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Dynamic Stress Intensity Factors of Collinear Cracks
under a Uniform Tensile Stress Wave1

K.-C. Wu2, S.-M. Huang2, S.-H. Chen3

Abstract: An analysis is presented for an array of collinear cracks subject to a
uniform tensile stress wave in an isotropic material. An integral equation for the
problem is established by modeling the cracks as distributions of dislocations. The
integral equation is solved numerically in the Laplace transform domain first and
the solution is then inverted to the time domain to calculate the dynamic stress in-
tensity factors. Numerical examples of one, two, or three collinear cracks are given.
The results of one or two cracks are checked to agree closely with the existing re-
sults.
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1 Introduction

There has been a long standing interest in the problem of plane elastic waves in-
teracting with cracks in areas such as ultrasonic testing and dynamic fracture. The
diffraction of a plane dilatational wave by a finite crack in an infinite elastic medium
has been analyzed by Thau and Lu (1971) with Wiener-Hopf technique and exact
but short-term stress intensity factors were obtained. It was found that the peak
stress intensity factor was 30% higher than the analogous static factor. Sih and
Embley (1972) considered a finite crack with normal and shear tractions applied to
its surfaces using integral transforms. Itou (1980) use the same integral transform
method to calculate dynamic stress intensity factors of two collinear cracks. The
collinear crack configuration was also considered using boundary integral equation
methods (Zhang and Achenbach, 1989; Wen, Aliabadi and Rooke, 1996). Chen
and Wu (1981) developed a hybrid displacement finite element model to treat bi-
material cracked structures under dynamic loadings. Various methods of modeling
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crack under static and dynamic loadings have been discussed in (Atluri, 1986). A
simplified meshless method for dynamic crack growth was presented by Zhang and
Chen (2008). The Symmetric Galerkin Boundary Element Method (SGBEM), and
the SGBEMFEM alternating/coupling methods, were compared with the recently
popularized Extended Finite Element Method (XFEM), for analyzing fracture and
fatigue crack propagation in complex structural geometries by Dong and Atluri
(2013a and 2013b).

One of the powerful methods for solving crack problems with static loading is
the dislocation method. In this method the tractions arising along the lines of the
cracks in the uncracked body are determined first. The cracks are then inserted
and the unsatisfied tractions cancelled by inserting continuously varying density of
dislocations, along the lines of the cracks. This formulation leads to an integral
equation which may be discretized using Gaussian-Chebyshev quadrature to the
desired degree of refinement (Erdogan, Gupta and Cook, 1973). The dislocation
method, however, has rarely been applied to the problems concerning dynamic
loading.

Cochard and Madariaga (1994) have derived an integral equation for dynamic anti-
plane shear loading. The integral equation represents the traction on the crack line
as the crack is considered as a distribution of dynamic dislocations. The integral
equation contains a space-time convolution integral, which is Cauchy singular in
space as in the static case. In addition, there is another term which is associated
with radiation damping by wave emission. Recently Wu and Chen (2011) have
applied the integral equation of Cochard and Madariaga (1994) to treat the problem
of multiple collinear cracks subjected to normal incidence of horizontally shear
wave.

In this paper the dislocation method is further extended for an array of collinear
cracks under tensile stress wave. A formulation for two-dimensional elastodynam-
ics will be introduced and used to derive the fundamental solution of a dynamic
climb dislocation. The fundamental solution, in turn, will be used to construct
a space-time integral equation for the problem of interest. The equation will be
solved first in the Laplace transform domain using Gaussian-Chebyshev quadra-
ture and then inverted to calculate the stress intensity factors in the time domain.
Numerical examples for one, two, or three cracks of identical length will be given.

2 Formulation

For two-dimensional transient plane deformations in which the Cartesian compo-
nents of the stress σi j and the displacement ui (i, j = 1,2) are independent of x3, the
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equation of motion is

t1,1 + t2,2 = ρ
∂ 2u
∂ t2 , (1)

where t1 = (σ11,σ21)
T , t2 = (σ12,σ22)

T , u is the displacement, ρ is the mass den-
sity, t is time, and a subscript comma denotes partial differentiation with respect to
coordinates. The stress-strain law for isotropic materials is

σi j = λδi juk,k +µ (ui, j +u j,i) , (2)

where λ and µ are Lame constants.

For many problems such as the one considered here, the displacement depends
only on yi = xi/t, i = 1,2 . In this case, the displacement may be expressed as (Wu,
2000)

u(y1,y2) = 2Re

[
2

∑
k=1

∫ wk

∞

fk (w)ak (w)dw

]
, (3)

where Re stands for the real part,

wk = y1 + pk (wk)y2, (4)

a1 (w) = (1, p1 (w))
T ,a2 = (−p2 (w) ,1)

T , (5)

pk (w) =

√(
w
ck

)2

−1, (6)

c1 =
√
(λ +2µ)/ρ and c2 =

√
µ/ρ are, respectively, the dilatational and shear

wave speeds.

3 Integral Equation Based on Fundamental Solution for a dislocation

Consider a climb dislocation with Burgers vector β = (0,β2)
T , which suddenly ap-

pears at t = 0. The slip plane is taken to coincide with x1 < 0 and x2 = 0. The
continuity conditions for the traction t2 and the jump conditions for the displace-
ment u across the slip plane are given by

t+2 (x1, t)− t−2 (x1, t) = 0, (7)

u+ (x1, t),1−u− (x1, t),1 =−δ (x1)H (t)β , (8)

where the superscripts ”+”and ”-” denote the limiting values as x2→ 0+ and x2→
0−, respectively, δ the Dirac delta function and Hthe unit step function.
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For t > 0 substitution of Eq.3 into Eq.7 and Eq.8 leads to

2Re
[

2
∑

k=1

(
f+k (y1)− f−k (y1)

)
bk (y1)

]
= 0,

2Re
[

2
∑

k=1

(
f+k (y1)− f−k (y1)

)
ak (y1)

]
=−δ (y1)β ,

(9)

where b1 and b2 are given by

b1 (w) = µ
(
2p1 (w) , p2

2 (w)−1
)T

,b2 = µ
(
1− p2

2 (w) ,2p2 (w)
)T

. (10)

It may be shown that for y2 = 0,

aT
1 b2 +bT

1 a2 = aT
1 b̄2 +bT

1 ā2 = 0,
aT

1 b̄1 +bT
1 ā1 = aT

2 b̄2 +bT
2 ā2 = 0.

(11)

Eq.9 with Eq.11 yields

f+k (y1)− f−k (y1) =−
δ (y1)

γk (y1)
bT

k β (12)

where γk = 2aT
k bk = 2µ

(
1+ p2

2
)

pk. The solution of fk (wk) is readily obtained as

fk (wk) =
1

2πiwkγk
bT

k (wk)β , (13)

where the following identity is utilized:

lim
ε→0

1
y1± iε

=
1
y1
∓πiδ (y1) . (14)

Substituting Eq.13 into Eq.3, the corresponding u for x2 > 0 is given by

u(y1,y2) =
1
π

Im

[
2

∑
k=1

∫ wk

∞

1
wγk (w)

akbT
k dw

]
β , (15)

where Im stands for the imaginary part. For x1 < −
√

c2
kt2− x2

2 and 0 < x2 < ckt,
Eq.15 yields

u(y1,y2) =
1
2

H (c1− y2)β . (16)

The derivation for Eq.16 is shown in Appendix A. From Eq.2 and Eq.15, the stress
vector t2 is given by

t2 (x1,x2, t) =−
ρc1

2
δ

(
t− x2

c1

)
H (−x1)β +

1
π

Im

[
2

∑
k=1

1
wkγk (wk)

∂wk

∂x1
bkbT

k

]
β .
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(17)

where the first term on the right side corresponds to the normal plane wave moving
away from the slip plane and the second term is due to the bulk wave emitted from
the dislocation. As x2→ 0+, Eq.17 yields

σ22 (x1, t) =−
ρc1

2
δ (t)H (−x1)β2 +

1
2πx1

V2 (y1)β2, (18)

where

V2 (y1)/µ =

4
√

1−
(
y1
/

c2
)2(

y1
/

c2
)2

H (c2− y1)

−

(
2−
(
y1
/

c2
)2
)2

(
y1
/

c2
)2
√

1−
(
y1
/

c1
)2

H (c1− y1) .

(19)

For a continuous distribution of dislocation density α2 (ξ1,τ), where −∞ < ξ1 < ∞

and 0 < τ < t, the Burgers vector for the dislocation at x1 = ξ1 appearing at time τ

is given by

dβ2 =
∂α2 (ξ1,τ)

∂τ
dτdξ1. (20)

From Eq.18 the corresponding σ22 (x1, t) is

σ22 (x1, t) =−
ρc1

2

∫
∞

x1

∂α2 (ξ1, t)
∂ t

dξ1

+
1

2π

∫
∞

−∞

1
x1−ξ1

∫ t

0
V2

(
x1−ξ1

t− τ

)
∂α2 (ξ1,τ)

∂τ
dτdξ1.

(21)

Eq.21 may be used for cracks under dynamic loadings by setting the crack opening
displacement ∆u2 as

∆u2 (x1, t) =
∫

∞

x1

α2 (ξ1, t)dξ1. (22)

with the stresses

σ22 (x1, t) =−p(x1, t) (23)

applied to the crack faces, where p(x1, t) are the stresses due to applied loading in
the absence of the cracks.
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4 Numerical Implementation

Consider M collinear cracks located at |x1−bi| ≤ ai, i = 1, · · · ,M and x2=0 in an
infinite body For |x1−bi| ≤ ai, Eq.21 with Eq.23 gives

p(bi +aix, t) =
ρc1ai

2

∫ 1

x

∂α2 (bi +aiξ , t)
∂ t

dξ

+
1

2π

N

∑
j=1

∫ 1

−1

a j

b j +a jξ −bi−aix

∫ t

0
V2

(
b j +a jξ −bi−aix

t− τ

)
∂α2 (b j +a jξ ,τ)

∂τ
dτdξ ,

(24)

where |x| ≤ 1, |ξ | ≤ 1 and the following crack closure conditions from (22) have
been enforced:∫ 1

−1
α2 (bi +aiξ , t)dξ = 0, i = 1,2, · · · ,M. (25)

Taking the Laplace integral transform in time on Eq.24 yields

p̂(bi +aix,s) =
ρc1ais

2

∫ 1

x
α̂2 (bi +aiξ ,s)dξ

+
µ

2π

M

∑
j=1

∫ 1

−1

UI
(
s
∣∣b j +a jξ −bi−aix

∣∣/c1
)

b j +a jξ −bi−aix1
α̂2 (b j +a jξ ,s)a jdξ ,

(26)

where

UI (z) = 4
(
K2 (mz)−K2 (z)/m2)+4

(
1−1/m2)zK1 (z)−m2z

∫
∞

z
K0 (η)dη , (27)

(σ̂22, α̂2) =
∫

∞

0 (σ22,α2)e−stdt,m = c1/c2 =
√

2(1− v)/(1−2v), v is Poisson’s
ratio. In Eq.27 Kn is the modified Bessel function of order n. The derivation for
Eq.27 is given in Appendix B.

It can be shown that as x1→ ξ1, or z→ 0, UI (z)→ 2
(
1−1/m2

)
so that Eq.26 is a

singular integral equation of Cauchy type. To incorporate the square-root singular-
ity of α2 at ξ1 = b j±a j, let

α̂2 (b j +a jξ ,s) =
ĝ j (ξ ,s)

a j
√

1−ξ 2
, (28)

where ĝ j is finite at ξ = ±1. Substitution of Eq.28 into Eq.26 leads to (Erdogan,
Gupta and Cook, 1973)

p̂(bi +aix,s) =
ρc1s

2

∫ 1

x

ĝi (ξ ,s)√
1−ξ 2

dξ

+
µ

2π

M

∑
j=1

∫ 1

−1

UI
(
s
∣∣b j +a jξ −bi−aix

∣∣/c1
)

b j +a jξ −bi−aix
ĝ j (ξ ,s)√

1−ξ 2
dξ .

(29)
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Eq.29 can be expressed in terms of Gauss-Chebyshev quadrature of order N as

p̂(`)i =
ρc1s
Nc

N

∑
k=1

[(
N−1

∑
m=1

cos
(
mϕ(k)

)
sin
(
mθ (`)

)
m

)]
ĝ(k)i

+
µ

2NC

M

∑
j=1

N

∑
k=1

UI
(
s
∣∣bi +aix(`)−b j−a jξ

(k)
∣∣/c1

)
b j +a jξ

(k)−bi−aix(`)
ĝ(k)j , i = 1, · · · ,M

(30)

where

p̂(`)i = p̂
(

bi +aix(`),s
)
, ĝ(k)i = ĝi

(
ξ
(k),s

)
, (31)

ξ
(k) = cos

(
ϕ
(k)
)
, ϕ

(k) =
(
k−1

/
2
)

π
/

N, k = 1,2, · · · ,N , (32)

x(`) = cos
(

θ
(`)
)
, θ

(`) = `π
/

N, `= 1,2, · · · ,N−1, (33)

Similarly Eq.25 can be expressed as

N

∑
k=1

ĝ(k)i = 0, i = 1, · · · ,M, (34)

The derivation for Eq.30 and Eq.34 is shown in Appendix C. The unknownsĝ(k)i ,i =
1, · · · ,M, k = 1,2, · · · ,N, may be solved from Eq.30 and Eq.34.

The stress intensity factors of the crack tips x1 = bi± ai in the Laplace transform
domain can be obtained by

K̂I (bi +ai,s) =
µ

1− v
1

2N

√
π

ai

N

∑
k=1

(−1)k+1 cot
ϕ(k)

2
ĝ(k)i , (35)

K̂I (bi−ai,s) =
µ

1− v
(−1)N

2N

√
π

ai

N

∑
k=1

(−1)k+1 tan
ϕ(k)

2
ĝ(k)i , (36)

The derivation for Eqs.35 and 36 can be found in Appendix C. The inversion of
Eq.35 to the time domain is carried out using the method proposed by Durbin
(1974) as

KI (bi±ai, t) =
es0t

T
Re
{

K̂I (bi±ai,s0)
}

+
2es0t

T
Re

{
NS

∑
k=1

K̂I (bi±ai,sk)eik2πt/T
}
,

(37)

where sk = s0 + ik2π
/

T, k = 0,1,2, · · · ,NS, s0 and T are adjustable parameters.



140 Copyright © 2013 Tech Science Press CMES, vol.93, no.2, pp.133-148, 2013

5 Numerical Examples

In this section the proposed numerical method is applied to calculate the transient
stress intensity factors for one, two, or three collinear cracks of length 2a under the
normal incidence of a uniform tensile stress wave, p(x1, t) = p0H (t). The results
are displayed in terms of the dimensionless stress intensity factor K′I = KI

/
p0
√

πa
and the dimensionless time t ′ = c1t

/
a.

5.1 One Crack

Consider a crack as shown in Fig.1. The Poisson’s ratio νis taken as 0.25. The
corresponding ratios of the shear and Rayleigh wave speeds to the dilatational wave
speed are, respectively, c2/c1 = 0.58 and cR/c1 = 0.53. The plot of K′I as a function
of t ′ is shown in Fig. 2. The analytic result given by Thau and Lu (1971) for t ′ < 4
is also plotted in Fig. 2. Close agreement of our result with that of Thau and Lu
(1971) can be observed. The peak value of K′I is 1.32, which occurs at the first kink
at t ′ = 3.77 when the first Rayleigh wave from one the crack tip reaches the tip.
The second kink appears at t ′ = 7.54 as the Rayleigh wave from the tip is reflected
by the other tip back to the tip [Wen, Aliabadi and Rooke, 1996].

5.2 Two Collinear Cracks

Consider the two collinear cracks shown in Fig. 3. The Poisson’s ratio ν is taken
as 0.29. The corresponding ratios of the shear and Rayleigh wave speeds to the
dilatational wave speed are, respectively, c2/c1 = 0.54 and cR/c1 = 0.50. The plots
of K′I as a function of t ′ for the inner tip B and outer tip A are given in Fig. 4. The
numerical results reported by Itou (1980) are also plotted in Fig. 4. It is seen that
our results agree closely with those of Itou (1980). The peak values of the stress
intensity factors are 1.34 and 1.31 for tips B and A, respectively, which occur as
the Rayleigh wave traveling from one tip reaches the other.

5.3 Three Collinear Cracks

Consider three collinear cracks shown in Fig. 5. The Poisson’s ratio ν is taken as
0.29. The plots of K′I as a function of t ′ for the inner tip A, B and C are shown in
Fig. 6. The peak values of the stress intensity factor are 1.30, 1.34, and 1.37 for
tip A, B and C, respectively. The peak values of the stress intensity factors for tip
A and B occur at t ′ = 3.97 when the Rayleigh waves from crack tip B and A arrive
at tip A and B, respectively. The peak value of the stress intensity factors for tip C
occurs at t ′ = 10.0 when the Rayleigh wave starting from the tip at x1 = 4a arrives
at tip C.
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Figure 1: Configuration of a crack

Figure 2: Stress intensity factor as a function of time for one crack
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Figure 3: Configuration of two cracks

Figure 4: Stress intensity factors as a function of time for two cracks
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Figure 5: Configuration of three cracks

Figure 6: Stress intensity factors as a function of time for three cracks
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6 Conclusions

Mode I stress intensity factors of an array of collinear cracks in isotropic solids
subjected to normal incidence of uniform tensile stress waves have been studied
using a dislocation method. The numerical examples for one, two or three cracks
show that the present method is effective and accurate. The method can be extended
to treat oblique incidence of stress waves, which result in mode II as well as Mode
I stress intensity factors. The work is in progress and will be reported in a separate
communication.
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Appendix A Derivation for Eq.16

From Eq.4 and Eq.6, the explicit expression for wkcan be obtained as

wk =
y1 + y2

√
(y/ck)

2−1

1− (y2/ck)
2 (A1)

where y =
√

y2
1 + y2

2. From Eq. A1, the wk-values for x1 < −
√

c2
kt2− x2

2 and 0 <

x2 < ckt are real and negative. Since the integrand of Eq.A1 is real if w is real,
the integration contour can be extended to wk →−∞ without changing the value
of the integral. By Cauchy’s integral theorem the contour can be further replaced
by a semi-circle with infinite radius in the upper w-plane, i.e., w = Reiθ , R→ ∞,
0 < θ < π . The resulting expression is

u(η1,η2) =
1
π

lim
R→∞

2

∑
k=1

∫
π

0

1
γk (Reiθ )

ak

(
Reiθ

)
bT

k

(
Reiθ

)
dθ β (A2)

As R→ ∞

a1 =
w
c1
(0,1)T , a2 =− w

c2
(1,0)T

b1 = ρw2 (0,1)T , b2 =−ρw2 (1,0)T (A3)
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Eq.16 is obtained by substituting Eq.A3 into Eq.A2.

Appendix B Derivation for Eq.27

The function UI is given by

UI = sV̂2/µ (B1)

where V̂2 is the Laplace transform of V2 (y1) defined by Eq.19 as

V̂2 =
∫

∞

0
V2

(
x1−ξ1

t

)
e−stdt = µ (I1− I2) (B2)

where

I1 = 4
∫

∞

t2

t
t2

√(
t
t2

)2

−1 e−stdt (B3)

I2 =
∫

∞

t1

t2
t

(
2
(

t
t2

)2
−1
)2

√(
t
t1

)2
−1

e−stdt (B4)

and ti = |x1−ξ1|/ci, i = 1,2. The integrals I1 and I2 can be analytically integrated
as

I1 = 4
K2 (mst1)

s
(B5)

I2 =
1
s

[
4K2 (st1)/m2−4

(
1−1/m2)st1K1 (st1)+m2st1

∫
∞

st1
K0 (η)dη

]
(B6)

where Kn is the modified Bessel function of order n. Eq. 27 is obtained by first
substituting Eq. B4 and Eq. B5 into Eq. B2 and the resulting expression is then
substituted into Eq. B1.

Appendix C Derivation for Eq. 30, Eq. 35, and Eq. 36

The second term on the right side of (29) may be expressed in terms of [Erdogan,
Gupta and Cook, 1974] as∫ 1

−1

UI
(
s
∣∣x1− (b j +a jξ )

∣∣/c1
)

b j +a jξ − x1

ĝ j (ξ ,s)√
1−ξ 2

dξ

=
π

N

N

∑
k=1

UI
(
s
∣∣x1−

(
b j +a jξ

(k)
)∣∣/c1

)
b j +a jξ

(k)− x1
ĝ j

(
ξ
(k),s

) (C1)
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where ξ (k) is given by Eq. 32. Eq. C1 is valid for arbitrary x1 with
∣∣x1−b j

∣∣ > a j

and x1 = b j +a jx(`) for
∣∣x1−b j

∣∣< a j, where x(`) is given by Eq. 33.

To treat the first term on the right side of Eq.29 for
∣∣ξ1−b j

∣∣≤ a j, expand ĝi (ξ ,s)
as

ĝi (ξ ,s) =
N−1

∑
m=0

dmTm (ξ ) (C2)

where dm are constants and Tm is the m-th order Chebyshev polynomial of the first
kind given by Tm (ξ ) = cos

(
mcos−1 ξ

)
. From the orthogonality relations of the

Chebyshev polynomials, the constants dm can be expressed as

dm =
2
N

Nc

∑
k=1

ĝi

(
ξ
(k),s

)
cosmϕ

(k) (C3)

Substitution of Eq. C3 into Eq. C2 yields

ĝi (ξ ,s) =
1
N

N

∑
k=1

(
1+2

(
N−1

∑
m=1

cosmϕ
(k)Tm (ξ )

))
ĝi

(
ξ
(k),s

)
(C4)

and∫ 1

x

ĝi (ξ ,s)√
1−ξ 2

dξ =
1
N

N

∑
k=1

[
θ +2

(
N−1

∑
m=1

cosmϕ(k) sin(mθ)

m

)]
ĝi

(
ξ
(k),s

)
(C5)

where θ = cos−1 x. From Eq. C5 and the crack closure conditions of Eq.25 lead to

N

∑
k=1

ĝi

(
ξ
(k),s

)
= 0 (C6)

and Eq. C5 is simplified as

∫ 1

x

ĝi (ξ ,s)√
1−ξ 2

dξ =
2
N

N

∑
k=1

(
N−1

∑
m=1

cosmϕ(k) sin(mθ)

m

)
ĝi

(
ξ
(k),s

)
(C7)

Eq. 30 is obtained by substituting Eq. C1 and Eq. C7 into Eq. 29 with x1 =
bi +aix(`).

The stress intensity factors of the crack tips x1 = bi±ai can be calculated from the
dislocation density as

K̂I (bi±ai,s) =±
µ

1− v

√
πr
2

lim
r→0

α̂2 (r,s) (C8)
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where r is the distance from the crack tip. From Eq. 28, Eq. C8 can also be
expressed as

K̂I (bi±ai,s) =±
1
2

µ

1− v

√
π

ai
ĝi (±1,s) (C9)

From Eq. C4, Eq. C9 becomes

K̂I (bi±ai,s) =±
µ

1− v
1

NC

√
π

ai

NC

∑
k=1

(
NC−1

∑
m=1

(±1)m cosmϕ
(k)

)
ĝi

(
ξ
(k),s

)
(C10)

where Eq. C6 is used. Eq. 35 and Eq. 36 are obtained from Eq. C10 with the
following identities:

NC−1

∑
m=1

cosmϕ
(k) =

1
2

[
(−1)k+1 cot

ϕ(k)

2
−1

]

NC−1

∑
m=1

(−1)m cosmϕ
(k) =−1

2

[
(−1)Nc (−1)k+1 tan

ϕ(k)

2
+1

]
and Eq.C6.


