(1−ξ

2)(1+ηηi)−
1
4
(1+ξ ξi)(1−η

2), i = 1,3,5,7

Ni =
1
2
(1−ξ

2)(1+ηηi) , i = 2, 6

Ni =
1
2
(1+ξ ξi)(1−η

2) , i = 4, 8

(28)

where ξi, ηi are local coordinate values at node i.

Transformation of derivatives of shape functions from the local coordinate system
ξ , η to the global coordinates x, y is performed with the use of the Jacobian matrix
[J]

∂Ni

∂x
∂Ni

∂y

= [J]−1


∂Ni

∂ξ

∂Ni

∂η

, [J] =


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 . (29)
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Using Equation (1) with shape functions (28) it is possible to express coordinate x
through ξ ; coordinate y is linearly related to x through η [Barsoum (1977)]:

x =
1
4

h(1+ξ )2,

y =
1
4

l(1+ξ )2
η .

(30)

Differentiation of the above relations for x and y with respect to ξ and η produces
the Jacobian matrix

[J] =
[

h(1+ξ )/2 l(1+ξ )η/2
0 l(1+ξ )2/4

]
. (31)

The determinant of the Jacobian matrix and its inverse are

detJ =
1
8

hl(1+ξ )3, (32)

[J]−1 =
2

hl(1+ξ )2

[
l(1+ξ ) −2lη

0 2h

]
. (33)

To estimate stiffness coefficient k11
11, derivatives ∂N1/∂x and ∂N1/∂y are needed,

which can be obtained with differentiation of shape function N1 and use of the
inverse of the Jacobian matrix,

∂N1

∂x
=

1

2h(1+ξ )2 [(1+ξ )(1−η)(2ξ +η)−η(1−ξ )(ξ +2η)] ,

∂N1

∂y
=

1

l(1+ξ )2 (1−ξ )(ξ +2η).

(34)

It is easy to see that the stiffness coefficient k11
11 can be presented as

k11
11 =

1∫
−1

1∫
−1

(
(λ +2µ)

(
∂N1

∂x

)2

+µ

(
∂N1

∂y

)2
)

detJ dξ dη

=

1∫
−1

1∫
−1

f (ξ ,η)

1+ξ
dξ dη ,

(35)

where f (ξ ,η) is a polynomial function of ξ ,η that does not contain multiplier
(1+ξ ). Using Mathematica (2010) it is possible to confirm that indefinite integrals
of both (∂N1/∂x)2 detJ and (∂N1/∂y)2 detJ include terms with log(1+ξ ). Result
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of evaluation of (35) contains the term G = (log2− log0), thus making the stiffness
coefficient unbounded.

Derivatives ∂N2/∂x and ∂N2/∂y for computing coefficient k22
11 are

∂N2

∂x
=

2
h(1+ξ )

[ξ (1−η)+η(1−ξ )] ,

∂N2

∂y
=− 2

l(1+ξ )
(1−ξ ),

(36)

and the stiffness coefficient results in

k22
11 =

1∫
−1

1∫
−1

(
(λ +2µ)

(
∂N2

∂x

)2

+µ

(
∂N2

∂y

)2
)

detJ dξ dη

=

1∫
−1

1∫
−1

(1+ξ ) f (ξ ,η)dξ dη .

(37)

Thus coefficient k22
11 is bounded.

In a similar way it is possible to consider all coefficients of the stiffness matrix. Af-
ter doing so we find that four columns and four rows related to quarter-side nodes
2, 6 k2n

i j , km2
i j , k6n

i j and km6
i j contain bounded coefficients; all other coefficients are

unbounded. It is interesting that finite values of stiffness coefficients related to
quarter-point nodes 2 and 6 are due to presence of multiplier (1+ξ ) in shape func-
tions N2 and N6. This makes displacements of the quarter-point nodes independent
of stiffness integration order.

3.2 Elastic energy

Let us consider a circular region of radius R around a tip of a crack which is located
along the negative part of x-axis, as shown in Fig. 8a. Elastic strain-energy density
w for plane strain conditions is

w =
1

4µ

[
(1−ν)

(
σ

2
r +σ

2
θ

)
−2νσrσθ +2τ

2
rθ

]
, (38)

where µ and ν are the shear modulus and Poisson’s ratio, and σr, σθ , and τrθ are
stresses in the polar coordinate system which are controlled by the stress intensity
factor KI:

σi j =
KI√
2πr

fi j(θ) ,


fr

fθ

frθ

= cos
θ

2


1+ sin2 θ

2
cos2 θ

2
sin

θ

2
cos

θ

2

 . (39)
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Figure 8: Circular region around the crack tip (a) and the finite element model for
its symmetric part (b).

Strain energy W for the crack-tip region of radius R is given by the integral

W =

π∫
−π

R∫
0

w r drdθ =

π∫
−π

K2
I R

8πµ

[
(1−ν)

(
f 2
r + f 2

θ

)
−2ν fr fθ +2 f 2

rθ

]
dθ . (40)

Fulfilling the integration we arrive at the following formula for the strain energy
under plane strain conditions

W =
K2

I R(5−8ν)

16µ
. (41)

The elastic strain energy under plane stress conditions can be obtained by replacing
ν with ν/(1−ν):

W =
K2

I R(5−3ν)

16µ(1+ν)
. (42)

Numerical estimation of elastic energy in a circular region near the crack tip is done
using several singular quarter-point elements for a semicircular area, as depicted in
Fig. 8b. Values of elastic energy W for a circular region are computed as a sum
over all elements,

W =
1
2 ∑

e
{u}T [k]{u}, (43)
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Table 2: Elastic energy for a circular region around crack tip (KI = 1, R = 1, µ = 1,
ν = 0.3, plane strain) computed with different number of elements using different
number of integration points NG.

4 elements 8 elements 16 elements

NG Straight Curved Straight Curved Straight Curved

2 0.155998 0.167555 0.160774 0.163740 0.162062 0.162809
3 0.156104 0.167529 0.160781 0.163738 0.162063 0.162808
32 0.156104 0.167529 0.160781 0.163738 0.162063 0.162808

Eq. (41) 0.154188 0.162500 0.160414 0.162500 0.161978 0.162500

where [k] is element stiffness matrix and {u} is element vector of nodal displace-
ments computed from the asymptotic field

ui =
KI

µ

√
r

2π
Fi(θ) ,

{
Fx

Fy

}
=


cos

θ

2
sin

θ

2


(

κ +1
2
− cos2 θ

2

)
(44)

κ =

{
3−4ν plane strain
(3−ν)/(1+ν) plane stress

(45)

Here ui are displacement components ux and uy, r is the distance from the crack tip,
and KI is the stress intensity factor.

The following conditions are specified for computation of the elastic energy: stress
intensity factor KI = 1, radius of a circular region around the crack tip R = 1, shear
modulus µ = 1, Poisson’s ratio ν = 0.3, plane strain conditions. Elastic energy
values are given in Table 2 for 4, 8, and 16 quarter-point elements used in problem
discretization. Different number of Gauss points NG = 2, 3, and 32 are employed
for integration of element stiffness matrices. Either elements with all straight sides
or elements that have one curved side with nodes located on the circle boundary
can be present in the mesh. Theoretical values of the elastic energy are calculated
according to formula (41). Radii R for theoretical values corresponding to elements
with straight sides are computed from the condition of equal areas in the theoretical
case and finite element modeling.

Coefficients of element stiffness matrices (except entries in rows and columns re-
lated to quarter-point nodes) change considerably with change of Gauss integration
rule. However, elastic energy values are practically independent of the number of
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A B
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Figure 9: Comparison of meshes with eight elements in the radial direction and
quarter-point element size h = 1/64: left – arithmetic progression in radial element
sizes, right – equal element increment of strains and stresses along radial rays.

integration points. That means that fractions of stiffness coefficients that depend
on the integration rule compensate for each other during calculation of the energy
quadratic form. The elastic energy results have almost same precision for elements
with both straight and curved sides. As can be expected, precision of results in-
creases with increase of number of elements. It is well known that energy methods
like the equivalent domain integral method [Nikishkov and Atluri (1987)] provide
estimates of the stress intensity factor with high precision.

3.3 Stress intensity factor

Study of accuracy of computation of the stress intensity factor KI is performed
on an asymptotic problem for a circular region around the crack tip, as shown in
Fig. 8a. Tractions corresponding to the asymptotic stress distribution under plane
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strain conditions are prescribed at the circle boundary. The symmetric semicircular
part of unit radius R = 1 is discretized with a polar mesh of nr by nθ elements –
nr elements in the radial direction and nθ elements in the circumferential direction.
Singular quarter-point elements surround the crack tip, the remaining elements can
be of ordinary or transition types. Distribution of element sizes in the radial direc-
tion can be of different types. Fig. 9 illustrates two examples of meshes – arith-
metic progression in radial element sizes and equal element increment of strains
and stresses along radial rays.

3.3.1 Methods for KI determination

Two methods are used for determination of the stress intensity factor KI: asymptotic
displacement method and energetic equivalent domain integral method.

The displacement method is based on the asymptotic distribution of displacements
near the crack tip (44). Values of the stress intensity factor KI are determined with
the use of finite element displacement uy at a quarter-point node located at r = h/4,
θ = π (h is the radial size of the quarter-point element):

KI = uy
E

1− v2

√
π

2h
, (46)

where E and ν are Young’s modulus and Poisson’s ration, plane strain conditions
are assumed.

The equivalent domain integral method (EDI) [Nikishkov and Atluri (1987)] is
used for computing the J-integral magnitude

J =
∫
Γε

(
wnx−σi j

∂ui

∂x
n j

)
dΓ. (47)

Here w is the strain energy density, σi j are stresses, ui are displacements, n j are
components of the external normal to contour Γε that surrounds the crack tip.

Contour integration can be replaced by area (domain) integration which is more
suitable for the finite element method and provides better accuracy:

J =
∫

A−Aε

(
w

∂ s
∂x
−σi j

∂ui

∂x
∂ s
∂x j

)
dA. (48)

Integration area A−Aε is between contour Γε and another contour Γ which is far-
ther from the crack tip. A smooth function s has unit value at contour Γε and zero
value at outer contour Γ. Under plane strain conditions the stress intensity factor
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KI is determined as

KI =

√
JE

1− v2 . (49)

In our study, the s function is linear in radial direction and area A−Aε corresponds
to the second element ring that is next to the ring of quarter-point elements. Plane
strain conditions are applied.

3.3.2 Convergence of KI with mesh refinement

We start with convergence study using meshes of n by n elements. Relative radius
of the quarter-point elements is h = 1/n. Three types of radial distribution of el-
ement sizes are employed during mesh generation – arithmetic progression (AP),
equal displacement difference per element (EF) and equal stress and strain differ-
ence per element (ED). In addition to quarter-point elements, finite element meshes
contain ordinary or transition elements. Element stiffness matrices are integrated
with two Gauss points in both directions of the local coordinate system ξ , η .

Errors in the stress intensity factor KI for different meshes are presented in Table 3.
For small meshes, results do not differ for different distributions of element sizes
and different element types. This outcome is expectable (based on experience with
one-dimensional analysis) since the quarter-point element size is large enough. For
larger meshes it is possible to see differences in convergence. The EDI method
provides much better results than the displacement methods. The KI error can be
ten and more times less when the EDI method is used. Table 3 includes results for
elements with curved sides in the circumferential direction where midside nodes
are located at circular arcs. Errors in KI for such meshes is considerably higher
than for elements with straight sides. It is recommended to use meshes composed
of elements with all straight sides.

3.3.3 Radial distribution of element sizes and integration order

Reasonable KI error less than 0.3% by the displacement method is obtained for
meshes of 8×8 elements. This number of elements is selected for further investi-
gation of solution accuracy depending on several parameters.

Similar to the one-dimensional analysis, we study accuracy of the stress intensity
factor KI for two-dimensional meshes with the following varying parameters:

Quarter-point element size h;

Method of KI estimation – asymptotic displacement method or energetic EDI
method;
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Table 3: Errors (percent) in KI values for the two-dimensional asymptotic problem.
The mesh consists of n× n elements. The radius of the quarter-point elements is
1/n. The rest of the semi-circular area is discretized by ordinary elements. Radial
element subdivisions: AP – arithmetic progression, EF – equal function difference
per element, ED – equal derivative difference per element.

Displacement method EDI method

n×n Curved AP EF ED AP EF ED

3 × 3 -2.917 -2.952 -2.972 -0.029 -0.048 -0.073
4 × 4 -1.429 -1.444 -1.440 -0.110 -0.106 -0.104
4 × 4 c -3.345 -3.325 -3.241 -0.697 -0.674 -0.638
6 × 6 -0.531 -0.543 -0.525 -0.071 -0.052 -0.037
6 × 6 c -1.480 -1.467 -1.402 -0.240 -0.217 -0.195
8 × 8 -0.263 -0.279 -0.264 -0.048 -0.025 -0.012
8 × 8 c -0.813 -0.810 -0.765 -0.120 -0.096 -0.082

16 × 16 -0.035 -0.060 -0.055 -0.030 -0.004 0.001
24 × 24 0.003 -0.025 -0.023 -0.028 -0.001 0.001
32 × 32 0.016 -0.014 -0.013 -0.027 -0.001 0.001
48 × 48 0.025 -0.006 -0.005 -0.027 -0.0002 0.0005
64 × 64 0.028 -0.003 -0.003 -0.027 -0.0001 0.0003

Number of Gauss integration points in the radial direction for element stiffness
evaluation (except for quarter-point elements);

Element types – ordinary or transition elements in addition to the quarter-point
elements;

Distribution of element sizes – arithmetic progression (AP), equal function in-
crement per element (EF), and equal derivative increment per element (ED);

Behavior of the quarter-point element does not depend on the integration order of its
stiffness matrix. Because of this quarter-point elements are always integrated with a
two by two Gauss rule. Stiffness matrices of other elements (ordinary or transition)
are evaluated using two Gauss integration points in the circumferential direction
and variable number of integration points NG = 2, 3, 8 in the radial direction. It
was found that using more points in the circumferential direction for integration of
ordinary or transition elements does not improve solution results. Table 4 contains
errors in KI values expressed as percentages.

Most conclusions made for one-dimensional case are valid for two-dimensional
modeling of crack-tip fields. For two-dimensional meshes that include quarter-
point elements around the crack tip and ordinary or transition elements in the rest
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Table 4: Errors (percent) in KI values for the two-dimensional asymptotic problem.
The mesh consists of 8× 8 elements. Crack tip is surrounded by quarter-point
elements of radius h. The rest of the semi-circular area is discretized by ordinary
or transition elements. Elements (except for quarter-point) are integrated with NG

gauss integration points in the radial direction. Radial element subdivisions: AP
– arithmetic progression, EF – equal function difference per element, ED – equal
derivative difference per element.

Q-point and ord. elements Q-point and transit. elements

h Method NG AP EF ED AP EF ED

1/8 Displ 2 -0.263 -0.279 -0.264 -0.292 -0.269 -0.262
1/8 Displ 3 -0.280 -0.282 -0.268 -0.264 -0.262 -0.260

1/8 EDI 2 -0.048 -0.025 -0.012 -0.017 -0.027 -0.022
1/8 EDI 3 -0.045 -0.025 -0.016 -0.080 -0.057 -0.025

1/64 Displ 2 0.600 0.638 -0.670 -0.290
1/64 Displ 3 0.236 0.156 0.228 -0.139
1/64 Displ 8 0.190 0.094 0.382 -0.121

1/64 EDI 2 -0.208 0.895 0.115 -0.081
1/64 EDI 3 -0.199 0.416 -0.271 0.046
1/64 EDI 8 -0.193 0.355 -0.365 0.056

1/512 Displ 2 22.898 18.049 18.059 -13.464 -11.315 -0.397
1/512 Displ 3 16.401 12.684 11.644 -3.071 -1.770 0.328
1/512 Displ 8 11.917 9.440 7.849 0.722 1.547 0.534

1/512 EDI 2 -1.116 -0.916 18.361 0.574 0.542 -0.523
1/512 EDI 3 -1.164 -0.975 11.954 -0.005 -0.023 0.474
1/512 EDI 8 -1.128 -0.934 8.156 -0.476 -0.486 0.656

of the computational domain, the following factors improve the accuracy of the
stress intensity factor evaluation:

Radial distribution of element sizes providing equal stress difference per ele-
ment (ED);

Use of transition elements;

Increase of integration order in the radial direction for evaluation of element
stiffness matrices.

Accuracy degradation can be attributed to:



358 Copyright © 2013 Tech Science Press CMES, vol.93, no.5, pp.335-361, 2013

Table 5: Errors (percent) in KI values for the two-dimensional asymptotic problem.
The mesh consists of 8× nθ elements. The radius of the quarter-point elements
is 1/8. The rest of the semi-circular area is discretized by ordinary or elements.
Radial element subdivisions: AP – arithmetic progression, EF – equal function
difference per element, ED – equal derivative difference per element.

Displacement method EDI method

nr×nθ AP EF ED AP EF ED

8 × 4 -1.370 -1.381 -1.389 -0.048 -0.039 -0.064
8 × 8 -0.263 -0.279 -0.264 -0.048 -0.025 -0.012

8 × 12 -0.094 -0.114 -0.106 -0.036 -0.013 -0.001
8 × 16 -0.038 -0.060 -0.055 -0.032 -0.009 0.003
8 × 24 0.002 -0.022 -0.020 -0.029 -0.006 0.005
8 × 32 0.015 -0.010 -0.008 -0.028 -0.005 0.006

Decrease of the relative quarter-point element size;

Use of elements with curved sides in the circumferential direction (see Table 3).

The integration order for the quarter-point elements and the number of integration
points in the circumferential direction for ordinary or transition elements do not
noticeably affect value of the stress intensity factor.

It is most difficult to get acceptable results for small radial sizes of the quarter-
point element, for example, 1/n3, especially when element sizes do not follow a
ED radial distribution. In this case, modeling should be done using quarter-point
and transition elements with radial integration rule NG = 8.

Small sizes of quarter-point and neighboring elements can be useful in modeling
elastic-plastic crack-tip fields for calculation of second fracture parameter [Nik-
ishkov, Brueckner-Foit, and Munz (1995)] in addition to the J-integral.

3.3.4 Element sizes in the circumferential direction

Selection of radial distribution of element sizes that corresponds to equal incre-
ment of stress per element helps to reduce error in KI values. Several attempts were
made to improve solution accuracy by changing element sizes in the circumferen-
tial direction. For example, it is possible to derive element size distributions which
are based on equal increments of displacement uθ (θ) or stress σθ (θ). However,
no such attempts improved results. Different components of displacements and
stresses follow different angular functions. Because of this, it is probably impossi-
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ble to obtain optimal element subdivision in the circumferential direction without
increasing the number of subdivisions.

However, it is possible to simply use more elements in the circumferential direction
without changing the number of elements in the radial direction. Table 5 juxtaposes
errors in the stress intensity factor for meshes with eight elements in the radial di-
rection and variable number of elements nθ in the circumferential direction. Results
show that increasing the number of elements in the circumferential direction by a
factor of 1.5–2 considerably improves solution accuracy for all radial distributions
of element sizes.

4 Conclusion

The quarter-point element was studied to determine influence of several factors on
the accuracy in modeling crack-tip fields. One- and two-dimensional quarter-point
elements were applied to problems with inverse square-root singularity that have
known solutions.

It is demonstrated that the stiffness matrix of the two-dimensional quarter-point
elements contains theoretically unbounded entries except for rows and columns re-
lated to quarter-point nodes. Finite values of stiffness coefficients are obtained due
to their numerical integration. While coefficient values depend on the integration
rule used, solution results are independent of the number of integration points.

To obtain higher accuracy for the stress intensity factor, it is recommended to create
meshes with radial distribution of element sizes that provide constant increment of
stresses per element and to use transitional elements in addition to quarter-point
elements. Use of higher order rules for integration of element stiffness matrices in
the radial direction and increasing the number of elements in the circumferential
direction also help to improve solution accuracy. Higher order integration in the
radial direction is definitely important for meshes with small radial size of quarter-
point elements.

The conclusions made on the basis of two-dimensional solutions of the inverse
square root problem should be valid for three-dimensional fracture mechanics prob-
lems, since asymptotic behavior of displacements and stresses in planes normal to
the crack front is similar to that for the two-dimensional case.

Acknowledgement: The author is thankful to Prof. Michael Cohen, University
of Aizu, and to Dr. Yuri Nikishkov, University of Texas at Arlington, for their
suggestions that improved the paper.
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