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The Sinh Transformation for Curved Elements Using the
General Distance Function

J.H. Lv1, Y. Miao1,2, W.H. Gong1 and H.P. Zhu1

Abstract: Accurate numerical evaluation of the nearly singular boundary inte-
grals is a major concerned issue in the implementation of boundary element method
(BEM). In this paper, a general distance function independent on the nearly singular
point is proposed. Combined with an iteration process, the position of the nearly
singular point can be obtained more easily. Then, an extended form of the sinh
transformation using the general distance function, which automatically takes into
account the intrinsic coordinate of the nearly singular point and the minimum dis-
tance from source point to the element in the intrinsic parameter plane, is developed
to deal with the nearly singular integrals. The iterated sinh transformation can also
be achieved in a straightforward fashion. Results obtained by the one and two it-
erations of sinh transformation for various orders of singularities demonstrate the
high efficiency and accuracy of presented method. Comparisons with other variable
transformation methods are also carried out to show the superiority of the presented
method.

Keywords: Boundary element method, Nearly singular integrals, Sinh transfor-
mation, Distance transformation.

1 Introduction

The implementation of the boundary element method (BEM) involves many nu-
merical evaluations of line or surface integrals. For all the integrals, they can be
categorized into three types depending on the position of the source point: non-
singular integrals, singular integrals and nearly singular integrals. For non-singular
integrals (the source point is away from the evaluation element), a straightfor-
ward application of Gaussian quadrature is sufficient to obtain accurate numeri-
cal values. For singular integrals (the source point is on the evaluation element),
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several transformation methods [Tanaka, Sladek, and Sladek (1994); Sladek and
Sladek (1998); Guiggiani and Gigante (1990); Guiggiani, Krishnasamy, Rudol-
phi, and Rizzo (1992); Liu and Rudolphi (1999); Liu (2000); Gao (2010); Li, Wu,
and Yu (2009); Li and Yu (2011)] have been devised to improve the accuracy of
the numerical evaluation. In other boundary integral methods, such as symmet-
ric Galerkin boundary integral equations [Han and Atluri (2007); Dong and Atluri
(2012, 2013)], the nearly singular integrals should also be considered. In this pa-
per, the nearly singular integrals are concerned, which lie between the two types of
integrals defined above as the source point is close to the interval of integration but
not on it. Although the nearly singular integrals are actually regular in nature, they
cannot be evaluated accurately by the standard Gaussian quadrature due to that the
denominator r , the distance between the source and the field point, is close to zero,
which leads to a spiked integrand.

The accurate numerical evaluation of nearly singular integrals plays an important
role in many engineering applications. In general, these involve with the accurate
solution near the boundary in potential and elasticity problems. Particular cases in-
clude sensitivity problems [Zhang, Rizzo, and Rudolphi (1999)], unknowns around
crack tips [Dirgantara and Aliabadi (2000)], contact problems [Aliabadi and Martin
(2000)] and thin structures [Liu (1998)].

In the past decades, various numerical techniques have been proposed to remove
the near singularities [Eberwien, Duenser, and Moser (2005); Chen, Lu, Huang, and
Williams (1998); Sladek, Sladek, and Tanaka (1993); Zhou, Niu, Cheng, and Guan
(2008)], among which the most popular approaches are based on the various non-
linear transformations, such as cubic polynomial transformation [Telles (1987)],
coordinate optimization transformation [Sladek, Sladek, and Tanaka (2000)], ratio-
nal transformation [Huang and Cruse (1993)], sigmoidal transformation [Johnston
(1999, 2000)], distance transformation [Ma and Kamiya (2001, 2002a,b, 2003)],
the PART method [Hayami (2005)], exponential transformation [Zhang, Gu, Chen,
et al. (2009); Xie, Zhang, Qin, and Li (2011)] and the sinh transformation [John-
ston and Elliott (2005); Elliott and Johnston (2008); Johnston, Johnston, and Elliott
(2007)]. The key aspect of the transformation methodology is to cluster more Gaus-
sian points towards the ’nearly singular point’(the projection point of the source
point to the element).

The distance transformation method proposed by Ma employed an asymptotic dis-
tance function via Taylor expansion and has been successfully applied into the eval-
uation of nearly singular integrals in 2D and 3D BEM. However, the nearly singular
point should be calculated before performing nonlinear transformation, which may
be a time-consuming work. A general distance function has been proposed by the
authors in Ref. [Lv, Miao, and Zhu (2013)]. However, we still need to know the
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approximate position of the projection point. In order to get fully rid of the limit
of the projection point, an iteration process is introduced using the asymptotic be-
havior of the general distance function to get the accurate position of the nearly
singular point more easily.

The previous sinh transformation, which automatically takes into account the posi-
tion of the nearly singular point and the distance from source point to the element,
is thought to be a promising method to deal with nearly singular integrals due to
its high accuracy and straightforward implementation. However, the sinh trans-
formation is only limited to straight-line or arc elements. The combination of the
general distance function and the sinh transformation makes it possible for curved
boundary elements. Numerical results presented in this paper demonstrate the high
efficiency and accuracy of the presented method compared with other nonlinear
transformations.

This paper is organized as follows. The general forms of nearly singular integrals
are described in Section 2. The conventional distance function is briefly reviewed
and a general distance function combined with its iteration process is proposed in
Section 3. Section 4 presents the extended form of the sinh transformation based on
the distance function in detail. Numerical examples are given in Section 5 to verify
the efficiency and accuracy of presented method. The paper ends with conclusions
in Section 6.

2 General descriptions

Considering 2D potential problems in the domain Ω enclosed by boundary Γ, the
two boundary integrals concerned in the present work are written in the usual forms
in terms of the potential u and the flux q on the boundary as follows:

c(y)u(y) =
∫

Γ

q(x)u∗(x,y)dΓ(x)−
∫

Γ

u(x)q∗(x,y)dΓ(x) (1)

c(y)uk(y) =
∫

Γ

q(x)u∗k(x,y)dΓ(x)−
∫

Γ

u(x)q∗k(x,y)dΓ(x) (2)

where y and x are the source and the field points, respectively. c is a coefficient
depending on the smoothness of the boundary at y. u∗(x,y) represents the funda-
mental solution for 2D potential problems

u∗(x,y) =
1

2π
log(

1
r
) (3)

and u∗k(x,y), q∗(x,y) and q∗k(x,y) are the derived fundamental solutions

u∗k(x,y) =
∂u∗(x,y)

∂xk
, q∗(x,y) =

∂u∗(x,y)
∂n

, q∗k(x,y) =
∂q∗(x,y)

∂xk
(4)
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where r denotes the Euclidean distance between the source and the field point and
n is the unit outward normal on the boundary. To evaluate the boundary integrals
numerically, the boundary Γ is discretized into a number of linear or quadratic
elements characterized by element nodes and then the boundary integrations are
performed on each element. In this paper, quadratic elements are considered, be-
cause the nearly singular integrals for linear elements can be obtained easily. The
distribution of element nodes and the nodal intrinsic coordinates over an element
are shown in Fig. 1.
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Figure 1: Quadratic element for 2D boundary

For each element, the global coordinate vector x is interpolated through the coordi-
nates of the element nodes

x(ξ ) =
3

∑
i=1

φi(ξ )xi (5)

where xi is the coordinates at node i, ξ is the intrinsic coordinate taking values
from -1.0 to +1.0 and φi(ξ ) is the interpolation functions and commonly referred
as shape functions.

When the source point is very close to but not on the integration element, nearly
singular integrals arise with different orders. In this paper, we deal with these
boundary integrals of the following forms:

I =
∫ 1

−1
f (ξ ) ln(r(ξ ))dξ (6)
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II =
∫ 1

−1
f (ξ )

1
rm(ξ )

dξ (7)

where f (ξ ) is a smooth function consists of shape function, Jacobian and coeffi-
cients from the derivation of the kernels. Eq. (6) denotes the nearly weak singular
integrals and Eq. (7) represents the strongly integrals or the hyper-singular integrals
as m = 1 or m = 2, respectively.

3 Construction of general distance function

3.1 Conventional distance function
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Figure 2: Conventional distance function

In this section, we will review the definition of the conventional distance function.
As shown in Fig. 2, the minimum distance r0 from the source point to the element
is defined perpendicular to the tangential line, through the nearly singular point
xc and the source point y . By employing the first-order Taylor expansion in the
neighborhood of the projection point xc, we have

xk− yk = xk− xc
k + xc

k− yk =
∂xk

∂ξ
|ξ=c(ξ − c)+ r0nk(c)+O(|ξ − c|2) (8)

where c is the intrinsic coordinate of the nearly singular point xc. Then the real
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distance can be expanded to the following form:

r2(ξ ) = (xk− yk)(xk− yk)

= r2
0 +

∂xk

∂ξ

∂xk

∂ξ
|ξ=c(ξ − c)2 +2r0

∂xk

∂ξ
|ξ=cnk(c)(ξ − c)+O(|ξ − c|3)

= r2
0 +G2

c(ξ − c)2 +O(|ξ − c|3)
= G2

c(α
2 +(ξ − c)2)+O(|ξ − c|3)

(9)

where Gc stands for the Jacobian at nearly singular point xc, and α = r0/Gc, cor-
responding the minimum distance in the intrinsic parametric plane. The above de-
ductions result in an asymptotic expression for the distance via Taylor expansion,
and have been used to deal with nearly singular integrals successfully.

3.2 General distance function
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Figure 3: General distance function

For the conventional distance function, the nearly singular point should be evalu-
ated for each source point before the nonlinear variable transformation, which will
lower the efficiency of the computation process. In this section, a general distance
function independent on the nearly singular point is constructed as follows.

Firstly,a general point xc1 is defined arbitrarily, which can be located inside the
integration interval or on one node of the element as shown in Fig. 3. τ and n are
the unit tangential and outward normal vector at xc1 , respectively. A new distance
vector d from the source point y to the general point xc1 is defined additionally,
which is not required to be perpendicular to the tangential line through xc1 as the
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conventional distance function. By applying the first-order Taylor expansion in the
neighborhood of point xc1 , we have

xk− yk = xk− xc1
k + xc1

k − yk =
∂xk

∂ξ
|ξ=c1(ξ − c1)+dk +O(|ξ − c1|2) (10)

where c1 is the intrinsic coordinate of the general point xc1 , and dk represents the
components of d. The real distance can be expanded to the following form:

d2(ξ ) = (xk− yk)(xk− yk)

= d2 +
∂xk

∂ξ

∂xk

∂ξ
|ξ=c1(ξ − c1)

2 +2dk
∂xk

∂ξ
|ξ=c1(ξ − c1)+O(|ξ − c1|3)

(11)

Note that

dk
∂xk

∂ξ
|ξ=c1 = Gc1(d · τ) = Gc1d cosθ1 (12)

where Gc1 stands for the Jacobian at general point xc1 and θ1 is the angle between
d and τ , which is only related to xc1 and y.The real distance can be rewritten as

d2(ξ ) = (xk− yk)(xk− yk)

= d2 +G2
c1
(ξ − c1)

2 +2Gc1d cosθ1(ξ − c1)+O(|ξ − c1|3)
= G2

c1
[λ 2

1 +(ξ − c1 +α1 cosθ1)
2]+O(|ξ − c1|3)

(13)

where α1 = d/Gc1 , and λ1 =
√

α2
1 −α2

1 cos2 θ1. By taking the derivative of Eq.
(13), the intrinsic coordinate of the approximate nearly singular point is located at
c1−α1 cosθ1. This point may be inaccurate enough for the evaluation of the nearly
singular integrals. Then, an iteration process is introduced to obtain the accurate
position of the nearly singular point. We place the general point at the approximate
nearly singular point which has been obtained in the last iteration and perform the
above process again until get the accurate nearly singular point.

cn = c1−
n

∑
i=1

αi cosθi (14)

where n is the number of iterations. And the minimum distance can be rewritten as

r2(ξ ) = d2
min = G2

cn
[λ 2

n +(ξ − cn)
2]+O(|ξ − cn|3) (15)

where cn is the intrinsic coordinate of nearly singular point obtained by n iterations,
and λn is the corresponding coefficient.
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4 The sinh transformation

Using the distance function mentioned above, the nearly singular integrals can be
rewritten as

I =
∫ 1

−1
f (ξ ) ln(Gc)dξ +

1
2

∫ 1

−1
f (ξ ) ln[λ 2 +(ξ − c)2]dξ (16)

II =
1

Gm
c

∫ 1

−1

f (ξ )
[λ 2 +(ξ − c)2]m/2 dξ (17)

Note that the integrals I and II all contain an argument of the form λ 2 +(ξ − c)2.
Therefore, the sinh transformation can be applied in a straightforward fashion as
follows:

ξ = a1 +b1 sinh(µ1ξ1−η1) (18)

where a1 is the intrinsic coordinate of the nearly singular point and b1 represents
the minimum distance in the intrinsic parameter plane, i.e. a1 = c and b1 = λ . µ1
and η1 are chosen such that the transformation maps [-1, 1] onto [-1, 1], so that the
Gaussian quadrature can be applied directly. Evaluating µ1 and η1 yields

µ1 =
1
2
{arcsinh(

1+a1

b1
)+ arcsinh(

1−a1

b1
)} (19)

η1 =
1
2
{arcsinh(

1+a1

b1
)− arcsinh(

1−a1

b1
)} (20)

Substituting the transformation of Eq. (18) into Eqs. (16) and (17) yields

I =
∫ 1

−1
f (ξ ) ln(Gc)dξ

+
1
2

b1µ1

∫ 1

−1
f (ξ1) ln[b2

1 +b2
1 sinh2(µ1ξ1−η1)]cosh(µ1ξ1−η1)dξ1

(21)

II =
1

Gm
c

b1−m
1 µ1

∫ 1

−1

f (ξ1)

[1+ sinh2(µ1ξ1−η1)]m/2
cosh(µ1ξ1−η1)dξ1 (22)

In Eqs. (21) and (22), the kernel function has been transformed into a smoother
one as 1+ sinh2(µ1ξ1−η1) is always greater than 1. But the integrand may have
singularities

cosh(µ1ξ1−η1) = 0 (23)
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Then a similar transformation can be applied again to further remove the singular-
ities by letting

ξ1 = a2 +b2 sinh(µ2ξ2−η2) (24)

where

µ2 =
1
2
{arcsinh(

1+a2

b2
)+ arcsinh(

1−a2

b2
)} (25)

η2 =
1
2
{arcsinh(

1+a2

b2
)− arcsinh(

1−a2

b2
)} (26)

with a2 =
η1
µ1

and b2 =
π

2µ1
.

Similar iterated sinh transformation can be achieved for the general distance trans-
formation with n iterations using Eq. (15) by setting a1 = cn and b1 = λn. For
brevity, the detailed deductions are omitted.

5 Numerical examples

In this section, a number of numerical examples for quadratic element are presented
to verify the accuracy and efficiency of presented method. The relative distance is
given in terms of r0/l to describe the influence of the nearly singular integrals over
each element, where r0 is the minimum distance as shown in Fig. 2 and l stands for
the length of the element. For the purpose of error estimation, the relative error is
defined as follows:

error =
Inum− Ire f

Ire f
(27)

where the subscripts num and re f refer to the numerical and reference solutions,
respectively. The reference solutions are obtained by subdivision method with
enough subelements and denoted as ’reference’ in the table. Results obtained by
one and two iterations of sinh transformation using the general distance function
are denoted by ’ge_sinh1’ and ’ge_sinh2’, respectively.

The numerical example in Ref. [Ma and Kamiya (2002a)] is chosen as a representa-
tive quadratic element. The example is computed over a curved boundary element
with the node coordinates of (2.0, 0.0), (1.0, 1.0), and (0.0, 0.5). The intrinsic coor-
dinate of the nearly singular point is set at c =−0.5. For other cases, similar results
can be obtained. Twenty Gaussian points are always used in the element interval
for the convenience of comparisons.
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Figure 4: Convergence of iteration process

5.1 Convergence of iteration process

The accurate calculation of the position of nearly singular point is critical as the
Gaussian points will be clustered around it by nonlinear transformation. In order
to determine the proper number of iterations, the nearly point is set at c = 0.0 with
r0/l = 10−3 and the initial general point is placed at the two ends of the element, i.e.
c1 = −1.0 or c1 = 1.0, respectively. Fig. 4 gives a plot of the approximate nearly
singular point corresponding to number of iterations. It can be seen that after 5
iterations, an accurate intrinsic coordinate which is enough for the evaluation of the
nearly singular integrals can be generally obtained. Thus, the number of iterations
is taken as 5 for all the computations presented later.

5.2 Nearly weak singular integral

The first case is concerned with the evaluation of the integral I in Eq. (6), which
is representative of the nearly weakly singular integral with a kernel of log(1/r).
The kernel multiplied by different shape functions φi is evaluated as the relative
distance r0/l varies from 10−1 to 10−6, which is thought to be enough for general
computational applications. The relative errors for the one and two iterations of
sinh transformation using the general distance function are listed in Table 1. It can
be seen that both one and two iterations of the sinh transformation can get accept-
able results as well as the general trend of increasing relative error with decreasing
relative distance, due to the fact that the integrand becomes more peaked. Besides,
one iteration of sinh transformation leads to more accurate results than that of the
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second iteration, especially at small relative distance values. A possible explanation
is that the second sinh transformation unnecessarily clustered too many integration
points around the nearly singular point, resulting in insufficient evaluation of the
integrand away from this point. Thus, one iteration of sinh transformation is suffi-
cient in this case.

5.3 Nearly strong singular integral

The derived fundamental solutions of u∗k and q∗ are characterized with nearly strong
singular kernel of r−1 , as described in the integral II in Eq. (7) with m being 1.
u∗k and q∗ multiplied with shape function φ2 are taken as the integrand. Results of
the relative errors for the one and two iterations of sinh transformation using the
general distance function are given in Table 2. It can be concluded that both one
and two iterations of sinh transformation can get acceptable results. For most cases,
the results are of the same accuracy. This fact indicates that one iteration would be
sufficient for the evaluation of nearly strong singular integrals.

5.4 Nearly hyper-singular integral

Now consider the evaluating of the hyper-singular integral II in Eq. (7) as m =
2. Note that the spike of the integrand is considerably narrower and higher than
in the previous case, suggesting that more integration points should be clustered
around the nearly singular point. The basis function f (ξ ) is taken as 1 and φi,
respectively. Table 3 shows the relative errors for the one and two iterations of sinh
transformation using the general distance function. It can be observed that while
one iteration sinh transformation remarkably improves the numerical evaluation of
the integral, a second iteration improves the numerical evaluation again by several
orders of magnitude. The improvement is often more dramatic at smaller values
of relative distance. Therefore, the second iteration sinh transformation is a better
choice for evaluation of nearly hyper-singular integrals.

5.5 Comparison of various variable transformation methods

Results obtained by the sinh transformation method are compared with the trans-
formation methods of Ma [Ma and Kamiya (2002a)] and Zhang [Zhang, Gu, Chen,
et al. (2009)]. Comparisons are made for log(1/r), r−1 and r−2 type kernels mul-
tiplied by φ1. It should be noted that the transformations of Ma and Zhang split
the interval of the integration into two subintervals at the nearly singular point.
Hence in order to achieve a fair comparison in term of computational load, only
half of the indicated number of Gaussian nodes is used in each subinterval, giving
the same total number of function evaluations for all methods. The relative errors
of results obtained by different transformation methods are given in Table 4. For
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the nearly weak and hyper- singular integrals, the sinh transformation is superior
to the methods of Ma and Zhang by several orders of magnitude. The relative er-
ror for sinh transformation decreases less rapidly than that of other methods as the
relative distance decreases. For the nearly strong singular integrals, both one and
two iterations of sinh transformation can get acceptable result, but not as accurate
as that of Ma’s.

6 Conclusions

In this paper, a general distance function independent on the nearly singular point
is proposed. The position of the nearly singular point can be obtained more easily
combined with an iteration process. Then, an extended form of the sinh transfor-
mation using the general distance function is developed to deal with various orders
of singularities. The iterated sinh transformation is also implemented in a straight-
forward fashion. A representative curved boundary element is chosen to validate
the efficiency and accuracy of presented method.

Some significant conclusions have been obtained from the numerical results. For
nearly weak singular integrals, one iteration of sinh transformation leads to more
accurate results than that of the second iteration, especially at small relative distance
values. Acceptable results of the same accuracy can be obtained using both one and
two iterations of sinh transformation. For nearly hyper-singular integrals, while
one iteration sinh transformation remarkably improves the numerical evaluation of
the integral, a second iteration improves the numerical evaluation again by several
orders of magnitude. Comparisons with the transformations of Ma and Zhang prove
that the extended sinh transformation is a superior choice to deal with the nearly
singular integrals.

The proposed method also offers great advantages in the numerical evaluation of
the nearly singular integrals in 3D BEM. Subsequent work is already underway and
will be reported in the future papers.
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