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Approximate Stationary Solution for Beam-Beam
Interaction Models with Parametric Poisson White Noise

Xiaokui Yue1, Yong Xu2, Jianping Yuan1

Abstract: In this paper, a stochastic averaging method is derived for a class of
non-linear stochastic systems under parametrical Poisson white noise excitation,
which may be used to model the beam-beam interaction models in particle accel-
erators. The averaged Generalized Fokker-Planck equation is derived and the ap-
proximate stationary solution of the averaged Generalized Fokker-Planck equation
is solved by using perturbation method. The present method applied in this paper
can reduce the dimensions of stochastic ODE from 2n to n, which simplify the com-
plex stochastic ODE, and then the analytical stationary solutions can be obtained.
An example is employed to demonstrate the procedure of our proposed method.
The analytical solution of approximate stationary probability density function is
obtained, and the theoretical results are verified through numerical simulations. Fi-
nally, the stability of the amplitude process is investigated.

Keywords: Poisson white noise, Stochastic averaging, Generalized Fokker-Planck
equation, Stationary probability density, Stochastic stability

1 Introduction

Stochastic dynamical systems have been an attracting subject in the past two decades,
since more and more uncertainty factors are being introduced into the considera-
tions of conventional systems. For example, mechanical and electrical systems
are normally modeled as second order differential equations, however unmodeled
dynamics and structural behavior contribute to noise for such system [Rajan and
Raha (2008)]. For certain kind of devices taking the noise into account for numeri-
cal simulation is essential in order to get correct estimates of design behavior with
respect to manufacturing variations, thus affecting yield. Also, in solid mechanics,
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some of the most important parameters may be uncertain mechanical properties
such as modulus of elasticity, density and heat transfer coefficients. The uncertain
mechanical properties can be randomly generated using the Monte Carlo simula-
tion with various coefficients of variations (COVs) and normal distribution. The
stochastic analysis of dynamic problems can be helpful for predicting all possible
responses caused by uncertainties of mechanical properties. Hoseini, Shahabian
Sladek and Sladek (2011) proposed a Stochastic Meshless local Petrov-Galerkin
method (MLPG) to solve the stochastic boundary value problem, where the effi-
cient MLPG [Atluri and Zhu (1998); Atluri (2004)] is employed, accompanied by
the Monte-Carlo simulation method. Silva, Deus, Mantovani, and Beck (2010)
used the Galerkin method to analyze the stochastic beam bending on winkler foun-
dations. Kaminski (2011) carried out the probabilistic analysis of transient prob-
lems by the least squares stochastic perturbation-based finite element method. In
the fluid mechanics, Kami and Ossowski (2011) applied the stochastic finite vol-
ume method in Navier-Stokes problems.

In our study, a typical beam-beam interaction model is considered. Recently, beam-
beam interaction models widely appear in many fields of applied science and practi-
cal problems [Month and Herrera (1979); Bountis and Mahmoud (1987); Mahmoud
(1992)]. Therefore it has attracted the attention of many scholars. For example,
Mahmond (1995) studied it under additive broad-band random noise using stochas-
tic averaging. Later, Xu and Xu (2004) generalized stochastic averaging method to
complex beam-beam interaction models with broad-band random excitation. Xu,
Xu, Mahmoud and Lei (2005) also applied the method of multiple scales to discuss
that beam-beam interaction models in the presence of narrow-band excitation, and
Zhang, Xu and Xu (2009) explored the case of colored noise excitation by using
the method of stochastic averaging combined with the perturbation technique.

The stochastic averaging method was first proposed by Statonovich (1963) and it
has been proven that it was a powerful approximate technique for analyzing Gaus-
sian white noise and (or) Gaussian colored noise excitation stochastic differen-
tial equation [Roberts and Spanos (1986); Zhu (1988); Roy (1994); Liu and Liew
(2005)]. Recently, it was applied to study the response of quasi-linear systems to
Poisson white noise excitation successfully [Zeng and Zhu (2010a)]. Later, this
method was extended to n−dimensional non-linear dynamical systems subject to
filtered Poisson white noise excitation [Zeng and Zhu (2010b)]. Zeng and Zhu
(2011) studied the response of single-degree-of-freedom (SDOF) strongly nonlin-
ear oscillators under Poisson white noise excitation by using the generalized har-
monic functions procedure and combine perturbation method.

In this paper, we apply stochastic averaging method and perturbation method to
research a class of non-linear stochastic systems with the approximate stationary
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probability density function under parametrical Poisson white noise excitation. We
also consider the stochastic stability of stochastic differential equation for the am-
plitude process.

2 Averaged Stochastic Method

In this paper, we consider Beam-Beam interaction models with parametric Poisson
white noise of the form

ẍ+ω
2
0 x+ ε

2
γg(ẋ)+ ε

2 f (x)p(ω0t) = εh(x, ẋ)Wp(t) (1)

where ω0 is nature frequency, ε is a small positive parameter, p(ω0t) is a periodic
function, f (x), g(ẋ), h(x, ẋ) are generally nonlinear functions, Wp(t) is a Poisson
white noise which can be considered as formal derivatives of the homogeneous
compound Poisson processes:

Wp(t) =
dC(t)

dt
=

N(t)

∑
k=1

Ykδ (t− tk) (2)

Where N(t) is the total number of pulses that arrive in the time interval (−∞, t]
which with intensity λ > 0, Yk are independent and identically distributed (i.i.d.)
random variables with zero mean. Thus,

E
[
(dC(t))k

]
= λE

[
Y k
]

dt (3)

Applying the stochastic averaging method, the joint response process (x, ẋ) can be
transformed into the amplitude A(t) and phase Θ(t) processes, according to the
follow relationships:

x(t) = A(t)cosΦ(t), ẋ(t) =−A(t)ω0 sinΦ(t), where Φ(t) = ω0t +Θ(t).
Therefore, Eq. (1) can be changed as following

Ȧ = ε
2m1(A,Φ,ω0t)dt + εn1(A,Φ)Wp(t)

Θ̇ = ε
2m2(A,Φ,ω0t)dt + εn2(A,Φ)Wp(t) (4)

Where

m1(A,Φ,ω0t) =
γ

ω0
g(A,Φ)sinΦ+

1
ω0

f (A,Φ)p(ω0t)sinΦ (5)

m1(A,Φ,ω0t) =
γ

ω0
g(A,Φ)sinΦ+

1
ω0

f (A,Φ)p(ω0t)sinΦ (6)
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m2(A,Φ,ω0t) =
γ

Aω0
g(A,Φ)cosΦ+

1
Aω0

f (A,Φ)p(ω0t)cosΦ (7)

n1(A,Φ) =− 1
ω0

h(A,Φ)sinΦ n2(A,Φ) =− 1
Aω0

h(A,Φ)cosΦ (8)

Equation (4) can be considered as Stratonovich stochastic differential equation
and then transformed into a stochastic differential equation by Paola and Falsone
(1993a, 1993b). The result is

dA = ε
2m1(A,Φ,ω0t)dt +

∞

∑
k=1

ε
k 1
k!

G(k)
1 (A,Φ)(dC(t))k

dΘ = ε
2m2(A,Φ,ω0t)dt +

∞

∑
k=1

ε
k 1
k!

G(k)
2 (A,Φ)(dC(t))k

(9)

in which

G(k)
i (A,Φ) = n1(A,Φ)

∂G(k−1)
i (A,Φ)

∂A
+n2(A,Φ)

∂G(k−1)
i (A,Φ)

∂Θ

G(1)
i (A,Φ) = ni(A,Φ), i = 1,2; k = 1,2, · · ·

(10)

The generalized Fokker-Planck equation associated with Eq. (9) is

∂ρ(a,θ , t)
∂ t

=
∞

∑
i=1

(−1)i

i!
∂ i

∂ai M1i(a,ϑ ,ω0t)ρ(a,θ , t)+
∞

∑
j=1

(−1) j

j!
∂ j

∂θ j M2 j(a,ϑ ,ω0t)

×ρ(a,θ , t)+
∞

∑
m=1

∞

∑
n=1

∂ m+n

∂am∂θ n Nmn(a,ϑ)ρ(a,θ , t)

(11)

Where

Mi1(a,ϑ ,ω0t) = ε
2mi(a,ϑ ,ω0t)+

∞

∑
j=1

εk

k!
G(k)

i (a,ϑ)λE
[
Y k
]

Mi j(a,ϑ) =
∞

∑
k1

· · ·
∞

∑
ki=1

εk1+···+ki

k1! · · ·ki!
G(k1)

i (a,ϑ) · · ·G(ki)
i (a,ϑ)λE

[
Y k1+···+ki

]
i = 1,2; j = 2,3, · · ·

(12)

Nmn(a,ϑ) =
∞

∑
k1

· · ·
∞

∑
km=1

∞

∑
s1

· · ·
∞

∑
sn=1

εk1+···+km+s1+···+sn

k1! · · ·km!s1! · · ·sn!
G(k1)

1 (a,ϑ) · · ·G(km)
1 (a,ϑ)

×G(s1)
2 (a,ϑ) · · ·G(sn)

2 (a,ϑ)λE
[
Y k1+···+km+s1+···+sn

]
m, n = 1, 2, 3, · · ·
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(13)

Averaging generalized Fokker-Planck equation coefficients with respect to a yields
the following,

M̄i j(a) =
1

2π

∫ 2π

0
Mi j(a,ϑ ,ω0t)dϑ

N̄i j(a) =
1

2π

∫ 2π

0
Ni j(a,ϑ ,ω0t)dϑ , i = 1,2 j = 1, 2, 3, · · ·

(14)

Therefore, the averaging generalized Fokker-Planck equation is obtained as fol-
lows:

∂ρ(a, t)
∂ t

=
∞

∑
i=1

(−1)i

i!
∂ i

∂ai M̄1i(a)ρ(a, t) (15)

Where

M̄11(a) = ε
2 1

2π

∫ 2π

0
m1(a,ϑ ,ω0t)dϑ +

∞

∑
k=1

εk

k!
λE
[
Y k
] 1

2π

∫ 2π

0
G(k)

1 (a,ϑ)dϑ

M̄1i(a) =
∞

∑
k1=1
· · ·

∞

∑
ki=1

εk1+···+ki

2πk1! · · ·ki!
λE
[
Y k1+···+ki

]∫ 2π

0
G(k1)

1 (a,ϑ) · · ·G(ki)
1 (a,ϑ)dϑ ,

(16)

Base on the power exponent of ε , Eq. ( 15 ) becomes:

∂ρ(a, t)
∂ t

=− ∂

∂a
Q̄11(a)ρ(a, t)+

1
2!

∂ 2

∂a2 Q̄12(a)ρ(a, t)−
1
3!

∂ 3

∂a3 Q̄13(a)ρ(a, t)

+
1
4!

∂ 4

∂a4 Q̄14(a)ρ(a, t)+O(ε5)

(17)

where

Q̄11(a) =ε
2
(

m1(a,ϑ)+
1
2!

λE
[
Y 2]G(2)

1 (a,ϑ)

)
+ ε

3 1
3!

λE
[
Y 3]G(3)

1 (a,ϑ)

+ ε
4 1

4!
λE
[
Y 4]G(4)

1 (a,ϑ)

Q̄12(a) =ε
2
λE
[
Y 2]G(1)

1 (a,ϑ)G(1)
1 (a,ϑ)+ ε

3
λE
[
Y 3]G(1)

1 (a,ϑ)G(2)
1 (a,ϑ)

+ ε
4
λE
[
Y 4](1

3
G(1)

1 (a,ϑ)G(3)
1 (a,ϑ)+

1
4

[
G(2)

1 (a,ϑ)
]2
)



282 Copyright © 2013 Tech Science Press CMES, vol.93, no.4, pp.277-291, 2013

Q̄13(a) = ε
3
λE
[
Y 3][G(1)

1 (a,ϑ)
]3

+ ε
4 3

2
λE
[
Y 4][G(1)

1 (a,ϑ)
]2

G(2)
1 (a,ϑ)

Q̄14(a) = ε
4
λE
[
Y 4][G(1)

1 (a,ϑ)
]4

(18)

The stationary solution form of the nonlinear system can be written by using per-
turbation technique in Lin and Cai (1995) as

ρ(a) = ρ0(a)+ ερ1(a)+ ε
2
ρ2(a) (19)

Substituting Eq. ( 19 ) into ( 18 ) leads to the following system of equations:
L0ρ0(a) = 0
L0ρ1(a) =−L1ρ0(a)
L0ρ2(a) =−L1ρ1(a)−L2ρ0(a)
· · · · · · · · ·

(20)

where

L0 =−
∂

∂a

m1(a,ϑ)+
λE
[
Y 2
]

G(2)
1 (a,ϑ)

2!


+

∂ 2

∂a2

λE
[
Y 2
]

G(1)
1 (a,ϑ)G(1)

1 (a,ϑ)

2!

 (21)

L1 =−
∂

∂a

λE
[
Y 3
]

G(3)
1 (a,ϑ)

3!

+
∂ 2

∂a2

λE
[
Y 3
]

G(1)
1 (a,ϑ)G(2)

1 (a,ϑ)

2!



− ∂ 3

∂a3

λE
[
Y 3
][

G(1)
1 (a,ϑ)

]3

3!


(22)

L2 =−
∂

∂a

λE
[
Y 4
]

G(4)
1 (a,ϑ)

4!

+
∂ 2

∂a2

λE
[
Y 4
]

G(4)
1 (a,ϑ)

2!×4!



− ∂ 3

∂a3

3λE
[
Y 4
][

G(1)
1 (a,ϑ)

]2
G(2)

1 (a,ϑ)

2×3!



+
∂ 4

∂a4

λE
[
Y 4
][

G(1)
1 (a,ϑ)

]4

4!



(23)
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3 Example

3.1 Approximate stationary solution of an averaged generalized FPK equation

Suppose g(ẋ) = ẋ3, f (x) = x3, p(ω0t) = cosω0t and h(x, ẋ) = ω0σx, Eq.(1) be-
comes

ẍ+ω
2
0 x+ ε

2
γ ẋ3 + ε

2x3 cosω0t = εω0σxWp(t) (24)

From Eq. (5) to Eq. (10), we get

∂ρ(a, t)
∂ t

=
∞

∑
i=1

(−1)i

i!
∂ i

∂ai M̄1i(a)ρ(a, t) (25)

where

m(a,ϑ) =−γω
2
0 a3 sin4

ϑ +
1

ω0
a3 cos(ω0t)sinϑ cos3

ϑ

n1(a,ϑ) = G(1)
1 (a,ϑ) =−σacosϑ sinϑ , n2(a,ϑ) = G(1)

2 (a,ϑ) =−σ cos2
ϑ

G(k)
1 (a,ϑ) = n1(a,ϑ)

∂G(k−1)
1 (a,ϑ)

∂a
+n2(a,ϑ)

∂G(k−1)
1 (a,ϑ)

∂θ

M̄11(a) = ε
2 1

2π

∫ 2π

0
m(a,ϑ)dϑ +

∞

∑
k=1

εk

2πk!
λE
[
Y k
]∫ 2π

0
G(k)

1 (a,ϑ)dϑ

M̄1i(a) =
∞

∑
k1=1
· · ·

∞

∑
ki=1

εk1+···+ki

2πk1! · · ·ki!
λE
[
Y k1+···+ki

]∫ 2π

0
G(k1)

1 (a,ϑ) · · ·G(ki)
1 (a,ϑ)dϑ ,

(26)

Substituting Eq. (21) into (23), we have

L0 =−
∂

∂a

(
−3

8
γω

2
0 a3 +

3
16

λE
[
Y 2]

σ
2a2
)
+

1
2!

∂ 2

∂a2

(
λE
[
Y 2] 1

8
σ

2a2
)

L1 = 0

L2 =−
∂

∂a

(
15

1024
λE
[
Y 4]

σ
4a
)
+

∂ 2

∂a2

(
15

1024
λE
[
Y 4]

σ
4a2
)

− ∂ 3

∂a3

(
10

1024
λE
[
Y 4]

σ
4a3
)
+

∂ 4

∂a4

(
1

1024
λE
[
Y 4]

σ
4a4
)

Solving Eq. (20), we obtain

ρ0(a) = a · exp
{
−3γω2

0 a2/
σ2λE

[
Y 2
]}
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ρ1(a) = 0

ρ2(a) =

(
−

9γ2ω4
0 E
[
Y 4
]

8λ 2σ2 (E [Y 2])3 a5 +
9γ3ω6

0 E
[
Y 4
]

16λ 3σ4 (E [Y 2])4 a7

)
· exp

{
−3γω2

0 a2/
σ2λE

[
Y 2
]}

So, we get the approximate stationary probability density function of order ε

ρ(a) =ρ0(a)+ ερ1(a)+ ε
2
ρ2(a) = c ·

[
a+ ε

2 ·

(
−

9γ2ω4
0 E
[
Y 4
]

8λ 2σ2 (E [Y 2])3 a5+

9γ3ω6
0 E
[
Y 4
]

16λ 3σ4 (E [Y 2])4 a7

)]
× exp

{
−3γω2

0 a2/
σ2λE

[
Y 2
]} (27)

3.2 Numerical analysis

For illustrative purposes, we carry out the numerical simulation to verify the anal-
ysis results. In figures 1-3, we choose the parameters: ω0=1, γ=2.5, σ=1.5, ε=0.1,
λ = 1, random pulse amplitude was assumed to have a Gaussian distribution with
E(Y ) = 0 and E

(
Y 2
)
= 2.

As shown in fig. 1, the approximate stationary probability density ρ(a) is very
close to Monte Carlo simulation, and is better than the Gaussian approximate which
means that the Poisson white noise is Gaussian white noise.

It is shown in Fig. 2 and Fig. 3 that the Mean-square response and fourth-order mo-
ment of the response of amplitude process a(t). Approximate stationary moments
of the response for different values of γ . The comparison shows the good accuracy
of the method as the Monte Carlo simulation.

3.3 Stochastic stability for the amplitude process

Equation (25) may be changed into

1
2π

∫ 2π

0

[
∂ρ(a, t)

∂ t
−

∞

∑
i=1

(−1)i

i!
∂ i

∂ai M1i(a,ϑ)ρ(a, t)

]
dϑ = 0 (28)

Therefore,

∂ρ(a, t)
∂ t

=
∞

∑
i=1

(−1)i

i!
∂ i

∂ai M1i(a,ϑ)ρ(a, t) (29)

where

M11(a,ϑ) =−3
8

ε
2
γω

2
0 a3 +

∞

∑
k=1

εk

k!
λE
[
Y k
]
G(k)

1 (a,ϑ)

M1i(a,ϑ) =
∞

∑
k1

· · ·
∞

∑
ki=1

εk1+···+ki

k1! · · ·ki!
G(k1)

1 (a,ϑ) · · ·G(ki)
1 (a,ϑ)λE

[
Y k1+···+ki

] (30)
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Figure 1: γ=2.0, Stationary probability density of amplitude process a. “−−”: Ap-
proximate stationary probability density function. ”−−−”: Gaussian approximate
simulation result. “·”: Monte Carlo simulation result.

Figure 2: Mean-square response of amplitude process a. "– –": Approximate Mean-
square respone. "∗": Monte Carlo simulation Mean-square response progress.
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Figure 3: Fourth-order moment of response of amplitude process a. "– –": Approx-
imate fourth-order moment of response. "∗": Monte Carlo simulation fourth-order
moment of response progress.

The corresponding Itô stochastic differential equation is

da =−3
8

ε
2
γω

2
0 a3dt +

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)a(dC(t))k (31)

where

Sk(ϑ)a = G(k)
1 (a,ϑ)

The corresponding integral Eq. (19) of Eq. (31) can be written as follows:

da =−3
8

ε
2
γω

2
0 a3dt +

∫
y
κ(a,ϑ ,Y, t)M (dt,dY ) (32)

in which

κ(a,ϑ ,Y, t) =
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)aY k

Consider the difference ã = a− as, where as and a are stationary and transient
solution respectively. So

dã(t) =−3
8

ε
2
γω

2
0
(
a3(t)−a3

s (t)
)

dt +
∫

y

{
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)ã(t)Y k

}
M (dt,dY ) (33)
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Since as and a are stationary and transient solution of Eq. (32), we have

a3−a3
s = (a−as)

(
a2 +aas +a2

s
)
= 3a2

s ã

The exponential growth rates of ã are given by the Lyapunov exponent in Grigoriu
(1996), Duan, Xu, Su and Zhou (2011) as:

λe = lim
t→∞

1
t

ln‖ã(t)‖ (34)

Applying the generalized formula (19) to the function φ(t) = ln‖ã(t)‖, we have

dφ(t) =−9
8

ε
2
γω

2
0 a2

s (t)dt +
∫

y
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥M (dt,dY ) (35)

So that

φ (t) = φ (0)− 9
8

ε
2
γω

2
0

∫ t

0
a2

s (u)du+
∫ t

0

∫
y
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥M (du,dY )

(36)

Therefore, Lyapunov exponent is

λe = lim
t→∞

1
t

(
φ (0)− 9

8
ε

2
γω

2
0

∫ t

0
a2

s (u)du+
∫ t

0

∫
y
ln

(
1+

∞

∑
k=1

ε
k 1

k!
Sk(ϑ)Y k

)
M (du,dY )

)

=−9
8

ε
2
γω

2
0 E
(
a2

s (t)
)
+λE

(
ln

(
1+

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

))
(37)

(i) When as(t)=0 (trivial stationary solution ), E( as(t))=0, the Lyapunov exponent
can be written as:

λe = λE

(
ln

(
1+

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

))
(38)

The trivial stationary solution as(t) = 0 is stable with probability one when λe < 0,
that is

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k < 0, a.s. (39)

(ii) When as 6= 0 ( that is: non-trivial stationary solution )

das(t) =−
3
8

ε
2
γω

2
0 a3

s (t)dt +
∫

y

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)as(t)Y kM (dt,dY ) (40)



288 Copyright © 2013 Tech Science Press CMES, vol.93, no.4, pp.277-291, 2013

So,

dE (ln‖as(t)‖)
dt

=−3
8

ε
2
γω

2
0 E
(
a2

s (t)
)
+λE

(
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥
)

(41)

Because of the non-trivial stationary solution as 6= 0, therefore

E
(
a2

s
)
=

8λ

3ε2γω2
0

E

(
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥
)

(42)

Appling Eq. (37)

λe =−
9
8

ε
2
γω

2
0 E
(
a2

s
)
+λE

(
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥
)

=−2λE

(
ln

∥∥∥∥∥1+
∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k

∥∥∥∥∥
) (43)

The non-trivial stationary solution as(t) 6= 0 is stable with probability one when
λe < 0, that is

∞

∑
k=1

ε
k 1
k!

Sk(ϑ)Y k > 0, a.s. (44)

4 Conclusions

In this paper, beam-beam interaction models with parametric Poisson white noise
are considered. The stochastic averaging method in conjunction with the pertur-
bation method is applied to derive an approximate stationary solution of average
Fokker-Plank equation. An example is used to get an approximate stationary prob-
ability density. The theory analytical results are verified using Monte Carlo sim-
ulation. The stability of the amplitude process is discussed base on the Lyapunov
exponent. Results indicate that the response stability is related to the distribution
of jump of Poisson white noise.
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