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Hyper-Singular Dual Reciprocity Formulation for
Potential Problems
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Abstract: Here is presented a formal deduction for the Dual Reciprocity hyper-
singular boundary integral equation for application to two dimensional potential
problems. The theoretical and numerical derivations are presented in detail, and
some simple test problems are included to verify the accuracy of the proposed for-
mulation. Due to its simplicity, Poisson’s Equation is used as a basis for the math-
ematical formulations and operational procedures related to the body force term,
but the methodology can easily be extended to other more elaborate classes of po-
tential problems. Poles are inserted internally to improve the interpolation within
the domain, resulting in a hybrid singular and hyper-singular matrix system and
global polynomial functions are also implemented for the same purpose. Problems
belonging to scalar field theory that have known analytical solutions are solved, in
order to obtain a preliminarily assessment of the efficiency and capability of the
technique for more elaborate applications.

Keywords: Dual Reciprocity Formulation; Hyper-singular Integral Formulation;
Scalar Potential Problems

1 Introduction

In many problems it is important to know the directional derivatives of the basic
variable on the boundary. In elasticity problems, spatial derivatives of displace-
ments are of great interest in order to calculate accurately tangential stresses. In
scalar problems many applications require the determination of the velocity field
from a given potential pressure, knowledge of both normal and tangential velocity
components being essential. For both cases, the objective can be attained through
the use of the so-called hyper-singular formulation (HSF) of the Boundary Element
Method (BEM).
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Despite the high order singularity that appears, the procedure is very useful in the
BEM context. The success of the HSF is notable for solving problems involving
contact and fracture mechanics. In both cases strong gradients are found, motivat-
ing the development of a formulation that offers better precision for the calculation
of the spatial derivatives, and at the same time generates two distinct integral equa-
tions to represent particles located at the same point, as in the case of a crack. In this
situation, one equation is given by the classic BEM formulation (CSF) and the other
by the HSF. Similar situation occurs in plate problems, in which it is necessary to
write an additional hyper-singular boundary integral equation corresponding to the
derivative of the displacement.

Due to this, the HSF has been the subject of considerable research seeking mathe-
matical improvement, considering the concept of the finite part integral [Hilden-
brand and Kuhn (1992)], aspects concerning the formulation [Telles and Prado
(1993)], proper evaluation of the hyper-singularity [Mantic and Paris (1995); Guig-
giani (1995)] and also error analysis [Paulino, Menon and Mukherjee (2001)].
Mansur, Fleury and Azevedo (1997) is of particular importance in which exten-
sive work was done and a thorough approach to the convergence of hyper-singular
integrals was developed. At the same time, the technique has been applied to sev-
eral other important problems in engineering, such as: Darcy’s flow, electroplat-
ing [Gray and Manne (1993)], wave scattering and the analysis of crack surfaces
[Beltrame and Burais (2002)] including anisotropy and plasticity [Shiah and Shih
(2007)]. A comprehensive perspective on the current status of HSF with emphasis
in regularization procedures is given by Chen and Hong (1999).

The classic Dual Reciprocity Boundary Element Formulation (DRSF) was pro-
posed by Nardini and Brebbia (1982) as an interesting alternative for solving prob-
lems modeled by non homogeneous differential equations, which correspond phys-
ically to the presence of body forces. With the development of the DRSF, the mod-
eling of body forces becomes easier, since it uses auxiliary interpolation functions
that allow transforming domain integrals into boundary integrals accompanied by
a point function. Poisson type problems, transient problems, dynamic and wave
propagation problems and diffusive-advective problems can also be successfully
solved by this approach [Partridge, Brebbia and Wrobel (1982); Ramachandran
(1994)]. Due the consistency of the DRSF, beyond these classic situations, it has
been continuously applied to new engineering problems [Yun and Ang (2010); De-
hghan and Ghesmati (2010); Useche and Albuquerque (2012)].

Despite the suitability of the dual reciprocity to solve domain integrals, its use in
some hyper-singular BEM problems has been deprecated by other techniques. For
example, the Helmholtz equation comprises an important class of potential prob-
lems in which hyper-singular formulation and particular techniques to solve domain
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integrals commonly had been applied together, as did Chen and Wong [1998] for
the acoustic problem of a cavity using the Multiple Reciprocity Method (MRM).
The MRM is a generalization of the concept of the Galerkin vector and treats the
domain integral in a recurrence manner, although applying the reciprocity theorem
such as is done with the Dual Reciprocity Method [Nowak and Partridge, 1992].
However, the idea behind the MRM and the DRSF are essentially different, since
the latter is based on a primitive radial basis interpolation function that allows the
domain integral to be changed to boundary integrals.

In fact, the Dual Reciprocity hyper-singular (DRHF) does not appear as the main
focus, but as an ancillary tool in a few papers. Cheng et al [2000] indicates it for
mixed boundary value problems, while Ang [2007] applies it to a viscoelastic prob-
lem. However, important conceptual and numerical aspects were not approached
together.

Finally, just based on direct analogy, there is the expectation that the DRHF ma-
trix arrangement is similar to the DRSF. However, it is necessary to demonstrate
mathematically that really this analogy is admissible, since it is required a non triv-
ial treatment of the hyper-singularities that also involve the interpolation functions.
Thus, this work is intended to present the steps that comprise the mathematical
foundations of the DRHF. Moreover, its performance is evaluated solving simple
problems, in absence of other factors that may disguise its numerical characteris-
tics.

2 Basic Integral Equations

Let Ω(X) be a domain in the two dimensional space X(x1,x2), physically homo-
geneous and isotropic, where a scalar potential variable u(X) is defined and there
are known body forces p(X) applied. Thus, consider this field being governed by a
Poisson’s Equation. Related to this problem, an integral inverse form for a source
point ξ located inside the domain can be deduced [Brebbia, Telles and Wrobel
(1984)]:

u(ξ )−
∮

Γ(X)

u∗(ξ ;X)q(X)dΓ+
∮

Γ(X)

u(X)q∗(ξ ;X)dΓ =−
∫

Ω(X)

p(X)u∗(ξ ;X)dΩ (1)

In the previous equation, q(X) is the normal derivative (hereafter denominated flux
for simplicity) and was used as an auxiliary function, u*(ξ ;X), called the funda-
mental solution, and its normal derivative q*(ξ ;X), both related to the Euclidian
distance between the field points X and the source points ξ . These functions are
easily found in the specialized literature [Wrobel and Aliabadi (2002)], as well
as their analytical expressions. Essential and natural boundary conditions can be
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imposed on Γ(X), being given respectively by:

u(X) = ū(X) on Γu (2)

q(X) =
∂u(X)

∂n(X)
= q̄(X) on Γq (3)

In Eq. (3), n is the outward normal unit vector at a boundary point, and the complete
boundary is defined by Γu +Γq. Values of normal potential derivatives at source
points ξ located internally can be easily obtained as follows:

du(ξ )
dn(ξ )

=
∮

Γ(X)

g∗(ξ ;X)q(X)dΓ−
∮

Γ(X)

p∗(ξ ;X)u(X)dΓ− d
dn(ξ )

∫
Ω(X)

p(X)u∗(ξ ;X)dΩ

(4)

In the previous equation, the following derivatives are introduced:

g∗(ξ ;X) =
∂u∗(ξ ;X)

∂n(ξ )
=− 1

2πr

(
∂ r

∂xi(ξ )

)
ni(ξ ) = − 1

2πr2 [xi(ξ )− xi(X)]ni(ξ )

(5)

p∗(ξ ;X) =
∂q∗(ξ ;X)

∂n(ξ )
=

{
−1
πr3

(
∂ r

∂xi(ξ )

)
[x j(ξ )− x j(X)]n j(X)+

ni(X)

2πr2

}
ni(ξ )

=
1

2πr4

{
2[xi(ξ )− xi(X)][x j(X)− x j(ξ )]ni(ξ )n j(X)+ r2ni(X)ni(ξ )

}
(6)

The normal derivative also could be introduced into the kernel of the domain inte-
gral in Eq. (4), but this is not done for convenience.

A similar procedure used with singular BEM, though more elaborate, allows the
deduction of the boundary integral equation for the potential derivative considering
sources points located on the boundary. An augmented circular boundary Γ̄ε needs
to be considered in a limit analysis, as shown at Fig. (1). Therefore, the complete
boundary is given by: Γext = Γ−Γε + Γ̄ε .

For convenience, consider initially the second integral of the right hand side of Eq.
(4).

After application of a constant potential u(ξ ) around the field, which does not affect
the flux q(ξ ), and performing a Taylor Series expansion, this integral along Γ̄ε
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Figure 1: Augmented semicircular domain around the source point ξ .

becomes:

lim
ε→0

[ ∫̄
Γε

p∗(ξ ;X)[u(X)−u(ξ )]dΓ

]
=

lim
ε→0

[ ∫̄
Γε

(
− 1

2π

) [ni(X)ni(ξ )]
ε

(
∂u(ξ )
∂x j(ξ )

)
[x j(X)−x j(ξ )]

ε
dΓ

]
=

lim
ε→0

[
−
∫
θε

[ni(X)ni(ξ )]
2π

(
∂u(ξ )
∂x j(ξ )

)
n j(X)dθ

] (7)

It must be pointing out that p*(ξ ;X) and also g*(ξ ;X) lead to simpler expressions
when computed on the additional boundary, as introduced in Eq. (7). The comple-
mentary integral can be rewritten in CPV sense, since at the ξ point the singularity
vanishes, as shown in Eq. (8):

lim
ε→0

 ∫
Γ−Γε

[u(X)−u(ξ )]p∗(ξ ;X)dΓ

=CPV{
∮
Γ

[u(X)−u(ξ )]p∗(ξ ;X)dΓ} (8)

Similar mathematical treatment must be performed on the first term on the right
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hand side of Eq. (3), resulting in the following limit:

lim
ε→0

 ∫
Γ−Γε+Γ̄ε

g∗(ξ ;X)q(X)dΓ


= lim

ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂u(X)

∂x j(X)

)
n j(X)dθ

+CPV
∮
Γ

g∗(ξ ;X)q(X)dΓ

(9)

The first integral on the right hand side of Eq. (9) has the same value at the limit
such as was found by analyzing Eq. (7), and the sum of the two integrals can be
computed as a single integral:

lim
ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂u(X)

∂x j(X)

)
n j(X)dθ


+ lim

ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂u(ξ )
∂x j(ξ )

)
n j(X)dθ


= lim

ε→0

 1
π

∫
θε

[ni(X)ni(ξ )]

(
∂u(ξ )
∂x j(ξ )

)
n j(X)dθ


(10)

This last equation is solved by making an angular integration, but attention must be
paid to the fact that ni(X) is a function of θ . The result of this integral is dependent
on the internal angle around the singular point. Therefore, the complete integral
can be rewritten in the following form:

CPV{
∮
Γ

g∗(ξ ;X)q(X)dΓ−
∮
Γ

[u(X)−u(ξ )]p∗(ξ ;X)dΓ}

−q(ξ )+ s(ξ )q(ξ )+wk(ξ )qk(ξ ) =
d

dn(ξ )

∫
Ω(X)

p(X)u∗(ξ ;X)dΩ

(11)

Considering smooth boundaries, wk(ξ ) is zero, s(ξ ) is equal to 0.5 and Eq. (11)
involves only the flux in the normal direction.

3 Hyper-Singular Dual Reciprocity Formulation

Until now the domain integral related to the source term has remained unchanged. It
is interesting operate this term after the substitution of standard DRFS interpolation
procedure.
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The DRSF interpolates the source function p(X) on the domain using commonly a
set of radial basis functions F j [Buhmann (2003)].Then, the inverse integral equa-
tion related to the Poisson Equation using DRSF for an internal source point ξ is
given by [Partridge, Brebbia and Wrobel (1992)]:

u(ξ )−
∮

Γ(X)

u∗(ξ ;X)q(X)dΓ+
∮

Γ(X)

u(X)q∗(ξ ;X)dΓ =

α
j

−
∮

Γ(X)

η
j(X j;X)u∗(ξ ;X)dΓ+

∮
Γ(X)

Ψ
j(X j;X)q∗(ξ ;X)dΓ+Ψ

j(X j;ξ )


(12)

In the last expression, α j are unknown coefficients and ψ j and η j are set of primi-
tive functions of F j, in such a way that it is possible to rewrite the domain integral
in terms of the boundary integrals following the same steps used with the Laplace’s
Equation. It is interesting to note that this procedure avoids problems concerning
continuity, attending conditions of differentiation with respect to Cartesian coordi-
nates at all points in the domain, at least for most common radial basis functions
used. Moreover, the use of radial functions with high order in the hyper-singular
context can more easily induce numerical integration problems.

The choice of interpolating functions F j is the subject of much research [Zhang
and Zhu (1994); Bridges and Wrobel (1996); Partridge (1997); Partridge (2000)].
The general supremacy of one group over the others is very questionable, since the
performance of these functions is dependent of many factors. Numerical behavior
of certain functions for interpolation or fitting applications can differ as much as
the solution of partial differential equations. The mathematical characteristics of
the numerical method in which these radial functions are used cannot be neglected.
For example, within the BEM context using constant boundary elements, simple
radial, spline-plate and cubic radial functions are efficient for solution of Poisson’s
Equation and Navier’s Equation with body forces in two dimensions, as well as
other different well known radial functions, since results are found to differ little.
However, for problems in three dimensions, the computational experience shows
that cubic radial should not be used and many radial functions become inefficient
[Bueno (2012)]. Anyway, the choice of best radial basis function is not the focus
here.

Deriving Eq. (12) with respect to normal direction n at the point ξ , the following
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equation is obtained:

q(ξ )−
∮

Γ(X)

g∗(ξ ;X)q(X)dΓ+
∮

Γ(X)

p∗(ξ ;X)u(X)dΓ =

α
j

−
∮

Γ(X)

η
j(X j;X)g∗(ξ ;X)dΓ+

∮
Γ(X)

Ψ
j(X j;X)p∗(ξ ;X)dΓ+η

j(X j;ξ )


(13)

The mathematical treatment for the left hand side of the Eq. (14), in order to take
the source point ξ to the boundary, was shown previously. The focus concerns
the right hand side of this equation. The same procedure, evaluating the effect of
an augmented boundary around the source point ξ is now examined for DRHF
integrals. Taking the limit, all the right hand side of Eq. (13) is rewritten as:

α
j

−
∮

Γ(X)

η
j(X j;X)g∗(ξ ;X)dΓ+

∮
Γ(X)

Ψ
j(X j;X)p∗(ξ ;X)dΓ+η

j(X j;ξ )

=

α
j

η
j(X j;ξ )− lim

ε→0

∮
Γ−Γε+Γ̄ε

η
j(X j;X)g∗(ξ ;X)dΓ+ lim

ε→0

∮
Γ−Γε+Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ


(14)

The second term of the right hand side of the previous expression is better analyzed
in two parts, as follows:

lim
ε→0

∮
Γ−Γε+Γ̄ε

η
j(X j;X)g∗(ξ ;X)dΓ

= lim
ε→0

∫
Γ−Γε

η
j(X j;X)g∗(ξ ;X)dΓ+ lim

ε→0

∫
Γ̄ε

η
j(X j;X)g∗(ξ ;X)dΓ

(15)

The integrability of the first term on the right hand side of Eq. (15) is justified by
the kernel of the integral being formed by hyperbolic functions. These functions
accompanied by the scalar product [grad(r).(n)] show distinct signs before and after
the singularity, being self-compensating. Therefore:

lim
ε→0

∫
Γε

η
j(X j;X)g∗(ξ ;X)dΓ = 0→ lim

ε→0

∫
Γ−Γε

η
j(X j;X)g∗(ξ ;X)dΓ

=
∮
Γ

η
j(X j;X)g∗(ξ ;X)dΓ

(16)
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The second integral on the right hand side of Eq. (15) is related to the increased
infinitesimal circular boundary, for which the kernel can be rewritten using simpler
coordinates. Thus, considering the former results, Eq. (15) becomes:

lim
ε→0

∮
Γ−Γε+Γ̄ε

η
j(X j;X)g∗(ξ ;X)dΓ =

∮
Γ

η
j(X j;X)g∗(ξ ;X)dΓ+

+ lim
ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂Ψ j(X j;X)

∂xk(X)

)
nk(X)dθ

 (17)

The third term of right hand side of Eq. (14) also needs to be rewritten in two
parts: one referred to the augmented region and another concerning the remaining
boundary:

lim
ε→0

∮
Γ−Γε+Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ

= lim
ε→0

∫
Γ−Γε

Ψ
j(X j;X)p∗(ξ ;X)dΓ+ lim

ε→0

∫
Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ

(18)

The second term on the right hand side of Eq. (18) can be written in the more
concisely form. Considering that integration is done exclusively on the increased
circular sector and that in this specific region the expression of p*(ξ ;X) is simpler
and expanding Ψ j(X j;X) in a Taylor Series of first order around ξ , it follows that:

lim
ε→0

∫
Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ =

lim
ε→0

∫
Γ̄ε

Ψ
j(X j;ξ )p∗(ξ ;X)dΓ+ lim

ε→0

−∫
θε

[ni(X)ni(ξ )]

2π

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
nk(X)dθ


(19)

The hyper singular integral equation for the Poisson problem should properly ac-
count for the null effect produced by the introduction of a constant potential u(ξ )
such as occurs with Laplace’s formulation, where ∇2u(ξ ) = 0. Therefore, taking
into consideration the similarity of the mathematical behavior of Laplace’s inverse
integral form with integrals generated by the Dual Reciprocity procedure, one can
conclude that:

lim
ε→0

∫
Γ̄ε

Ψ
j(X j;ξ )p∗(ξ ;X)dΓ =− lim

ε→0

∫
Γ−Γε

Ψ
j(X j;ξ )p∗(ξ ;X)dΓ (20)
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Thus, considering the limit equivalence given by the last expression, the singularity
inherent in the first term on the right hand side of Eq. (19), which occurs only when
ξ = X, is eliminated. Thus, Eq. (18) can be rewritten in the form given below:

lim
ε→0

∮
Γ−Γε+Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ =

∮
Γ

Ψ
j(X j;X)p∗(ξ ;X)dΓ+

+ lim
ε→0

−∫
θε

[ni(X)ni(ξ )]

2π

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
nk(X)dθ

 (21)

Eq. (17) and Eq. (21) replace the two integrals on the right hand side of Eq. (14),
namely:

α
j

η
j(X j;ξ )− lim

ε→0

∮
Γ−Γε+Γ̄ε

η
j(X j;X)q̄∗(ξ ;X)dΓ+ lim

ε→0

∮
Γ−Γε+Γ̄ε

Ψ
j(X j;X)p∗(ξ ;X)dΓ


= α

j

η
j(X j;ξ )−

∮
Γ

η
j(X j;X)g∗(ξ ;X)dΓ+

∮
Γ

Ψ
j(X j;X)p∗(ξ ;X)dΓ+

− lim
ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂Ψ j(X j;X)

∂xk(X)

)
nk(X)dθ


− lim

ε→0

∫
θε

[ni(X)ni(ξ )]

2π

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
nk(X)dθ


(22)

The magnitude of the Ψ j gradient at the point ξ in the limit when ε → 0 can
be taken as constant, since only its direction varies along the integration into the
circular sector θ ε . With this, it turns out that:

(
∂Ψ j(X j;X)

∂xk(X)

)
nk(X) =

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
nk(X) (23)
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Thus, the last two terms of Eq. (22) can be added, that is:

α
j

η
j(X j;ξ )− lim

ε→0

∮
Γ−Γε+Γ̄ε

η
j(X j;X)g∗ (ξ ;X)dΓ+ lim

ε→0

∮
Γ−Γε+Γ̄ε

Ψ
j(X j;X)p∗ (ξ ;X)dΓ


= α

j

η
j(X j;ξ )− lim

ε→0

∫
θε

[ni(X)ni(ξ )]

π

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
nk(X)dθ

+
−
∮
Γ

η
j(X j;X)q̄∗ (ξ ;X)dΓ+

∮
Γ

Ψ
j(X j;X)p∗ (ξ ;X)dΓ


(24)

In a final step, the integral along the circular sector should be rewritten in a numer-
ically more operational form. The final result is given by:

lim
ε→0

 1
π

∫
θε

[ni(X)ni(ξ )]

(
∂Ψ j(X j;ξ )

∂xk(ξ )

)
n j(X)dθ

= s(ξ )η j(X j;ξ )+wk(ξ )η
j

k (X
j;ξ )

(25)

Similarly as mentioned for Eq. (11), previous equation is simplified for smooth
boundaries. Through a standard well-known discretization procedure [Brebbia and
Dominguez (1998)], a solvable linear system of equations for Poisson Equation is
obtained:

W{u}−D{q}= [WΨ−Dη ]{α}= [WΨ−Dη ]F−1 {p}=
{

P̄
}

(26)

4 Techniques to Improve the Accuracy of Interpolation

The distribution of p(X) inside the domain is not well approximated if the interpo-
lation basis points are taken exclusively on the boundary, usually located in such a
way as to coincide with the nodal points. A first feature to improve the accuracy
of results is simply the introduction of basis points inside the domain, also named
poles [Loeffler and Mansur (1987)]. Depending on the way that these poles are
implemented, they can also generate internal results for the potential directly.

The introduction of internal basis point with DRHF is important. To execute the
interpolation procedure and carry out the calculation of potential values at inter-
nal points simultaneously, a strategy was implemented which needs to introduce a
singular integral equation instead of the hyper-singular equation, since this latter
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requires the definition of flux in a specific direction. In matrix form, this shown
below:[

W 0
-H I

][
uc

ui

]
−
[

D 0
-G 0

][
qc

0

]
=

[[
W 0
-H I

][
Ψcc Ψic

Ψci Ψii

]
−
[

D 0
-G 0

][
ηcc η ic

0 0

]][
αc

α i

]
(27)

W and D are hyper-singular sub-matrices and H and G are singular ones. Other
sub-matrices are related to interpolation functions η j and ψ jand α j coefficients.
This procedure seems to be reasonable; however, loss of accuracy may appear due
to matrix conditioning, since different orders of integrals are involved, especially
when other scalar field problems are solved, such as diffusive-advective problems.

Moreover, in some cases it is interesting to implement global functions in the BEM,
such as indicated by Goldberg and Chen (1994) and Goldberg, Chen, Bowman and
Power (1998). This procedure is very effective for simulating constant, linear and
other source terms mathematically expressed as low order functions. Partridge and
Wrobel (2007) used this approach in a recent BEM application, modeling thermal
behavior of skin tumors. In many situations, radial basis functions and global func-
tions may be used together. Such a strategy has gained increased acceptance, since
many recent applications of approximation theory use it, especially some meshless
techniques [Hickernell and Hon (1999); Wang and Liu (2002)].

Since this procedure is directly related to the interpolation procedure, it can be
applied easily with both DRSF and DRHF.

5 Numerical Simulations

5.1 First Example: Vertical rod subjected to gravity

Fig. 2 shows the physical and geometric features of the first example. The length
is L, the specific mass is ρ0, the Young Modulus is E and gravity is g. The rod is
taken as uniform and homogeneous.

The governing equation is a one dimensional case of the Poisson Equation, given
by:

d2u
dx2

1
=−ρog

E
(28)

The vertical displacement is given by u(x1). The boundary conditions are taken
such as:

u(x1 = 0) = 0 (29)

du(x1 = L)
dx1

= 0 (30)
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Figure 2: Homogeneous vertical bar subjected to gravity

Numerical results are compared with analytical ones using as a measure the av-
erage percentage errors obtained at both internal poles and boundary nodes for
displacements and stresses.

Physically the problem is one dimensional, but here it is implemented using a two-
dimensional mesh. Thus, the discrete representation of geometry is done taking a
square boundary discretized using regular boundary elements. Meshes with 16, 32
and 64 constant boundary elements were used with 0, 4, 9 and 16 internal points
uniformly distributed inside the domain. 64 internal points were used exclusively
for the more refined mesh.

Values presented are for the cubic radial function. Considering the functions tested,
it was this one that produced the better results.

Tab. 1 presents the behavior of the numerical results for displacements with respect
to analytical displacement values.

Three meshes with different numbers of poles are considered and the results for the
procedure with global interpolation are also included, taking second order global
functions (linear and constant terms are included). For this technique, no results
for variables located internally are computed. Numerical values for both DRSF
and DRHF are presented.

Concerning the results for both formulations, it can be seen that the boundary dis-
placements calculated by the DRSF are better than those obtained by the DRHF.
The same occurs on the interior, where the DRSF solution is also better than DRHF
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Table 1: Average percentage error for displacements for homogeneous rod
Results for vertical displacements on the boundary and at internal node points

Number Number DRSF DRHF
of

boundary
elements

of
internal
poles

boundary
error

%

internal
error

%

global
error

%

boundary
error

%

Internal
error

%

global
error

%
0 3.66 - 3.66 5.05 - 5.05

16 4 3.41 2.70 3.23 4.38 2.95 4.03
elements 9 2.12 1.16 1.71 3.65 1.52 2.74

global int. 3.68 - 3.68 4.83 - 4.83
0 2.08 - 2.08 3.03 - 3.03

32 4 1.34 0.79 1.26 2.51 1.70 2.39
elements 9 0.96 0.33 0.79 2.26 1.26 1.98

16 1.06 0.43 0.81 2.32 1.36 1.99
global int. 1.58 - 1.58 1.73 - 1.73

0 2.33 - 2.33 2.93 - 2.93
64 4 0.75 0.43 0.72 1.53 1.14 1.50

elements 9 0.56 0.20 0.50 1.36 0.87 1.29
16 0.47 0.13 0.39 1.30 0.83 1.18

global int. 0.70 - 0.70 0.75 - 0.75

at internal points. It must be pointed out that displacement values at internal points
are more accurate than the boundary values in both formulations.

There is an improvement is accuracy as the mesh is refined as well as with the inclu-
sion of internal points for both formulations, but this latter factor is effective within
to a certain limit. Poorest boundary meshes with excessive number of internal poles
presented loss of accuracy, probably because the matrices become ill-conditioned.

In this example the global functions performed better with the DRHF than with
DRSF. For DRSF, global function results were less accurate than those obtained
with the introduction of internal poles. As the gravitational field is constant, it
would be represented exactly by the global functions in the case of simple interpo-
lation. However, the Dual Reciprocity procedure requires auxiliary matrices ΨΨΨ and
ηηη which generate additional harmful numerical effects.

Tab. 2 presents the results for stress: tractions on the clamped boundary and axial
normal stresses internally. Now the numerical results on the boundary nodes with
DRHF are better than singular results. However, the numerical accuracy of the
internal stresses with DRSF is still superior to the DRHF results. For the DRHS,
the use of global functions was more effective than introduction of internal poles
for improving the accuracy of numerical results.
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Table 2: Average percentage error for normal stresses for homogeneous rod
Results for normal vertical stresses on the boundary and at internal nodal points

Number Number DRSF DRHF
of

boundary
Elements

of internal
poles

boundary
error

%

internal
error

%

global
error

%

boundary
error

%

internal
error

%

global
error

%
16 4 2.65 1.54 2.29 1.77 4.43 3.65

elements 9 2.53 0.68 1.30 1.65 3.22 2.99
global interp. 3.22 - 3.22 2.37 - 2.37

4 1.63 0.52 1.30 1.35 2.28 1.85
32 9 1.42 0.22 0.80 1.14 1.77 1.58

elements 16 1.47 0.34 0.83 1.19 2.00 1.81
global interp. 2.03 - 2.03 0.80 - 0.80

4 0.98 0.27 0.85 0.96 1.23 1.07
64 9 0.87 0.14 0.61 0.77 0.98 0.89

elements 16 0.84 0.08 0.46 0.73 0.94 0.86
global interp. 1.07 - 1.07 0.75 - 0.75

5.2 Second Example: Vertical rod with variable density submitted to gravity

To analyze the behavior of the proposed formulations when there is a gradient of
the body force, a similar problem to the previous one was simulated, but now the
density of the rod is considered to vary quadratically with the vertical coordinate.
In this case, the differential equation is given by:

d2u
dx2

1
=− g

EL2 ρ0(L2− x2
1) (31)

The same boundary conditions as in the first example were used. Also the meshes
are the same as used in the previous simulations. Cubic radial basis functions are
taken to interpolate the domain term. Quadratic global functions are also used in
tests for comparison.

Tab.3 presents the mean percentage errors in displacements for both boundary and
internal nodes for all meshes tested, considering the two formulations discussed.

In this example, numerical results for the displacements by the DRHF also were
worse than the results of the DRSF. On the other hand, the global functions now
presented the best numerical performance, although not able to approximate exactly
the parabolic body force proposed.

Regarding the numerical results for boundary tractions and internal stresses, given
in Tab. 4, different from the behavior shown in the previous example, the DRHS
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did not produce better results than the DRSF, but both formulations had similar
performance.

Table 3: Average percentage error for displacements for the non-homogeneous rod
Results for vertical displacements on the boundary and internal nodal points

Number Number DRSF DRHF
of

boundary
Elements

of
internal
poles

boundary
error

%

internal
error

%

global
error

%

boundary
error

%

internal
error

%

global
error

%
16 4 4.18 3.45 3.99 6.89 7.13 6.95

elements 9 3.74 2.83 3.35 6.64 6.47 6.57
global int. 2.98 - 2.98 5.86 - 5.86

4 1.68 1.18 1.61 4.49 4.11 4.43
32 9 1.51 0.95 1.36 4.37 3.78 4.21

elements 16 1.51 0.97 1.39 4.36 3.87 4.26
global int. 1.28 - 1.28 4.12 - 4.12

4 1.10 0.81 1.08 2.91 2.67 2.90
64 9 0.81 0.52 0.76 2.67 2.27 2.60

elements 16 0.75 0.42 0.67 2.60 2.23 2.51
global int. 0.56 - 0.56 2.18 - 2.18

Table 4: Average percentage error for normal stresses for the non-homogeneous
rod

Results for normal vertical stresses on the boundary and internal nodal points
Number Number DRSF DRHF

of
boundary
Elements

of
internal
poles

Boundary
error

%

internal
error

%

global
error

%

boundary
error

%

internal
error

%

global
error

%
16 4 4.04 3.33 4.10 3.75 6.35 5.84

elements 9 4.00 2.73 3.33 3.73 5.60 5.45
global int. 3.48 - 3.48 3.64 - 3.64

4 2.52 1.15 2.16 3.21 3.32 3.53
32 9 2.44 0.92 1.69 3.13 2.95 3.21

elements 16 2.46 0.96 1.50 3.17 3.06 3.22
global int. 2.17 - 2.17 2.69 - 2.69

4 1.73 0.59 1.53 2.46 1.89 2.44
64 9 1.63 0.37 1.19 2.20 1.59 2.04

elements 16 1.52 0.35 0.94 2.14 1.61 1.92
global int. 1.52 - 1.52 1.15 - 1.15
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Based on the Weighted Residual Method [Brebbia, Telles and Wrobel (1984)],
there is a preliminary expectation that higher gradients would be better represented
by the HSF, since similarly the kernels of integrals have functions with higher re-
verse order. However, the hyper-singular integral equation is not exactly equivalent
to a sentence of weighted residuals as a singular equation, since there is an addi-
tional regularization term given by Eq. (8). Thus, these results do not confirm any
general conclusions about the adequacy of the hyper-singular approach in Poisson
problems, in which basic variables present higher gradients. However, it must be
pointing out that the features of radial functions also interfere in the results. They
may not be effective to approximate this hyper-singular domain integral particu-
larly.

5.3 Third Example: Prismatic rod of square section submitted to uniform tor-
sion

The third example consists of a prismatic rod of square cross section under uniform
torsion, as shown schematically in Fig. 3:

Figure 3: Uniform torsion in a square rod

Partial differential equation governing of this problem is a Poisson Equation, writ-
ten strategically in terms of a special potential, known as torsion function u(x1,x2),
such that:

∇
2u(x1,x2) =−2Gθ (32)

In Eq. (32), θ represents the angular displacement per unit length and G is the shear
modulus of the constitutive material of the rod. The distribution of shear stresses
over the cross section is given by the spatial derivatives for the torsion function,
that is:

τx1 =
∂u(x1,x2)

∂x2
;τx2 =−

∂u(x1,x2)

∂x1
(33)
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The analytical expression for stresses at each direction is given by:

τxi =
32Gθ

aπ3

∞

∑
m=1,3,...

∞

∑
n=1,3,...

[δi1
sen
(mπx1

a

)
cos
(nπx2

a

)
m
(

m2+n2

a2

) −δi2
cos
(mπx1

a

)
sen
(nπx2

a

)
n
(

m2+n2

a2

) ]

(34)

The values of the shear modulus of the constitutive material of the rod, the angular
displacement per unit length and edges A are also considered unitary in the simu-
lations. The prescribed condition on all boundaries is the torsion potential equal to
zero.

Table 5 presents the results of shear stress at nodal points and internal points. Using
constant boundary elements, the difficulty to simulate accurately numerical values
at nodal points near the corners is more pronounced. Thus the results for average
percentage error are obtained both considering the values at nodal points near the
edges and excluding them.

Table 5: Average percentage error for torsion problem
Shear stresses at boundary points and internal points

Cubic radial basis functions for body force interpolation
Number Number DRSF % error DRHF % error

of
boundary
elements

of
internal
poles

Int.
points

All
nodes

Corners
excluded

Total Int.
points

All
nodes

Corners
excluded

Total

0 - 10.23 9.18 10.23 - 7.11 6.25 7.11
16 4 5.77 9.15 1.78 8.02 4.79 7.17 1.08 6.38

elements 9 0.92 9.81 3.54 6.00 0.38 6.69 0.61 3.99
global
func.

- 4.14 2.23 4.14 - 5.99 1.78 5.99

0 - 6.02 1.09 6.02 - 5.68 0.67 5.68
4 1.59 5.95 1.13 5.07 1.68 5.16 0.11 4.46

32 9 0.32 6.23 1.54 4.62 0.37 5.45 0.52 4.06
elements 16 0.08 6.20 1.45 3.14 0.20 5.41 0.43 2.80

global
func.

- 3.22 0.89 3.22 - 5.08 0.63 5.08

0 - 5.10 1.93 5.10 - 5.68 1.62 5.68
4 0.89 4.51 1.39 4.10 1.08 4.37 0.19 4.00

64 9 0.27 4.87 1.67 4.14 0.38 4.37 0.21 3.74
elements 16 0.30 4.37 1.45 3.02 0.39 4.46 0.29 3.10

global
func.

- 2.31 0.37 2.31 - 4.19 0.35 4.19
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In this case, the implementation of constitutive internal points for the improvement
of the interpolation procedure was again effective with respect to accuracy of re-
sults for both formulations. However, just for the DRSF model the global functions
interpolate more accurately the constant source term than the internal poles, pro-
ducing the better results.

The most important aspect, however, is that most results obtained with the DRHF
have been more accurate than the results obtained with the DRSF. This is even more
accurate when the nodal points near the corners are excluded, since it is well known
that the hyper-singular formulation results are worse than those of the classical
formulation in this region.

In principle, this behavior suggests a better performance of the hyper-singular for-
mulation in the calculation of the normal derivatives. However, computational tests
presented some important features related to HSF that prevent such immediate con-
clusions. It is worth noting that all results are consistent for values of normal deriva-
tives on the boundary, since the potential in this case is prescribed as zero along the
entire boundary.

5.4 Fourth Example: S emicircular plate subject to temperature discontinuity

In this problem there is no domain force: the purpose of this example is to show
that the regularization term given in the Eq. (8) vanishing can be the main factor
to produce best results with the hyper-singular formulation. This effect occurs due
to a particular behavior of the potential, such as null or constant values along the
boundary.

A semicircular plate of radius 4.0 length units subject to a thermal distribution given
in polar coordinates by:

u(r) =
θ

π
(35)

As shown in Fig. 4, there is a discontinuity in the prescribed temperature value at r
= 0 and the circular boundary is considered to be insulated, that is, q=0.

Thus, the solution for potential derivative along the horizontal edge is a hyperbolic
function, singular at x1=0, as shown by Eq. (36):

q(x1,x2 = 0) =− 1
x1

(36)

In this case, thirty two constant boundary elements were used for the discretization.

Results at the nodal points belonging to the curved boundary are similar with both
classic and hyper-singular formulations, presenting larger errors at the corners.
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Figure 4: Semicircular plate subject to discontinuity in the temperature on the
straight boundary

However, the values obtained for the nodal points along the horizontal line are quite
different. The singular formulation produces major errors in the middle, closer to
the singularity, while the hyper-singular introduces negligible errors in this sector,
as illustrated in Fig. 5, where the dashed line refers to the percentage error of the
HSF along the x coordinate, and the full line refers to the same parameter for the
CSF. This good behavior of the numerical response in the region near the singular-
ity could suggest the idea that in problems with high gradients, application of the
HSF would have a better numerical performance. However, it also should be noted
that the term [u(X)-u(ξ )] expressed by Eq. (8) is zero in this case, such as occurred
in the torsion problem.

Figure 5: Normal flux percentage error curve along the horizontal edge
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6 Conclusions

It was demonstrated mathematically that the Dual Reciprocity technique can be
applied in the hyper-singular boundary element formulation. The resulting matrix
arrangement is really analogous with the required arrangement of the DRSF, being
the standard BEM matrices substituted by hyper-singular ones, ensuring the same
ease of computational implementation.

Based on computer simulations presented, the precision of the classic singular for-
mulation is superior for potential results, while the DRHF tends to produce better
results for the potential normal derivative. As a matter of fact, this confirms a cer-
tain expectation in which the HSF usually tends to reach better performance for the
potential normal derivative. However, further studies must still be conducted in or-
der to achieve more general conclusions about this important mathematical aspect,
since a closer examination has shown that some problems in which the HSF had
very good accuracy special conditions of potential were prescribed. Then, these
conditions would favor the convergence of a specific term of the hyper-singular
formulation.

The idea that the HSF may have a better performance when the basic variables
of the problem present high gradients cannot be confirmed from the simulations
presented.

The features of radial interpolation functions, which often do not adapt well to
certain body force shapes, should not be disregarded. Particularly, cubic radial
functions were chosen here due the better performance. Other different radial basis
functions such as simple radial and spline-plate were tested and results were similar.
But in many situations may be different, and the proper choice of suitable radial
basis functions is important. Concerning the use of global functions, the scheme
was reasonably effective, but stood out mainly with the DRHF.

Overall, although the DRHF has not a better performance than the singular for-
mulation, it is feasible to use it in conjunction with the latter to represent static or
dynamic body forces, when two integral equations are necessary to describe the
mathematical problem. Particularly concerning plate problems, dynamic condi-
tions appear on many civil, mechanical and aerospatial applications, requiring an
effective BEM approach to solve domain integrals due to the presence of inertial
terms.
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