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Cauchy Problem for the Laplace Equation in 2D and 3D
Doubly Connected Domains

Ji-Chuan Liu1, Quan-Guo Zhang2

Abstract: In this paper, we propose an algorithm to solve a Cauchy problem of
the Laplace equation in doubly connected domains for 2D and 3D cases in which
the Cauchy data are given on the outer boundary. We want to seek a solution in
the form of the single-layer potential and discrete it by parametrization to yield
an ill-conditioned system of algebraic equations. Then we apply the Tikhonov
regularization method to solve this ill-posed problem and obtain a stable numerical
solution. Based on the regularization parameter chosen suitably by GCV criterion,
the proposed method can get the approximate temperature and heat flux on the inner
boundary. Numerical examples illustrate that the proposed method is reasonable
and feasible.

Keywords: Cauchy problem, Laplace equation, Integral equations, Tikhonov reg-
ularization method, GCV.

1 Introduction

In many industrial applications one wants to determine the temperature and heat
flux on the inner surface of a body in a doubly connected domain where the inner
surface itself is inaccessible for measurements. In this paper, our goal is to recover
the temperature and heat flux on the inner boundary from the Cauchy data given on
the outer boundary in two-dimensional (2D) and three-dimensional (3D) domains.
The Cauchy problem for the Laplace equation arises from many physical and engi-
neering problems such as nondestructive testing techniques [Alessandrini (1993);
Cheng, Prößdorf, and Yamamoto (1998)], geophysics [Lavrentev, Romanov, and
Shishatskii (1986)], semiology [Vani and Avudainayagam (2002)] and cardiol-
ogy [Colli-Franzone, Guerri, Tentoni, Viganotti, Baruffi, Spaggiari, and Taccardi
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(1985)]. This kind of Cauchy problem is severely ill-posed [Belgacem (2007)].
That is the solution (if it exists) does not depend continuously on the Cauchy data.
Any small errors in the given data might induce large errors in the solution. In order
to obtain a stable numerical solution, several numerical methods have been devel-
oped such as the quasi-reversibility method [Klibanov and Santosa (1991)], the
Tikhonov regularization method [Ang, Nghia, and Tam (1998)], moment method
[Cheng, Hon, Wei, and Yamamoto (2001)], Fourier regularization method [Bernts-
son and Eldén (2001)], Trefftz Method [Chan, Fan, and Yeih (2011); Dong and
Atluri (2012)], etc.

Liu [Liu (2008)] considered an inverse Cauchy problem of Laplace equation in
simply and doubly connected plane domains by recovering the unknown boundary
value on an inaccessible part of a non-circular contour from over-specified data.
Háo and Lesnic [Háo and Lesnic (2000)] applied the conjugate gradient method
to solve a Cauchy problem for the Laplace equation in doubly-connected domain.
Berntsson and Eldén [Berntsson and Eldén (2001)] considered a standard approach
that is to discretize the differential equation by finite differences to obtain the
temperature and heat flux on the interior boundary in doubly-connected domain.
Based on boundary integral equation, Chapko and Johansson [Chapko and Johans-
son (2008a); Chapko and Johansson (2009)] proposed some alternating iterative
methods to determine the temperature field on the boundary of the inclusion in a
quadrant or a semi-infinite regions. Chi, Yeih and Liu [Chi, Yeih, and Liu (2009)]
employed the fictitious time integration method to solve the Cauchy problem of
Laplace equation. Chapko and Johansson [Chapko and Johansson (2008b)] used
an alternating iterative method which involves solving direct mixed problems for
the Laplace operator to reconstruct the solution on the cut in a simply connected
domain. Marin [Marin (2009)] proposed the iterative MFS algorithm to solve the
Cauchy problem for the Laplace equation.

There are only very few works for 3D domains, and high-dimensional problems for
the Cauchy problem are far more difficult. In this paper, we propose an algorithm
to reconstruct the temperature and heat flux on the interior boundary in doubly con-
nected domains for 2D and 3D cases. We seek the solution in the form of a single-
layer potential and obtain a system of integral equations in terms of Cauchy data.
Then we parameterize the boundary of the domain, discrete the integral equations
and transform the Cauchy problem into an ill-posed system of algebraic equations.
Based on the Tikhonov regularization method and Generalized Cross-Validation
(GCV), the algebraic equations can be solved stably. Finally, we can recover the
temperature and heat flux on the interior boundary.

The outline of the paper is as follows. In Section 2, we introduce the Cauchy
problem and integral equations. We introduce parameterized integral equations
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and Tikhonov regularization method in Section 3. Several numerical experiments
are presented in Section 4 to illustrate the efficiency of the proposed method. In
Section 5 we give some concluding remarks.

2 Formulation of the Cauchy problem and integral equations

Let Ω be a doubly connected domain in R2 and R3, and ∂Ω is a smooth boundary
which consists of two disjoint closed curves or curved surfaces Γ0 and Γ1. The Γ0
is contained in the interior of Γ1 and ν is the outward unit normal vector of the
boundary ∂Ω = Γ0∪Γ1.

We consider the Cauchy problem for the Laplace equation in the following

4u = 0, in Ω, (1)

u = f , on Γ1, (2)
∂u
∂ν

= g, on Γ1, (3)

where u is the temperature distribution, f ∈ H1/2(Γ1) and g ∈ H−1/2(Γ1) are the
given functions.

Theorem 2.1 Assume that Ω⊂Rn is C2 and n≥ 2 , then the problem (1)-(3) exists
a unique solution in H1(Ω) for ( f ,g) in a dense subset of H1/2(Γ1)×H−1/2(Γ1).

The proof of uniqueness is based on Holmgren’s theorem refer to [John (1982)] and
see for the classical solution [Calderon (1958)]. The proof of existence is technical
and follows that of [Belgacem (2007); Belgacem, Du, and Jelassi (2011); Belgacem
and Fekih (2005)].

In this paper, we want to recover the temperature and heat flux on the interior
boundary Γ0 from the Cauchy data f and g given on the exterior boundary Γ1.
In practical applications, we can get the measurement data f δ ∈ L2(Γ1) and gδ ∈
L2(Γ1) which are approximate functions of f and g, satisfying

|| f δ − f ||L2(Γ1) ≤ δ , ||gδ −g||L2(Γ1) ≤ δ , (4)

where || · ||L2(Γ1) denotes L2 norm on the exterior boundary and the constant δ > 0
represents a noisy level.

We seek the solution of the Cauchy problem (1)-(3) in form of a single-layer po-
tential

u(x) =
∫

∂Ω

Φ(x,y)ϕ(y)ds(y), x ∈Ω, (5)



206 Copyright © 2013 Tech Science Press CMES, vol.93, no.3, pp.203-220, 2013

where Φ is the fundament solution for the Laplace equation as follows

Φ(x,y) =

{
1

2π
ln 1
|x−y| , x 6= y, x,y ∈ R2,

1
4π|x−y| , x 6= y, x,y ∈ R3,

and ϕ ∈ L2(∂Ω) is an unknown density. Eq.(5) is equivalent to the following form

u(x) =
∫

Γ0

Φ(x,y)ϕ0(y)ds(y)+
∫

Γ1

Φ(x,y)ϕ1(y)ds(y), x ∈Ω, (6)

where ϕ0 and ϕ1 are the unknown density on the boundary Γ0 and Γ1, respectively.

In terms of boundary conditions (2)-(3), the harmonic function u solves the Cauchy
problem provided that the density ϕ0 and ϕ1 are the solutions of the following
system of integral equations

∫
Γ0

Φ(x,y)ϕ0(y)ds(y)+
∫

Γ1

Φ(x,y)ϕ1(y)ds(y) = f (x), x ∈ Γ1, (7)

∫
Γ0

∂Φ(x,y)
∂ν(x)

ϕ0(y)ds(y)+
∫

Γ1

∂Φ(x,y)
∂ν(x)

ϕ1(y)ds(y)+
1
2

ϕ1(x) = g(x), x ∈ Γ1. (8)

Refer to [Ivanyshyn and Kress (2006)], we know that integral equations (7) and (8)
are ill-posed due to their weak singular kernel and smooth kernel. Therefore, we
should apply a regularization method to solve the system of integral equations to
determine the density ϕ0 and ϕ1.

According to the density ϕ0 and ϕ1, we can get the temperature and heat flux on
the interior boundary Γ0 from (6), namely

u(x) =
∫

Γ0

Φ(x,y)ϕ0(y)ds(y)+
∫

Γ1

Φ(x,y)ϕ1(y)ds(y), x ∈ Γ0, (9)

∂u
∂ν

(x) =
∫

Γ0

∂Φ(x,y)
∂ν(x)

ϕ0(y)ds(y)+
1
2

ϕ0(x)+
∫

Γ1

∂Φ(x,y)
∂ν(x)

ϕ1(y)ds(y), x ∈ Γ0.

(10)

For simplicity, we use u(Γ0) and u∗(Γ0) to denote the temperature and heat flux on
the interior boundary Γ0, respectively.
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3 Parameterized integral equations and Tikhonov regularization method

For the numerical solution a parametrization is required. There is the similar pa-
rameterization formula of integral equations in R2 and R3, we take R2 as an ex-
ample for statement in the following. Assume that the boundary curves can be
parameterized in the form

Γk = {zk(t) : t ∈ [0,2π)}, k = 0,1, (11)

where zk : R→ R2 are twice continuously differentiable, injective and 2π peri-
odic functions. Furthermore, we assume that the orientations of Γk (k = 0,1)
are counter clockwise. Thus exterior normal vectors to Γk (k = 0,1) are give by
ν(zk(t)) = (−1)k(−z

′
k,2,z

′
k,1) (k = 0,1). For convenience, we restrict to starlike

boundary curves with parametrization

zk(t) = rk(t)(cos t,sin t), k = 0,1, (12)

where rk : R→ (0,∞) are 2π periodic smooth functions.

Inserting (12) into the system of integral equations (7)-(8), then we have

f (t) =
∫ 2π

0
Φ(z1(t),z0(τ))ϕ0(τ)|z

′
0(τ)|dτ

+
∫ 2π

0
Φ(z1(t),z1(τ))ϕ1(τ)|z

′
1(τ)|dτ, (13)

g(t) =
∫ 2π

0

∂Φ(z1(t),z0(τ))

∂ν(z1(t))
ϕ0(τ)|z

′
0(τ)|dτ

+
∫ 2π

0

∂Φ(z1(t),z1(τ))

∂ν(z1(t))
ϕ1(τ)|z

′
1(τ)|dτ +

1
2

ϕ1(t), (14)

where ϕ0(τ) = ϕ0(z0(τ)) and ϕ1(τ) = ϕ1(z1(τ)). For the discretization of the inte-
gral equations, we note that the first term on the right hand side of (13) is smooth
that the trapezoidal rule can be employed for numerical approximation. However,
the second term on the right hand side of (13) has a logarithmic singularity, we deal
with the logarithmic singularity as follows

2πΦ(z1(t),z1(τ)) =− ln |sin
t− τ

2
|+ ln

|sin t−τ

2 |
|z1(t)− z1(τ)|

, (15)

where the second term on the right hand side of (15) is smooth with diagonal values

lim
τ→t

ln
|sin t−τ

2 |
|z1(t)− z1(τ)|

=− ln2|z′1(t)|. (16)
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Therefore, the well-estimated quadrature rules for logarithmic singularities are avail-
able. We can use the Nyström method to approximate integral equations with
weakly singular kernels in [Kress (1999)].

For (14), we know that the second term on the right hand side is smooth with the
diagonal values given through the limit

lim
τ→t

2π
∂Φ(z1(t),z1(τ))

∂ν(z1(t))
=− lim

τ→t

ν(z1(t)) · [z1(t)− z1(τ)]

|z1(t)− z1(τ)|2

=−ν(z1(t)) · z
′′
1(t)

2|z′1(t)|2
. (17)

Thus the trapezoidal rule can be employed to the integral equation (14) for numer-
ical approximation.

The interval [0,2π] is partitioned as 0 = τ0 < τ1 < · · ·< τm = 2π and 0 = t0 < t1 <
· · ·< tn = 2π where τi = ihτ (i = 0,1, · · · ,m), t j = jht ( j = 0,1, · · · ,n) and hτ =

2π

m ,
ht =

2π

n are the step sizes. Denoting the discrete vector of ϕk(τ) (k = 1,2) as

Ψk = [ϕk(τ0),ϕk(τ1), · · · ,ϕk(τm−1)]
T , (18)

and the discrete vectors of f (t) and g(t) as follows

F = [ f δ (t0), f (t1), · · · , f (tn−1)]
T ,G = [g(t0),g(t1), · · · ,g(tn−1)]

T . (19)

Therefore, we can use the well-estimated quadrature rules and the trapezoidal rule
to obtain the system of algebraic equations from the system of integral equations
(13) and (14) as follows

A11Ψ1 +A12Ψ2 = F, A21Ψ1 +A22Ψ2 = G, (20)

where Ak,` (k, ` = 1,2) are n×m matrices. We rewrite the system of algebraic
equations (20) in a matrix equation

AΨ = b, (21)

where

A =

[
A11 A12
A21 A22

]
,Ψ = [Ψ1,Ψ2]

T ,b = [F,G]T .

Similarly, for 3D case, we have

f (θ , t) =
∫

π

0

∫ 2π

0
Φ(z1(θ , t),z0(φ ,τ))ϕ0(φ ,τ)|z

′
0(φ ,τ)|dφdτ

+
∫

π

0

∫ 2π

0
Φ(z1(θ , t),z1(φ ,τ))ϕ1(φ ,τ)|z

′
1(φ ,τ)|dφdτ, (22)
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g(θ , t) =
∫

π

0

∫ 2π

0

∂Φ(z1(θ , t),z0(φ ,τ))

∂ν(z1(θ , t))
ϕ0(φ ,τ)|z

′
0(φ ,τ)|dφdτ

+
∫

π

0

∫ 2π

0

∂Φ(z1(θ , t),z1(φ ,τ))

∂ν(z1(θ , t))
ϕ1(φ ,τ)|z

′
1(φ ,τ)|dφdτ +

1
2

ϕ1(θ , t)

θ ∈ [0,π], t ∈ [0,2π]. (23)

For the discretization of integral equations, we note that the second terms on the
right hand side of (22) and (23) have a singularity in 3D domain. Refer to [Beale
(2004)], we replace the singular kernel in (22) with

k(θ , t,φ ,τ) = Φ(z1(θ , t),z1(φ ,τ))(ϕ1(φ ,τ)−ϕ1(θ , t))

+Φ(z1(θ , t),z1(φ ,τ))ϕ1(θ , t). (24)

For (23), we modify the singular kernel as follows

k(θ , t,φ ,τ) = ν(z1(θ , t)) ·∇Φ(z1(θ , t),z1(φ ,τ))s(|z1(θ , t)− z1(φ ,τ)|/β ),

(25)

where s is a shape factor and β is a smoothing parameter. In terms of [Beale
(2004)], we have

s(r) = er f (r)− (2
√

π)re−r2
,

where erf is the usual error function

er f (r) =
2√
π

∫ r

0
e−t2

dt.

For discretization of integral equations (22) and (23), we can get the same the
system of algebraic equations as (21) for 3D case.

For noisy Cauchy data, the corresponding linear system of equations (21) is

AΨ = bδ , (26)

where bδ is generated by the noisy data f δ and gδ .

The matrix A in Eq.(26), however, is severely ill-conditioned. Most numerical
methods can not directly employ to solve the matrix Eq.(26). In fact, the condition
number of the matrix A increases dramatically with respect to the increase of n and
m. For illustration, we take m = n so that the matrix A is 2n×2n square matrix. We
show the relation between n and the condition number of the matrix A in the first
Example given in the next section in Figure 1.
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Figure 1: Condition numbers with respect to n.

Thus we should employ a regularization method to solve (26) to eliminate the ill-
posedness. The Tikhonov regularization is a popular approach to remedy this diffi-
culty. Instead of solving the linear system (26), we want to seek the solution of the
minimization problem

min
Ψ
{||AΨ−bδ ||2 +λ ||Ψ||2}, (27)

where λ ≥ 0 is a regularization parameter.

The determination of a suitable value of the regularization parameter λ is very
important and is still under intensive research. In our computations, we use the
generalized cross-validation (GCV) [Gene, Heath, and Wahba (1979)] criterion to
choose the regularization parameter λ . The basic idea is to find the parameter λ

that minimizes the GCV functional

G(λ ) =
||AΨδ

λ
−bδ ||2

(trace(In−AAT ))2 , (28)

where AT satisfies Ψδ

λ
= AT bδ .

Denoting the discrete vectors of u(Γ0) and u∗(Γ0) as follows

U = [u(t0),u(t1), · · · ,u(tn−1)]
T , U∗ = [

∂u
∂ν

(t0),
∂u
∂ν

(t1), · · · ,
∂u
∂ν

(tn−1)]
T .

(29)
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By analyzing, we know that we can deal with the weak singular and smooth ker-
nel in (9) and (10) with the same method as (7) and (8), respectively. Using the
well-estimated quadrature rules and the trapezoidal rule to the system of integral
equations (9) and (10), we have

U = B11Ψ1 +B12Ψ2, (30)

U∗ = B21Ψ1 +B22Ψ2, (31)

where Bk,` (k, ` = 1,2) are n×m matrices. Therefore, we can get the computed
temperature and heat flux on the interior boundary Γ0 from (30) and (31) based on
the regularization solution Ψ1 and Ψ2 given by (27). For 3D case, we can compute
the temperature and heat flux on the interior boundary with same expressions as
(30) and (31).

4 Numerical experiments

In this section, we test numerical examples to demonstrate the feasible of the pro-
posed approach. In order to check the effect of numerical computations, we com-
pute the root mean square error in the following

ε(u) =
(

1
n

n−1
∑
j=0

(u(t j)−U(t j))
2
) 1

2

, ε(u∗) =
(

1
n

n−1
∑
j=0

(u∗(t j)−U∗(t j))
2
) 1

2

,

in 2D domain, and

ε(u)=
( 1

n2

n−1

∑
i, j=0

(u(θi, t j)−U(θi, t j))
2
) 1

2
,ε(u∗)=

( 1
n2

n−1

∑
i, j=0

(u∗(θi, t j)−U∗(θi, t j))
2
) 1

2

in 3D domain, where {t j} and {(θi, t j)} are the set of test points on the internal
boundary. The noisy Cauchy data are generated by

f δ = f (1+δ · rand(size( f ))), gδ = g(1+δ · rand(size(g))),

where f and g are the exact data, rand(size( f ))) and rand(size(g))) are a random
number uniformly distributed in [−1,1] and the magnitude δ indicates a relative
noise level.

For the sake of simplicity, the exterior boundary Γ1 is chosen to be the unit circle
z1 = (cos t,sin t) for 2D case and the unit ball z1 = (sinθ cos t,sinθ sin t,cosθ) for
3D case, θ ∈ [0,π], t ∈ [0,2π].

Example 1: Let the exact solution for the problem (1)-(3) be

u(x,y) = ln
√

(x− xp)2 +(y− yp)2 (32)
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where (xp,yp) is a singularity. The interior boundary Γ0 is a Kite-shaped curve with
the parametrization

z0(t) = (0.6cos t +0.3cos2t−0.3,0.6sin t), t ∈ [0,2π]. (33)

The Cauchy data can be calculated as

f (t) = ln
√

(cos t− xp)2 +(sin t− yp)2,

g(t) =
1− xp cos t− yp sin t

(cos t− xp)2 +(sin t− yp)2 .

0 1 2 3 4 5 6 7
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

u(
Γ 0)

computed temperature

exact
δ=0.0
δ=0.005
δ=0.05
δ=0.5

Figure 2: Ex.1. Regularization parameters λ = 6.3151e−9,0.0014,0.0064,0.0384
for the cases of δ = 0,0.005,0.05,0.5,respectively.

In this example the step size for t is 2π/50 and for τ is 2π/50, and the singularity
is (0.2,0.1). Numerical results for various levels δ of relative noises are shown for
the temperature and heat flux on the interior boundary in Figure 2 and Figure 3, re-
spectively. The root mean square errors are ε(u) = 0.0027,0.0067,0.0206,0.0592
and ε(u∗) = 7.3e− 5,0.0663,0.1645,0.3162 for the cases of δ = 0,0.005,0.05,
0.5, respectively. From Figure 2 and Figure 3, we can see that numerical results are
close to the exact one for noise data, and the smaller the relative noise is, the better
the approximate solution is.
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Figure 3: Ex.1. Regularization parameters λ = 6.3151e−9,0.0014,0.0064,0.0384
for the cases of δ = 0,0.005,0.05,0.5,respectively.

Example 2: Let the exact solution for the problem (1)-(3) be

u(x,y) = ln
√

(x− xp)2 +(y− yp)2 (34)

where (xp,yp) is a singularity. The interior boundary Γ0 is an apple-shaped curve
with the parametrization

z0(t) = r0(t)(cos t,sin t), r0(t) =
0.1sin2t +0.4cos t +0.5

1+0.7cos t
, t ∈ [0,2π]. (35)

The Cauchy data can be calculated as

f (t) = ln
√

(cos t− xp)2 +(sin t− yp)2,

g(t) =
1− xp cos t− yp sin t

(cos t− xp)2 +(sin t− yp)2 .

In this example the step size for t is 2π/40 and for τ is 2π/40, and the singularity
is (0.3,0.3) . Numerical results for various levels δ of relative noises are shown for
the temperature and heat flux on the interior boundary in Figure 4 and Figure 5, re-
spectively. The root mean square errors are ε(u) = 0.0066,0.0188,0.0384,0.0541
and ε(u∗) = 0.41531,0.2129,0.3731,0.4813 for the cases of δ = 0,0.005,0.05,
0.1, respectively. From Figure 4 and Figure 5, we can see that numerical results
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Figure 4: Ex.2. Regularization parameters λ = 2.5e− 15,0.0012,0.0044,0.0062
for the cases of δ = 0,0.005,0.05,0.1,respectively.
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Figure 5: Ex.2. Regularization parameters λ = 2.5e− 15,0.0012,0.0044,0.0062
for the cases of δ = 0,0.005,0.05,0.1,respectively.
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match the exact one very well. Numerical results show that the proposed method is
stable and effective.

Example 3: In this example, we consider a Cauchy problem in a doubly connected
domain for 3D case. Let the exact solution for the problem (1)-(3) be

u(x,y,z) = exp(x)∗ (sin(y)+ sin(z)). (36)

The interior boundary Γ0 is an ellipsoid with the parametrization

z0(θ , t) = (0.1sinθ cos t,0.2sinθ sin t,0.3cosθ), θ ∈ [0,π], t ∈ [0,2π]. (37)

The Cauchy data can be calculated as

f (θ , t) = exp(sinθ cos t)∗ (sin(sinθ sin t)+ sin(cosθ)),

g(θ , t) = exp(sinθ cos t)∗ (sinθ cos t ∗ (sin(sinθ sin t)+ sin(cosθ))

+sinθ sin t ∗ cos(sinθ sin t)+ cosθ ∗ cos(cosθ)).
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Figure 6: Ex.3. Computed temperature and exact solution, and regularization pa-
rameter λ = 0.01 for δ = 0.05

In this example the step size for θ is π/40 and for t is 2π/40, the smoothing
parameter β = 0.002. The computed temperature on the interior boundary is shown
in Figure 6 and the numerical error of temperature is given in Figure 7 for δ = 0.05
of relative noise. The computed heat flux is shown in Figure 8 and the numerical
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Figure 7: Ex.3. Numerical error for computed temperature and exact solution
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Figure 8: Ex.3. Computed heat flux and exact solution, and regularization parame-
ter λ = 0.01 for δ = 0.05

error of heat flux is given in Figure 9 for δ = 0.05 of relative noise. The root mean
square errors are ε(u) = 0.0163 and ε(u∗) = 0.0403 for the case of δ = 0.05. From
Figure 6 and Figure 8, it can be seen that numerical results match the exact one
very well for 3D case.
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Figure 9: Ex.3. Numerical error for computed heat flux and exact solution

5 Conclusions

In this paper, we consider the Cauchy problem in 2D and 3D doubly connected
bounded domains. The problem is ill-posed in the sense that any small errors in
the Cauchy data will cause a dramatic change in the solution. Our goal is to trans-
form the system of integral equations into the system of discrete equations with
parametrization. Then we employ the Tikhonov regularization method to obtain
the regularized solution and regularization parameter is chosen by GCV. From nu-
merical examples, we know that the computed temperature and heat flux match the
exact ones very well in doubly connected domains for 2D and 3D cases. Numerical
results show that the proposed method is reasonable, feasible and stable.
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