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Numerical Analysis on Dual Holes Interactions

C. K. Chen1

Abstract: By extending Bückner’s superposition principle and alternating iter-
ation method, this presentation studies the dual holes interactions. A newly devel-
oped numerical scheme is embedded in the conventional Gauss-Legendre quadra-
ture routine for evaluating the boundary integral holding stress singularities. This
developed scheme can avoid numerical singularity and facilitate the achieved stress
field to be exact as that of analytical solution; however the chosen Gaussian inte-
gration points must enter a large quantity. This presentation uses an infinite plate
with a centered hole strained by remote axial loading as a testing example, and the
numerical results are capable of reaching the analytical solution in the evaluation.
The accurate stress estimation in the stress field of the dual holes interacting can
therefore locate the dual holes in a very close proximity and no divergence will
occur during evaluating the interacting stress concentration between holes.

Keywords: Holes interactions, Alternating iteration, Bückner’s superposition,
Gauss-Legendre quadrature

1 Introduction

The local geometrical discontinuities, such as holes, notches, cracks etc., in the
structures play important roles for engineering design. It is well-known that holes
act as stress raisers, and therefore single hole stress concentration had been widely
studied for various holes shapes in last several decades; please refer to the studies
of Inglish (1913), Savin (1961), Muskhelishivili (1953) and Sokolnikoff (1956).
Accurate prediction of explicit fracture would demand precise estimation on the
growth of these stress raisers and their mutual interactions. Afterwards, interactions
among cracks had been explored extensively. Many novel physical mathematics
methods have thus been proposed to manipulate the elastic problems in multiple-
connected region, namely Horri and Nemat-Nasser (1987) submitted superposition
and pseudo-traction, Nisitani developed body force formulation and Chen (1997)
also used superposition principles and body force doublets to deal with the crack
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interaction problems. Recently, Dong and Atluri (2012a) derived a general Tre-
fftz’s function suitable for multi-connected region in elasticity that also addressed
the hole–hole interactions. Additionally, Dong and Atluri (2012b,c,d, 2013) fur-
ther combined the micro-model of Voronoi cells to evaluate the macro-mechanical-
behavior of heterogeneous material possessing defects, such as voids, inclusions
and cracks. Another novel classical approach, based on the alternating iteration
among multiple connected regions developed by Kantorovich and Krylov (1964),
was also applied among cracks interactions by Han and Atluri (2002), Kuang and
Chen (1997), Wang and Atluri (1996).

In the assessment of hole-crack interaction, Hu, Chandra and Huang (1993) mod-
eled unknown Pseudo-tractions pertained on the holes contours, and the cracks
were modeled as an unknown distribution of dislocations. This presentation ex-
pands alternating iteration to multiple connected holes, and uses the detailed elastic
stresses analysis to assess the stress concentrations among ligament between dual
interacting holes.

2 Generalized Büeckner’s principle

Based on the superposition, Büeckner (1958) derived a very important principle in
linear elastic fracture mechanics (LEFM). Since the theory of elasticity is linear,
the field in the cracked solid is divided into two parts. One is regular field with no
crack which is strained under the same loading conditions as that in the cracked
specimen. The other is corrective field that occurs due to the presence of the crack.
He expressed that stress intensity factor (SIF) of the cracked solid was completely
determined by the corrective field. In the corrective field, crack-faces are loaded
by the applied tractions which are equal in magnitude but opposite in sign, and the
stress vectors are evaluated along the crack faces as that in un-cracked solid. Fig. 1
illustrates that an infinite plate with a slant crack with aligned angle measured from
X-axis is loaded by a remote loadingS∞

yy. Since the tractions (boundary stress vec-
tors) along facets of the crack is considered as a continuation of the internal stress
distribution. Thereafter this study implements the Mohr’s stress transformation and
the boundary stress vectors operation, the boundary stress vector on crack in local
coordinate (x′,y′) is shown in Eq. (1). The details are displayed in Fig. 1.
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Figure 1: Büeckner’s derivated stress vector on the upper crack face
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However, the tractions on the upper or lower crack faces must be the same in mag-
nitude but opposite in sign for these calculated stress vectors. Rice (1972) extended
Büeckner’s superposition to use as a fundamental weight function, which the SIF
is expressed as a sum of work-like products between applied forces and weight
function at their points of application. Kuang and Chen (1997) evaluated plastic
envelope around crack tip with the assistance of Büeckner’s superposition. After
comparing an infinite plate by using conventional crack-tip singular stress solution,
they found out that different result aroused.

Fig. 2(a) indicates that the crack is loaded by a pair of symmetric concentrated load
p, q on the crack face. And the elastic solution of this problem is regarded as fun-
damental solution of crack with concentrated loading, which is shown in Eq. (3).
The other geometric boundary with concentrated force, for instance, free surface,
circular holes or elliptic voids can be also attributed to fundamental solutions. The
stress field for crack with concentrated force and SIF are available in the literature.
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Eq. (3) displays the stress field and Eq. (4) is SIF of the elastic solution of the
problem that is illustrated in Fig. 2(a). The fundamental solution plays a role of
weight function. Therefore, the stress solution and SIF solution for the problem
denoted in Fig 2(b) can be integrated for the traction distribution (p(ξ ), q(ξ )) along
the crack boundary, as observed in Eq. (5) and Eq. (6).
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Figure 2: Schematic drawing of a crack with (a) a concentrated load (b) distributed
traction

σ c
xx = pFx (a,r1,r1,ρ,θ1,θ2,φ ,ξ )+qGx (a,r1,r1,ρ,θ1,θ2,φ ,ξ )
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(5)
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(6)

3 Fundamental solution

3.1 Perforated plate with concentrated load on its circular hole edge

The fundamental solution of a hole problem in an infinite plate subjected to a point
force of components px and pyacts at a point on its circular boundary, say, (Ro,0)
where Rois the radius of the hole as denoted in Fig. 3. Dundurs and Hetenyi (1961),
Hetenyi and Dundurs(1962) evaluated stresses evolution at any position (x,y) on the
plate that is demonstrated in Eq. (7) and (8) where κ=3-ν is for plane strain , and
κ=(1-ν)/(1-2ν) is for plane stress.

σ
Pk
i j =

1
2π (1+κ)

Hi jk (x,y;Ro)Pk i, j,k = x,y (7)
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Figure 3: Circular hole with a concentrated load on its edge
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Like the treaties in crack problem, the solution of point loaded hole, as denoted in
Eq. (7), can be integrated around the circular boundary to represent a situation that
the hole is under distributed pressure.

3.2 Solutions comparison for a perforated plate with remote axial loading

A test problem was intended for the application of the generalized Bückner’s super-
position. Fig. 4 indicates that Büeckner’s superposition is applied on a perforated
plate with remote tractionσ∞. This problem is well-defined in every textbook on
elasticity and this presentation selects this problem as an example of assessing the
numerical integration conformance and limitation. Therefore, the tractions evolved
on circular contour as observed in Fig. 4(c) can be easily implanted as

p(θ) = σ∞ cos2 (θ)
q(θ) = σ∞ sin(θ)cos(θ)

(9)

The whole field stress distribution in Fig. 4(a) can be evaluated by the superposition
of stress field in Fig. 4(b) and Fig. 4(c) respectively. Stress field in Fig. 4(b) can
be simply expected as that in Eq. (3).[

σxx τxy

τxy σyy

]
=

[
0 0
0 σ∞

]
(10)

For the problem of Fig 4(c), Eq. (7, 8) can be evolved and then integrated along
the circular contour. This study is dedicated to numerical integration which Gauss-
Legendre quadrature is implanted in the calculation due to its feasibility in non-
linear assessment. Fig. 5 shows that the radial distance is chosen for r/R0 = 1.1
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Figure 4: Büeckner’s superposition of a perforated plate with remote tractions

and θ = 00→ 3600, Gaussian integration points are selected 500, 1500 and 3000
respectively. The outcome indicates that good conformance compares to the analyt-
ical solution of shear stress and hoop stress, but some deviation is occurred on radial
stress. However higher selected Gaussian points can achieve better agreement of
radial stress estimation, yet the computation time is increased. This presentation
checks on the conventional defined stress concentration location, i.e., at the site
of θ=0o and θ=180o for hoop stress and finds out that even low chosen Gaussian
points can result in good accuracy of 2.5σ∞. When calculation is taken at the site
of its own, then Eq. (8) is unbound. However when calculation is made on the
circular contour, the tractions evolved at the site of its own remain p(θ), q(θ) only.
The whole tractions on this site shall be superposed by its own p(θ), q(θ) and the
induced tractions from loading are at other sites.

4 Dual holes interactions

In the evaluation of dual holes interactions, Schwartz-Neuman alternating iteration
is employed to solve the interactions between holes. Alternating technique reduces
problem originally in multi-connected regions to a sequence of simply connected
domain problems. Successively iterative superposition would be therefore engaged
to achieve a satisfactorily solution common to each domain. The convergence of the
alternating algorithm for Neuman boundary value problem of doubly connected re-
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Figure 5: Radial, shear and hoop stress distribution on r/R0 = 1.1, θ = 00→ 1800,
for varying selected Gaussian points (a) n=500 (b) n=1500 and (c) n=3000

gion had been proven in Sokolnikoff’s (1956) monograph. The alternating method
combined with the analytical solution in simply connected domain, and then elab-
orated numerical computations in a series of successive iterations.

As denoted in the Schwarz’s alternating iteration algorithm, fundamental analytic
solution is required for each simply connected region respectively. For the inter-
acting problem of dual holes, as illustrated in Fig.6(a), Büeckner’s superposition is
employed again, and this multi-connected problem is broken down into two sub-
problems as illustrated in Fig. 6(b, c). Initial traction components (p0

2, q0
2, p0

3 and q0
3)

on the hole edge are displayed in Eq. (11).

p0
2 (θ2) = σ∞ cos2 (θ2) ,q0

2 (θ2) = σ∞ sin(θ2)cos(θ2) for hole2
p0

3 (θ3) = σ∞ cos2 (θ3) ,q0
2 (θ3) = σ∞ sin(θ3)cos(θ3) for hole3

(11)

Fig. 6(c) can be further isolated as denoted in Fig. 7, in which these two sub-
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Figure 6: Büeckner’s superposition for an infinite plate contains two interacting
holes

Figure 7: Isolation of two interacting holes by use of successive alternating iteration
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problems of Fig. 7(b) and (c) are considered as simple-connected region with un-
known tractions on its boundaries respectively. After successive iteration to grad-
ually nullify the boundary tractions on the holes of Fig. 7(a), the interacting two
holes are isolated. The artificial super-imposed traction to nullify the existing trac-
tions on the holes edges shall be collected. After the iterating stops, i.e., the abso-
lute normalized induced tractions on both holes generated by the other hole are less
than 10−6 in the numerical assessment; nullification on both holes contours is thus
achieved. The collected artificial tractions are then adjoined to represent the trac-
tions on the holes edge in the isolations, as depicted in Fig. 7(b) and (c). Therefore,
the stress concentration factors at both near site (θ2 = 0◦, θ3 = 180◦) and far site
(θ3 = 0◦, θ2 = 180◦) are thus determined.

Table 1: Stress concentrations of dual holes interaction with varying pitches

Pitch (t/Ro) Gaussian points Near site Far site Iteration number
9 50 2.9970 3.0043 3
7 50 2.9949 3.0085 3
5 50 2.9922 3.0201 4
3 50 3.0202 3.0660 5
2 50 3.2641 3.1510 7

1.8 50 3.4425 3.1846 9
1.6 50 3.7684 3.2306 10
1.4 50 4.4227 3.2977 14
1.2 50 6.1114 3.4104 26
1.2 100 6.1060 3.4104 27
1.1 50 8.5261 3.5073 92
1.1 100 8.6910 3.5120 54
1.1 500 8.6885 3.5120 54
1.1 1000 8.6885 3.5120 54

Attention must be paid, as Eq. (7) is unbound when calculation is made at the site
of its own. When calculation is completed at sites along the circular contour, the
tractions involved at the site of its own p(θ), q(θ) can be singular, and the tractions
on this very site can be assessed as p(θ), q(θ) only. The whole tractions on this
site are regarded as a whole by its own p(θ), q(θ) and by the induced tractions
strained by other sites along the contour.

The stress concentration for dual holes interaction is shown in Table 1 for different
pitches between holes. Because of the accurate stresses estimation in this numerical
scheme, the dual holes are located in close proximity and highly nonlinear assess-
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Table 2: Stress concentrations of dual holes interaction with close proximity

Pitch (t/Ro) Gaussian points Near site Far site Iteration number
1.08 500 9.7654 3.5414 68
1.08 800 9.7654 3.5414 68
1.06 500 11.3668 3.5768 93
1.04 500 14.0954 3.6216 147
1.02 500 20.3520 3.6854 335
1.02 1000 20.3622 3.6854 319
1.01 500 - - 30,000%

1.01 1000 29.3160 3.7345 820
% no convergence

ment would be manipulated in Gaussian-Legendre quadrature, as shown in Table
2. However the convergence is good enough as shown in Table 1, despite the case
of t/Ro=1.01. A large quantity of Gaussian points must be selected to adjust the
highly non-linear developed stress. The stress concentration factors of the main
hole (originally is 3 for far distant pitch between holes) are disturbed by the other
approaching hole. The outcome is evident that stress concentration is altered when
t/Ro <3, for closer proximity the stronger of the concentration. The near site is al-
ways enhanced much more than far site for t/Ro <3. But for the pitch t/Ro >3, far
site is enhanced slightly and near site is shielded a little bit. In the case of t/Ro >3,
a particular phenomena take place that stress concentration at far site gradually in-
creases to a little bit far from 3; however, near site comes in a opposite way. Under
such situation, only slight disturbance and deviation take place from the distinctive
stress concentration factor of 3.

5 Conclusions

1. Büeckner’s superposition and alternating iteration methods are applicable for
dual holes interaction analysis, even crack is not prevailed in the problem.

2. The whole field stress distribution is accurately estimated for dual holes inter-
action, even in a very close proximity of these dual holes. However, the above
mentioned methods must be employed in the Gaussian-Legendre quadrature
evaluation to confirm the whole field stress assessment to be precise, and
larger Gaussian points must be selected to revise the enormous non-linearity
developed in the stress evaluation.

3. A particular phenomena take place that stress concentration at far site grad-
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ually increases to a little bit far from 3, as the pitch t/Ro >3, but near site
comes in a opposite way.

References:

Buckner, H. F. (1958): The propagation of cracks and the energy of elastic defor-
mation. ASME J. Appl. Mech., vol. 80, pp. 1225–1230.

Dong, L.; Atluri, S. N. (2012a): A simple multi-source-point Trefftz method
for solving direct/inverse SHM problems of plane elasticity in arbitrary multiply-
connected domains. CMES, vol. 85, no.1, pp.1-43

Dong, L.; Atluri, S.N. (2012b): Development of 3D T-Trefftz Voronoi cell finite
elements with/without spherical voids &/or elastic/rigid inclusions for microme-
chanical modeling of heterogeneous materials. CMC: Computers Materials and
Continua, vol. 29, no.1, pp. 169-211.

Dong, L.; Atluri, S.N. (2012c):Development of 3D Trefftz Voronoi cells with el-
lipsoidal voids &/or elastic/rigid inclusions for micromechanical modeling of het-
erogeneous materials. CMC: Computers Materials and Continua, vol.1, pp. 39-81.

Dong, L.; Atluri,S.N (2013): SGBEM Voronoi cells (SVCs), with embedded
arbitrary-shaped inclusions, voids, and/or cracks for micromechanical modeling
of heterogeneous materials. CMC: Computers Materials and Continua, vol. 33,
no.1, pp. 111-154.

Dundurs, J.; Hetenyi, M. (1961): The elastic plane with a circular insert loaded
by a radical force. Journal of Applied Mechanics, vol. 28, pp.103-111.

Han, Z.D.; Atluri, S.N. (2002): SGBEM (for cracked local subdomain) - FEM (for
uncracked global structure) alternating method for analyzing 3D surface cracks and
their fatigue-growth. CMES-Computer Modeling in Engineering & Sciences, vol.
3, no. 6, pp. 699-716.

Hetenyi, M.; Dundurs, J. (1962): The elastic plane with a circular insert loaded
by a tangentially direct force. Journal of Applied Mechanics, vol. 28, pp.277-291.

Horii, H.; Nemat-Nasser, S. (1985): Elastic fields of interacting inhomogeneities.
Int. J. Solids Struct., vol. 21, pp. 731–745.

Hu, K.X.; Chandra, A.; Huang, Y. (1993): Multiple void-crack interaction. Int.
J. Solids Struct., vol. 30, no. 11, pp. 1473–1489 .

Inglish, C. E. (1913): Stress in a plate due to the presence of cracks and sharp
corners. Transactions of the Institute of Naval Architects, pp. 219-230.

Kantorrovich L. V.; Krylov, V. I. (1964): Approximate Methods of Higher Anal-
ysis. Interscience, New York.

Kuang J. H.; Chen C. K. (1997): Crack tip plastic zones estimation using Büeck-



234 Copyright © 2013 Tech Science Press CMES, vol.93, no.3, pp.221-234, 2013

nerip plastic zones. International Journal of Fracture, vol. 88, L39-L44.

Kuang J. H.; Chen C. K. (1998): Equivalence for two interacting parallel cracks.
ASME, Journal of Pressure Vessel Technology, vol. 120, 424-430.

Mushelishvili, N. I. (1953): Some Basic Problems of the Mathematical Theory of
Elasticity. Noordhoff, Groningen-Holland.

Nisitani, H.; Chen, D. H. (1997): Body force method and its application to numer-
ical and theoretical problems in fracture and damage. Computational Mechanics,
vol. 19, pp. 470-480.

Rice, J. R. (1972): Some Remarks on elastic crack-tip stress fields. Int. J. Solids
Structures, vol. 8, pp. 751-758.

Savin, G. N. (1961): Stress Concentrations Around Holes. Pergamon Press, Lon-
don.

Sokolnikoff. I. S. (1956): Mathematical Theory of Elasticity. 2nd ed. MacGraw-
Hill, New York.

Wang, L; Atluri S. N. (1996): Recent advances in the alternating method for elas-
tic and inelastic fracture analyses. Computer Methods in Applied Mechanics and
Engineering, vol. 137, pp1-58.


