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Solutions of a Crack Interacting with Tri-Material
Composite in Plane Elasticity

C.K. Chao1, A. Wikarta2

Abstract: In this paper a crack interacting with tri-material composite under
a remote uniform tensile load is solved in plane elasticity. An edge dislocation
distribution along the prospective site of the crack together with the principle of
superposition is used to model a crack. The resulting singular integral equation
with logarithmic singular kernels for a line crack is then established. The singular
integral equation is solved numerically by modeling a crack in place of several
segments. Linear interpolation formulae with undetermined coefficients are applied
to approximate the dislocation distribution along the elements, except at vicinity
of crack tip where the dislocation distribution preserves a square-root singularity.
Once the undetermined dislocation coefficients are solved, the mode-I and mode-II
stress intensity factors can be obtained. Some numerical results are performed to
show the effects of material property combinations and geometric parameters on
the normalized mode-I and mode-II stress intensity factors.

Keywords: tri-material composite, arbitrarily oriented crack, logarithmic singu-
lar integral equation, stress intensity factors.

1 Introduction

A number of studies for solving crack problems have been investigated using
Muskhelishvili complex potential in conjunction with singular integral equation
approach. They include [Chao and Kao (1997); Chao and Young (1998)] for anti-
plane problems, [Chen and Cheung (1990); Chen (1992); Chen and Chen (1997)]
for in-plane problems, and [Chao and Shen (1995); Chao and Lee (1996)] for
thermo-elasticity problems. In this approach, the fundamental solution of a point
dislocation is required as a Green’s function. By placing continuous distributions
of dislocations along the prospective site of crack, the system of logarithmic sin-
gular integral equations is then formulated. All the above mentioned studies are
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restricted to the problem containing cracks in a half-plane or two bonded half-plane
media for which the solution of point dislocation can be expressed in closed form.
The problem becomes more complicated when dealing with two or more interface
boundaries, since the solution of point dislocation must be forced to satisfy both
the boundary and interface continuity conditions. To overcome this difficulty, the
technique of analytical continuation that is alternately applied across two different
interfaces in order to derive the point dislocation solution in a series form [Choi and
Earmme (2002); Chao and Chen (2004)] has been treated to solve such problem.
Recently, a series form solution of dislocation has been used to simulate a crack in-
teracting with multilayer media for anti-plane elasticity problems [Chao, Wikarta,
and Korsunsky (2010); Chao and Wikarta (2012)]. This method obviously provides
a reliable result making the series solution rapidly convergent. Another merit is that
the solutions remain valid regardless of the shape and number of medium such as
elliptically layered media and eccentrically coated circular inclusion.

In this present study, the interaction between a crack and a tri-material under re-
mote uniform tensile load for in-plane elasticity is considered. Since our solution
is expressed in terms of any homogeneous solution, the present methodology can
be also applied to the problem subjected to a body force. The study can be achieved
by determination of the stress intensity factors that allow the characterization of in-
teraction from the point of view of linear elastic fracture mechanics. The solution
procedures of this study are as follows. An edge dislocation distribution along the
prospective site of the crack together with the principle of superposition is used to
model a crack. The resulting singular integral equation with logarithmic singular
kernels for a line crack is then established. The singular integral equation is solved
numerically by modeling a crack in place of several segments. Linear interpolation
formulae with undetermined coefficients are applied to approximate the dislocation
distribution along the elements, except at vicinity of crack tip where the dislocation
distribution preserves a square-root singularity. Once the undetermined disloca-
tion coefficients are solved, the mode-I and mode-II stress intensity factors can be
obtained.

The layout of the present paper is as follows. The problem statement and series
form solutions for the complex potentials function are given in Section 2. The
integral equations with logarithmic singular kernels for a line crack are established
in Section 3. Some numerical examples are solved in Section 4. Finally, Section 5
concludes the article.

2 Problem formulation and solution of edge dislocation

Consider a tri-material occupying regions S1: y ≤ 0, S2: 0 ≤ y ≤ t; S3: y ≥ t,
respectively, which are perfectly bonded along two parallel interfaces L : y = 0 and
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L∗: y = tas shown on Fig. 1. Let the tri-material contain a crack with length 2a
located in region S1 or region S2 with distance h from interface L and subjected
to a remote uniform tensile σ x. Note that the loading condition shown in Fig. 1
is designed to satisfy continuity of strain across the interface such that perfectly
bonded conditions between two regions are ensured.

Figure 1: A tri-material composite with (a) crack located in region S1 and (b) crack
located in region S2 subjected to uniform tensile load.

According to Muskhelishvili complex potential for in-plane elasticity, the compo-
nent of displacement and resultant forces can be described by two complex func-
tions ϕ(z) and ω(z), each of which is analytic in its argument z = x + i y for a
two-dimensional problem, such as

2G(u+ iv) = κφ(z)−ω(z)+(z− z)φ ′(z) (1)
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−Y + iX = φ(z)+ω(z)+(z− z)φ ′(z) (2)

where i2 = −1. In Eqs. (1) and (2), G is the shear modulus, κ = 3-4υ for plane
strain, and κ = (3-υ)/(1+υ) for plane stress, with υ being the Poisson’s ratio.
(‘) is designated as the derivative with respect to the associated argument, and a
superimposed bar represents the complex conjugate.

In the problem associated with tri-material problems, the complex potential func-
tions are found to depend on non-dimensional parameters as follows:

Πk j =
Gk−G j

Gkκ j +G j
(3)

Λk j =
Gkκ j−G jκk

Gk +G jκk
(4)

where (j, k = 1, 2, 3)

The solution of an edge dislocation in a tri-material as shown in Fig. 2 is expressed
in terms of the corresponding homogeneous problem subjected to the same load-
ing. Based on analytical continuation theorem that is alternately applied across two
different interfaces in complex plane, the series form solution has been provided by
[Choi and Earmme (2002)].

Figure 2: A tri-material composite with (a) edge dislocation located in region S1
and (b) edge dislocation located in region S2.
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2.1 Edge dislocation in region S1

The complete complex potential solution for an edge dislocation in region S1 of the
tri-material as shown in Fig. 2(a) is

φ (z) =



(1+Λ32)
∞

∑

n=1
φn (z) z ∈ S3

∞

∑

n=1
φn (z)+Λ

−1
12

∞

∑

n=1
ωn+1 (z) z ∈ S2

φ0 (z)+Π21ω0 (z)+
(
1+Λ

−1
12

) ∞

∑

n=1
ωn+1 (z) z ∈ S1

(5)

ω (z) =



(1+Π32)
∞

∑

n=1
ωn (z)+2it (Λ32−Π32)

∞

∑

n=1
φ ′n (z) z ∈ S3

∞

∑

n=1
ωn (z)+Π

−1
12

∞

∑

n=1
φn+1 (z) z ∈ S2

ω0 (z)+Λ21φ0 (z)+
(
1+Π

−1
12

) ∞

∑

n=1
φn+1 (z) z ∈ S1

(6)

where the recurrence formulae for ϕn(z) and ωn(z)respectively are

φn (z) =


(1+Λ21)φ0 (z) n = 1

Π12

 Λ32φn−1 (z+2it)
−2itΠ32ω ′n−1(z+2it)
−4t2Π32φn−1”(z+2it)

 n = 2,3,4,...
(7)

ωn (z) =


(1+Π21)ω0 (z) n = 1

Π32Λ12

[
ωn−1 (z+2it)
−2itφ ′n−1(z+2it)

]
n = 2,3,4,...

(8)

In which the homogeneous solution for an edge dislocation in region S1 is{
φ0 (z) = Q log(z− zt)

ω0(z) =
Q(z−zt)

z−zt
+Q log(z− zt)

(9)

Q =
G1 (bx + iby)

iπ (κ1 +1)
(10)

where bx + iby is an edge dislocation and zt indicate the location of the edge dis-
location in region S1. Note that the corresponding homogeneous solution can be
obtained if one lets Πk j = Λk j =0 in Eqs. (5) and (6).
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2.2 Edge rislocation in region S2

The complete complex potential solution for an edge dislocation in region S2 of the
tri-material as shown in Fig. 2(b) is

φ (z) =



(1+Λ32)
∞

∑

n=1
φn (z) z ∈ S3

φ0 (z)+Π12ω0(z)+
∞

∑

n=1
φn+1 (z)+Λ

−1
12

∞

∑

n=1
ωn+1 (z) z ∈ S2

(1+Λ12)φ0 (z)+
(
1+Λ

−1
12

) ∞

∑

n=1
ωn+1 (z) z ∈ S1

(11)

ω (z) =



(1+Π32)
∞

∑

n=1
ωn (z)+2it (Λ32−Π32)

∞

∑

n=1
φ ′n (z) z ∈ S3

ω0 (z)+Λ12φ0(z) +
∞

∑

n=1
ωn+1 (z)+Π

−1
12

∞

∑

n=1
φn+1 (z) z ∈ S2

(1+Π12)ω0 (z)+
(
1+Π

−1
12

) ∞

∑

n=1
φn+1 (z) z ∈ S1

(12)

where the recurrence formulae for ϕn(z) and ωn(z) respectively are

φn (z) =


φ0 (z)+Π12ω0(z) n = 1

Π12

 Λ32φn−1 (z+2it)
−2itΠ32ω ′n−1(z+2it)
−4t2Π32φn−1”(z+2it)

 n = 2,3,4,...
(13)

ωn (z) =


ω0 (z)+Λ12φ0(z) n = 1

Π32Λ12

[
ωn−1 (z+2it)
−2itφ ′n−1(z+2it)

]
n = 2,3,4,...

(14)

in which the homogeneous solution for an edge dislocation in region S2 is{
φ0 (z) = Q log(z− zt)

ω0(z) =
Q(z−zt)

z−zt
+Q log(z− zt)

(15)

Q =
G2 (bx + iby)

iπ (κ2 +1)
(16)

where bx + iby is an edge dislocation and zt indicate the location of the edge dis-
location in region S2. Note that the corresponding homogeneous solution can be
obtained if one lets Πk j = Λk j =0 in Eqs. (11) and (12).
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3 Crack modeling

In order to solve the crack problem, we consider a single traction-free crack 2a to
be situated in the infinite plane under a remote uniform tensile load. It is assumed
that the distributed edge dislocation with the density b(s) = bx(s)+iby(s) is placed
along the prospective crack segment in an infinite plane. The appropriate complex
potentials for a crack in homogeneous medium will take the following form:

φ0 (z) =
∫
2a

Q(s) log(z− zt)ds

ω0(z) =
∫
2a

Q(s)(z−zt)
z−zt

ds+
∫
2a

Q(s) log(z− zt)ds
(17)

where

Q(s) =
G j (bx(s)+ iby(s))

iπ (κ j +1)
j = 1,2 (18)

Meanwhile, the solution for a homogeneous infinite plate subjected to a remote
uniform tensile σ x. acting with an angle β to the x-axis can be trivially given as{

φ0 (z) = σx
4 z

ω0(z) = σx
4 z− σxe−2iβ

2 z
(19)

Due to the traction-free condition along the crack surface, the total resultant force
across the crack surface must be balanced by the given resultant force across the
crack segment in the unflawed media. This results in{

φ(z)+ω(z)+(z− z)φ ′(z)
}

crack
=−Y (z0)+ iX(z0) (20)

3.1 Crack modeling in region S1

Let a crack be located in region S1 of plane layered tri-material media. The corre-
sponding complex potentials are given by substituting Eq. (17) into Eqs. (5) and
(6) for z ∈ S1, respectively such as

φ1 (z) =
∫
2a

Q(s) log(z− zt)ds+Π21
∫
2a

Q(s)(z−zt)
z−zt

ds

+Π21
∫
2a

Q(s) log(z− zt)ds+
∫
2a

(
1+Λ

−1
12

) ∞

∑

n=1
ωn+1 (z)ds

(21)

and

ω1 (z) =
∫
2a

Q(s)(z−zt)
z−zt

ds+
∫
2a

Q(s) log(z− zt)ds

+Λ21
∫
2a

Q(s) log(z− zt)ds+
∫
2a

(
1+Π

−1
12

) ∞

∑

n=1
φn+1 (z)ds

(22)
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The resultant force across the crack surface for the region S1 can be written by
substituting two complex solutions ϕ1(z) and ω1(z) from Eqs. (21) and (22) into
Eq. (20). Applications of principle of superposition lead to the integral equation
with logarithmic singular Kernels as∫
2a

L1(z0,z0,zt ,zt)Q(s)ds+
∫
2a

L2(z0,z0,zt ,zt)Q(s)ds+C1 + iC2 =−Y (z0)+ iX(z0) (23)

where

L1(z0,z0,zt ,zt) = H1(z0,z0,zt ,zt)+B1(z0,z0,zt ,zt)+T1(z0,z0,zt ,zt) (24)

L2(z0,z0,zt ,zt) = H2(z0,z0,zt ,zt)+B2(z0,z0,zt ,zt)+T2(z0,z0,zt ,zt) (25)

in which H1 and H2 are homogeneous solutions expressed as

H1(z0,z0,zt ,zt) = 2log |z− zt | (26)

H2(z0,z0,zt ,zt) =
(z− zt)

z− zt
(27)

while B1 and B2 are complimentary solutions of bi-material problems expressed as

B1(z0,z0,zt ,zt) = Π21 log(z− zt)+Λ21 log(z− zt)+Π21
(z− z)(zt − zt)

(z− zt)
2 (28)

B2(z0,z0,zt ,zt) = Π21
(z− zt)

(z− zt)
+Π21

(z− z)
(z− zt)

(29)

T1(z0,z0,zt ,zt) and T2(z0,z0,zt ,zt) are the series functions with the coefficients Q(s)
and Q(s)for crack located in regionS1.

Meanwhile, the resultant force corresponding to the unflawed media can be ob-
tained by substituting the homogeneous solution from Eq. (19) into Eq. (1) as

−Y (z0)+ iX(z0) =
σx

2
z− σx

2
z (30)

In addition, the single-valued condition of the dislocation density must be satisfied,
i.e.∫
2a

[bx(s)+ iby(s)]ds = 0 (31)
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Clearly, the dislocation density function can be found by separating Eq. (23) into
real and imaginary parts, respectively as∫

2a
Re [L1(z0,z0,zt ,zt)+L2(z0,z0,zt ,zt)]bx(s)ds

+
∫
2a

Im [−L1(z0,z0,zt ,zt)+L2(z0,z0,zt ,zt)]by(s)ds+C1 =−Y (z0)
(32)

and∫
2a

Im [L1(z0,z0,zt ,zt)+L2(z0,z0,zt ,zt)]bx(s)ds

+
∫
2a

Re [L1(z0,z0,zt ,zt)−L2(z0,z0,zt ,zt)]by(s)ds+C2 = X(z0)
(33)

Eqs. (32) and (33) together with the subsidiary condition Eq. (31) will be solved
numerically by the boundary element technique where a crack was divided by N
line segments as indicated in Fig. 3. In the calculation, the linear interpolation
formulae with undetermined coefficients are applied to approximate the dislocation
distribution along the elements, except at vicinity of crack tip where the dislocation
distribution preserves a square-root singularity. The interpolation formulae in local
coordinate’s s j (1 ≤ j ≤ N) are defined as

bi(s1) = bi,1

(√
2d1

d1 + s1
−1

)
+bi,2 for the left tip (34)

bi(sN) = bi,N+1

(√
2dN

dN− sN
−1

)
+bi,N for the right tip (35)

bi(s j) = bi, j
d j− s j

2d j
+bi, j+1

d j + s j

2d j
for intermediate segments (36)

where (i = 1, 2), d j (1 ≤ j ≤ N) are the half length of each line segment, and
bi, j (1 ≤ j ≤ N+1) are the unknown coefficients. Note that the singular integral
equations derived in this paper contain the logarithmic functions which are multi-
valued functions in complex variable domain. Suitable branch cuts are designed
to have the principal value of θp such as 0 ≤ θp < 2π where the cut is introduced
along the ray extending from the crack tip (or branch point) to infinity. In these cut
structures, it is verified that the discontinuity of displacements across the brunch
cut can be avoided.

After using the interpolation formulae, the logarithmic integration presented in Eq.
(23) can be evaluated exactly for some conditions. Otherwise, the following Gauss-
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Figure 3: Division and nodal distribution of a crack.

Chebyshev integration rule is needed.

d∫
−d

G(s)ds =
πd
M

M

∑
m=1

G(sm)sin
(

2m−1
2M

π

)
with sm = d cos

(2m−1
2M π

)
(37)

m = 1, 2, . . . ., M

The system of 2N + 2 simultaneous algebraic equations have been solved for the
undetermined dislocation coefficients bi, j , then the mode-I and mode-II stress in-
tensity factors can be obtained as

KA = K1A− iK2A =−e−iα (2π)
3
2 lim

s→0

√
sµ(s) =−(2π)

3
2 (2d)1/2 e−iα (b1,1 + ib2,1)

(38)

KB = K1B− iK2B = e−iα (2π)
3
2 lim

s→l

√
(l− s)µ(s)

= (2π)
3
2 (2d)1/2 e−iα (b1,N+1 + ib2,N+1)

(39)

3.2 Crack modeling in region S2

Let a crack be located in region S2 of plane layered tri-material media. The corre-
sponding complex potentials are given by substituting Eq. (17) into Eqs. (11) and
(12) for z ∈ S2, respectively as

φ1 (z) =
∫
2a

Q(s) log(z− zt)ds+Π12
∫
2a

Q(s)(z−zt)
z−zt

ds

+Π12
∫
2a

Q(s) log(z− zt)ds+
∫
2a

(
∞

∑

n=1
φn+1 (z)+Λ

−1
12

∞

∑

n=1
ωn+1 (z)

)
ds

(40)
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and

ω1 (z) =
∫
2a

Q(s)(z−zt)
z−zt

ds+
∫
2a

Q(s) log(z− zt)ds

+Λ12
∫
2a

Q(s) log(z− zt)ds+
∫
2a

(
∞

∑

n=1
ωn+1 (z)+Π

−1
12

∞

∑

n=1
φn+1 (z)

)
ds

(41)

The resultant force across the crack surface for the region S2 can be written by
substituting two complex solutions ϕ2(z) and ω2(z) from Eqs. (40) and (41) into
Eq. (20). Applications of principle of superposition lead to the integral equation
with logarithmic singular Kernels such as∫
2a

L1(z0,z0,zt ,zt)Q(s)ds+
∫
2a

L2(z0,z0,zt ,zt)Q(s)ds+C1 + iC2 =−Y (z0)+ iX(z0)

(42)

where

L1(z0,z0,zt ,zt) = H1(z0,z0,zt ,zt)+B1(z0,z0,zt ,zt)+S1(z0,z0,zt ,zt) (43)

L2(z0,z0,zt ,zt) = H2(z0,z0,zt ,zt)+B2(z0,z0,zt ,zt)+S2(z0,z0,zt ,zt) (44)

in which H1 and H2 are homogeneous solutions expressed as

H1(z0,z0,zt ,zt) = 2log |z− zt | (45)

H2(z0,z0,zt ,zt) =
(z− zt)

z− zt
(46)

while B1 and B2 are complimentary solutions expressed as

B1(z0,z0,zt ,zt) = Π12 log(z− zt)+Λ12 log(z− zt)+Π12
(z− z)(zt − zt)

(z− zt)
2 (47)

B2(z0,z0,zt ,zt) = Π12
(z− zt)

(z− zt)
+Π12

(z− z)
(z− zt)

(48)

and T1(z0,z0,zt ,zt) and T2(z0,z0,zt ,zt) are the series functions with the coefficients
Q(s) and Q(s)for crack located in region S2.

Using the similar procedures as section 3.1, the stress intensity factors can also be
obtained from Eqs. (38) and (39).
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4 Numerical results

Bi-material problem with a crack is considered first to examine the accuracy of the
present approach (see Fig. 4). The normalized stress intensity factors obtained by
the present method are given in Tables 1 and 2, together with those valued obtained
in [Cook (1972); Tada (1973)]. It can be seen from both tables that the present
approach provides reliable results compare with published values. Fig. 5 indicates
more clearly that the calculated values of the normalized stress intensity factors
yield a good accuracy if the number of line segments N = 60.

Figure 4: A crack perpendicular to the bi-material

Table 1: Comparison between the calculated and published values of KI at tip-B in
Fig. 4 for elastic half-plane

G2/G1=0
h/a Cook

(1972)
N=30 N=60 a/h Tada

(1973)
N=30 N=60

1.01 3.72 3.920002 3.856978
1.05 2.159 2.237421 2.195138 0.3 1.033 1.040684 1.035802
1.1 1.759 1.802039 1.78092 0.4 1.052 1.066778 1.061675
1.15 1.575 1.607071 1.592698 0.5 1.094 1.106251 1.100771
1.2 1.464 1.490582 1.479207 0.6 1.148 1.165406 1.159289
1.25 1.388 1.411402 1.401669 0.7 1.243 1.256783 1.249529
1.5 1.204 1.221511 1.214724 0.8 1.385 1.411382 1.401646
2 1.091 1.106309 1.100834 0.9 1.688 1.747617 1.728598
5 1.011 1.024491 1.019738
10 1.003 1.01574 1.011043
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Figure 5: Comparison between the calculated and published values of normalized
mode-I stress intensity factors at tip-B versus dimensionless location of a crack
perpendicular to the bi-material.

Note that all these stress intensity factors presented here are obtained by summa-
tion of series solution up to the first six terms, since they are checked to achieve a
good approximation for most combination materials. Table 3 shows that the con-
tributions of the stress intensity factors for leading terms of the series when G2/G1
= 0.5, G3/G1 = 2, a/t = 0.1. It is likely to see that the leading six terms make
over 99% contribution, making the series solution rapidly convergent. This demon-
strates the accuracy and the efficiency of the proposed method.

Figs. 6 and 7 show the variation of normalized mode-I stress intensity factor at tip-
B versus dimensionless location of a crack h/a in region S1 with different G2/G1.
In this example, G3/G1 = 1, υ1 = υ2 = υ3 = 0.3, and a/t = 0.1 are used. It is
seen from Fig. 4 that the softer materials may always give enhancement effect on
stress intensity factors when a crack approaching interface L. On the other hand,
from Fig. 7 shows that the softer materials may always give retardation effect on
stress intensity factors when a crack approaching interfaces L. It is indicated that the
nearest material property from crack tip has more dominant effects on the variation
of stress intensity factor of a crack in straight multi layer plane. The calculated
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Table 2: Comparison between the calculated and published values of KI at tip-B in
Fig. 4 for bi-material

h/a
G2/G1=0.043 G2/G1=23.08

Cook
(1972)

N=30 N=60 Cook
(1972)

N=30 N=60

1.1 1.6451 1.68641 1.667741 0.6486 0.637307 0.640086
1.15 1.4942 1.525352 1.512304 0.7046 0.699704 0.700413
1.25 1.3369 1.360383 1.351276 0.7764 0.777834 0.776529
2 1.0808 1.095836 1.090448 0.9344 0.945198 0.941136
5 1.01 1.023262 1.018517 0.9912 1.004103 0.999476
10 1.0023 1.015454 1.010759 0.9979 1.010942 1.006271

Table 3: Contribution of the leading terms n = 2-6 for KIat tip-B in Fig. 1(a)
Terms Contribution(%)

2 83.46
3 13.49
4 2.41
5 0.45
6 0.09

results with h/a = 2, G2/G1 = 0.3, G3/G1 = 1, a/t = 0.1, ν1 = ν2 = ν3 = 0.3
shown in Fig. 6 are also compared to those using FEM with error less than 1%
which demonstrates the accuracy and efficiency used in this approach.

Figs. 8-9 show the variation of normalized mode-I and mod-II stress intensity
factors at tip-B versus an inclined angle of a crack with different G3/G1. In this
example, υ1 = υ2 = υ3 = 0.3, h/a = 1.3, and a/t = 0.1 are used. It is clearly seen
that mode-I and mode-II stress intensity factors at tip-B may always have similar
values and trends for fixed value of G2/G1, even though the material properties
G3/G1 is vary. It can be concluded that the material property in region S2 has
more dominant effects than material property in region S3to the mode-I and mode-
II stress intensity factors of a crack located in region S1.

The results of the variation of normalized mode-I stress intensity factor in crack tip
versus dimensionless location of a crack h/a in region S2 with different G3/G2 are
displayed in Figs 10-13. In this example, υ1 = υ2 = υ3 = 0.3, and a/t = 0.1 are
used. It is obviously seen from Fig. 10 with G1/G2 = 0.7 that the softer material
may always give enhancement effect on the stress intensity factors at tip-A when
a crack approaching interface L. Meanwhile from Fig. 11 with G1/G2 = 2 shown
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Figure 6: Normalized mode-I stress intensity factors versus dimensionless location
of crack located in region S1 with different softer material G2/G1 for G3/G1 = 1,
υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.

Figure 7: Normalized mode-I stress intensity factors versus dimensionless location
of crack located in region S1 with different stiffer material G2/G1 for G3/G1 = 1,
υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.
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Figure 8: Normalized mode-I stress intensity factors versus inclined angle of crack
located in region S1 with different material G3/G1 for G2/G1 = 0.7or G2/G1 = 2,
υ1 = υ2 = υ3 = 0.3, h/a = 1.3, and a/t = 0.1.

Figure 9: Normalized mode-II stress intensity factors versus inclined angle of crack
located in region S1 with different material G3/G1 for G2/G1 = 0.7 or G2/G1 = 2,
υ1 = υ2 = υ3 = 0.3, h/a = 1.3, and a/t = 0.1.
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Figure 10: Normalized mode-I stress intensity factors at tip-A versus dimensionless
location of crack located in region S2 with different material G3/G2 for G1/G2 =
0.7, υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.

Figure 11: Normalized mode-I stress intensity factors at tip-A versus dimensionless
location of crack located in region S2 with different material G3/G2 for G1/G2 = 2,
υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.
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Figure 12: Normalized mode-I stress intensity factors at tip-B versus dimensionless
location of crack located in region S2 with different material G3/G2 for G1/G2 =
0.7, υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.

Figure 13: Normalized mode-I stress intensity factors at tip-B versus dimensionless
location of crack located in region S2 with different material G3/G2 for G1/G2 = 2,
υ1 = υ2 = υ3 = 0.3, and a/t = 0.1.
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that the stiffer material may always give retardation effect on the stress intensity
factors at tip-A when a crack approaching interface L. On the other hand, both in
Figs. 8 and 9 shows that when a crack approaching interface L∗, the stress intensity
factors at tip-A may always increase for material S2 is stiffer than material S1 and
may always decrease for material S2 is softer than material S3.

Moreover, from Figs. 12-13 shown that the material combinations of G1/G2 may
give less effects on the stress intensity factors at tip-B for a crack located near
interface L. Nevertheless, the material combinations of G3/G2may always give
more effects on stress intensity factor at tip-B as well as on stress intensity factor
at tip-A when a crack approaching interface L∗.

5 Conclusions

A solution of a crack interacting with a tri-material composite under a remote uni-
form tensile load is presented in this paper. The solution is based on Muskhel-
ishvili complex potential in conjunction with logarithmic singular integral equation
approach. Some numerical calculations are performed to investigate the effect of
material properties combinations on mode-I and mode-II stress intensity factors.
We conclude that the stress intensity factors may always decrease when a crack
approaching the stiffer material. On the other hand, the stress intensity factors may
always increase when a crack approaching the softer material.
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