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Numerical Approximate Solutions of Nonlinear Fredholm
Integral Equations of Second Kind Using B-spline

Wavelets and Variational Iteration Method
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Abstract: In this paper, nonlinear integral equations have been solved numer-
ically by using B-spline wavelet method and Variational Iteration Method (VIM).
Compactly supported semi-orthogonal linear B-spline scaling and wavelet func-
tions together with their dual functions are applied to approximate the solutions of
nonlinear Fredholm integral equations of second kind. Comparisons are made be-
tween the variational Iteration Method (VIM) and linear B-spline wavelet method.
Several examples are presented to compare the accuracy of linear B-spline wavelet
method and Variational Iteration Method (VIM) with their exact solutions.
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1 Introduction

Integral equation has been one of the essential tools for various area of applied
mathematics. Integral equations occur naturally in many fields of science and en-
gineering [Wazwaz (2011)]. Wavelet analysis has been applied in a wide range
of engineering disciplines; particularly wavelets are very successfully used in sig-
nal analysis, time-frequency analysis and fast algorithms for easy implementation
[Chui (1997)].

In this paper, we consider the second kind nonlinear Fredholm integral equation of
the following form

u(x) = f (x)+
∫ 1

0
K(x, t)F(t,u(t))dt, 0≤ x≤ 1. (1)

where K(x, t)is the kernel of the integral equation, f (x) and K(x, t) are known func-
tions and u(x) is the unknown function that is to be determined.
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A computational approach to solve integral equation is an essential work in sci-
entific research. Some methods for solving second kind Fredholm integral equa-
tion are available in open literature. The Petrove-Galerkin method and the iter-
ated Petrove-Galerkin method [Chen and Xu (1998); Kaneko, Noren and Novapra-
teep (2003)] have applied to solve nonlinear integral equations. A variation of the
Nystrom method for nonlinear integral equations of second kind was presented by
Lardy (1981). The learned researchers Maleknejad (2011) proposed a numerical
method for solving nonlinear Fredholm integral equations of the second kind using
sinc-collocation method.

A novel meshless technique termed the Random Integral Quadrature (RIQ) method
has been developed by Zou, H. and Li, H. (2010). By applying this method, the
governing equations in the integral form are discretized directly with the field nodes
distributed randomly or uniformly, which is achieved by discretizing the integral
governing equations with the generalized integral quadrature (GIQ) technique over
a set of background virtual nodes, and then interpolating the function values at the
virtual nodes over a set of field nodes with Local Kriging method, where the field
nodes are distributed either randomly or uniformly.

The Fictitious Time Integration Method (FTIM) previously developed by Liu and
Atluri (2009) has been employed to solve a system of ill-posed linear algebraic
equations, which may result from the discretization of a first-kind linear Fredholm
integral equation.

Gauss-Legendre Nyström method [Kelmanson and Tenwick (2010)] has been ap-
plied for determining approximate solutions of Fredholm integral equations of the
second kind on finite intervals. The authors’ recent continuous-kernel approach
is generalized in order to accommodate kernels that are either singular or of lim-
ited continuous differentiability at a finite number of points within the interval of
integration.

Quadratic integral equations are a class of nonlinear integral equations having many
important uses in engineering and sciences. Adomian decomposition method has
been applied to solve the quadratic integral equations of Volterra type [Fu, Wang
and Duan (2013)].

In the present paper, we apply compactly supported linear semi-orthogonal B-
spline wavelets to solve the second kind nonlinear Fredholm integral equation. The
obtained numerical solutions are then compared with the results obtained by Vari-
ational Iteration Method [He (1999); He (2006); He (2007)]. The Variational It-
eration Method (VIM) has proposed originally by He [He (1999)]. This method
has been applied by many renowned researchers as a powerful mathematical tool
for solving various kinds of linear and nonlinear problems [Biazar and Ghazvini
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(2010); Biazar and Ghazvini (2007); Abbasbandy and Shirzadi (2008); Dehghan
and Shakeri (2008); Odibat and Momani (2006); Wazwaz (2008)].

Unlike the traditional numerical methods, VIM needs no discretization, lineariza-
tion, transformation or perturbation. The method has been widely applied to solve
nonlinear problems, more and more merits have been discovered and some modi-
fications are suggested to overcome the demerits arising in the solution procedure
[Soltani and Shirzadi (2010)].

In this paper, the B-spline wavelet method converts the integral equation (1) into
a set of algebraic equations by expanding the unknown function as linear B-spline
wavelets with unknown coefficients. The properties of these wavelets are then uti-
lized to evaluate the unknown coefficients. Moreover, the VIM has been also suc-
cessfully applied to find the numerically approximate solution of nonlinear Fred-
holm integral equation. This method is based on the incorporation of a general
Lagrange multiplier in the construction of correction functional for the integral
equation.

2 Linear B-Spline scaling and wavelet functions on the interval [0,1]

Semi-orthogonal wavelets using B-spline specially constructed for the bounded in-
terval and this wavelet can be represented in a closed form. This provides a compact
support. Semi-orthogonal wavelets form the basis in the space L2(R).

Using this basis, an arbitrary function in L2(R) can be expressed as the wavelet
series [Chui (1992)]. For the finite interval [0, 1], the wavelet series cannot be
completely presented by using this basis. This is because supports of some basis
are truncated at the left or right end points of the interval. Hence a special basis has
to be introduced into the wavelet expansion on the finite interval. These functions
are referred to as the boundary scalar functions and boundary wavelet functions.

Let m and n be two positive integers and

a = x−m+1 = ...= x0 < x1 < ... < xn = xn+1 = ...= xn+m−1 = b, (2)

be an equally spaced knots sequence. The functions

Bm, j,X(x) =
x− x j

x j+m−1− x j
Bm−1, j,X(x)+

x j+m− x
x j+m− x j+1

Bm−1, j+1,X(x),

j =−m+1, ...,n−1.
(3)

and

B1, j,X(x) =
{

1, x ∈ [x j,x j+1) ,
0, otherwise,

(4)
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are called cardinal B-spline functions of order m ≥ 2 for the knot sequence X =
{xi}n+m−1

i=−m+1, and SuppBm, j,X(x) = [x j,x j+m]∩ [a,b].
By considering the interval [a,b] = [0,1], at any level j ∈ Z+, the discretization step
is 2− j, and this generates n = 2 j number of segments in [0,1] with knot sequence

X ( j) =


x( j)
−m+1 = ...= x( j)

0 = 0,
x( j)

k = k
2 j , k = 1, ...,n−1,

x( j)
n = ...= x( j)

n+m−1 = 1.

(5)

Let j0 be the level for which 2 j0 ≥ 2m−1; for each level, j ≥ j0 the scaling func-
tions of order m can be defined as follows in [Maleknejad and Sahlan (2010)]:

ϕm, j,i(x) =


Bm, j0,i(2

j− j0x) i =−m+1, ...,−1,
Bm, j0,2 j−m−i(1−2 j− j0x) i = 2 j−m+1, ...,2 j−1,
Bm, j0,0(2

j− j0x−2− j0 i) i = 0, ...,2 j−m.
(6)

And the two scale relation for the m-order semi-orthogonal compactly supported
B-wavelet functions are defined as follows:

ψm, j,i−m =
2i+2m−2

∑
k=i

qi,kBm, j,k−m, i = 1, ...,m−1 (7)

ψm, j,i−m =
2i+2m−2

∑
k=2i−m

qi,kBm, j,k−m, i = m, ...,n−m+1 (8)

ψm, j,i−m =
n+i+m−1

∑
k=2i−m

qi,kBm, j,k−m, i = n−m+2, ...,n (9)

where qi,k = qk−2i.

Hence there are 2(m− 1) boundary wavelets and (n− 2m+ 2) inner wavelets in
the bounded interval [a,b]. Finally, by considering the level j with j ≥ j0, the
B-wavelet functions in [0,1] can be expressed as follows:

ψm, j,i(x) =


ψm, j0,i(2

j− j0x) i =−m+1, ...,−1,
ψm,2 j−2m+1−i,i(1−2 j− j0x) i = 2 j−2m+2, ...,2 j−m,
ψm, j0,0(2

j− j0x−2− j0 i) i = 0, ...,2 j−2m+1.
(10)

The scaling functions ϕm, j,i(x) occupy m segments and the wavelet functions ψm, j,i(x)
occupy 2m−1 segments.

When the semi-orthogonal wavelets are constructed from B-spline of order m, the
lowest octave level j = j0 is determined in [Goswami, Chan and Chui (1995)] by

2 j0 ≥ 2m−1, (11)

so as to have a minimum of one complete wavelet on the interval [0, 1].
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3 Function approximation

A function f (x) defined over interval [0, 1] may be approximated by B-spline
wavelets as

f (x) =
2 j0−1

∑
k=−1

c j0,kϕ j0,k(x)+
∞

∑
j= j0

2 j−2

∑
k=−1

d j,kψ j,k(x). (12)

In particular, for j0 = 2, if the infinite series in equation (12) is truncated at M then
eq. (12) can be written as [Maleknejad and Sahlan (2010); Maleknejad, Nosrati
and Najafi (2012)]

f (x)≈
3

∑
k=−1

ckϕ2,k(x)+
M

∑
j=2

2 j−2

∑
k=−1

d j,kψ j,k(x) =CT
Ψ(x) (13)

where ϕ2,k and ψ j,k are scaling and wavelet functions, respectively, and C and Ψ

are (2M+1 +1)×1 vectors given by

C = [c−1,c0, ...,c3,d2,−1, ...,d2,2,d3,−1, ...,d3,6, ...,dM,−1, ...,dM,2M−2]
T , (14)

Ψ = [ϕ2,−1,ϕ2,0, ...,ϕ2,3,ψ2,−1, ...,ψ2,2,ψ3,−1, ...,ψ3,6, ...,ψM,−1, ...,ψM,2M−2]
T ,

(15)

with

ck =
1∫
0

f (x)ϕ̃2,k(x)dx, k =−1,0, ...,3,

d j,k =
1∫
0

f (x)ψ̃ j,k(x)dx, j = 2,3,4, ...,M, k =−1,0,1, ...,2 j−2,
(16)

where ϕ̃2,k(x) and ψ̃ j,k(x) are dual functions of ϕ2,k, and ψ j,k respectively. These
can be obtained by linear combinations of ϕ2,k,k =−1, ...,3 , and ψ j,k, j = 2, ...,M,
k =−1, ...,2 j−2, as follows. Let

Φ = [ϕ2,−1(x),ϕ2,0(x),ϕ2,1(x),ϕ2,2(x),ϕ2,3(x)]T , (17)

Ψ̄ = [ψ2,−1(x),ψ2,0(x), ...,ψM,2M−2(x)]
T . (18)

Using eq. (6) and eq. (17) we get

1∫
0

ΦΦ
T dx = P1 =


1

12
1

24 0 0 0
1

24
1
6

1
24 0 0

0 1
24

1
6

1
24 0

0 0 1
24

1
6

1
24

0 0 0 1
24

1
12

 , (19)
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and from eq (10) and eq. (18) we have

1∫
0

Ψ̄Ψ̄
Tdx = P2 =



N4×4
1
2 N8×8

.
.

.
1

2M−2 N2M×2M

 (20)

where P1 and P2 are 5×5 and (2M+1−4)× (2M+1−4) matrices, respectively, and
N is a five-diagonal matrix given by

N =



2
27

1
96 − 1

864 0 0 . . . 0
1
96

1
16

5
432 − 1

864 0 . . . 0
− 1

864
5

432
1
16

1
96 − 1

864 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .

0 . . . − 1
864

5
432

1
16

5
432 − 1

864
0 . . . 0 − 1

864
5

432
1
16

1
96

0 . . . 0 0 − 1
864

1
96

2
27


(21)

Suppose Φ̃ and ˜̄
Ψ are the dual functions of Φ and Ψ̄, respectively, given by

Φ̃ = [ϕ̃2,−1(x), ϕ̃2,0(x), ϕ̃2,1(x), ϕ̃2,2(x), ϕ̃2,3(x)]T ,
˜̄
Ψ = [ψ̃2,−1(x), ψ̃2,0(x), ..., ψ̃M,2M−2(x)]T .

(22)

And combining the above two, we can get

Ψ̃ = [ϕ̃2,−1(x), ϕ̃2,0(x), ϕ̃2,1(x), ϕ̃2,2(x), ϕ̃2,3(x), ψ̃2,−1(x), ψ̃2,0(x), ..., ψ̃M,2M−2(x)]
T

(23)

Using eqs. (17), (18) and (22) we have

1∫
0

Φ̃ Φ
T dx = I1,

1∫
0

˜̄
Ψ Ψ̄

T dx = I2, (24)

where I1 and I2 are 5×5 and (2(M+1)−4)× (2(M+1)−4) identity matrices, respec-
tively. Then eqs. (19), (20), and (24) yield

Φ̃ = P−1
1 Φ, ˜̄

Ψ = P−1
2 Ψ̄. (25)
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4 Application of B-spline wavelet method to nonlinear Fredholm integral
equation of second kind

In this section, we have solved nonlinear Fredholm integral equation of second kind
of the form given in eq. (1) by using B-spline wavelets. First, we assume

y(x) = F(x,u(x)), 0≤ x≤ 1. (26)

Now from eq. (13), we can approximate the functions u(x) and y(x) as

u(x) = AT
Ψ(x), and y(x) = BT

Ψ(x), (27)

where A and B are (2M+1 +1)×1 column vectors similar to C defined in eq. (14).

Again by using dual of the wavelet functions, we can approximate the functions
f (x) and K(x, t) as follows

f (x) = DT
Ψ̃(x), and K(x, t) = Ψ̃

T (t)ΘΨ̃(x), (28)

where

Θ(i, j) =
∫ 1

0

[∫ 1

0
K(x, t)Ψi(t)dt

]
Ψ j(x)dx.

From eqs. (26)- (28), we get∫ 1
0 K(x, t)F(t,u(t))dt =

∫ 1
0 BT Ψ(t)Ψ̃T (t)ΘΨ̃(x)dt

= BT
[∫ 1

0 Ψ(t)Ψ̃T (t)dt
]

ΘΨ̃(x)

= BT ΘΨ̃(x), since
∫ 1

0 Ψ(t)Ψ̃T (t)dt = I

(29)

Applying eqs. (26)- (29) in eq. (1), we get

AT
Ψ(x) = DT

Ψ̃(x)+BT
ΘΨ̃(x) (30)

Multiplying eq. (30) by ΨT (x) both sides from the right and integrating from 0 to
1, we have

AT P = DT +BT Θ

AT P−DT −BT Θ = 0
(31)

where P is a (2M+1 +1)× (2M+1 +1) square matrix given by

P =
∫ 1

0 Ψ(x)ΨT (x)dx =
[

P1
P2

]
, and

∫ 1
0 Ψ̃(x)ΨT (x)dx = I.
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Eq. (31) gives a system of (2M+1 + 1) algebraic equations with 2(2M+1 + 1) un-
knowns for A and B vectors given in eq. (27).

To find the solution u(x) in eq. (27), we first utilize the following equation

F(x,AT
Ψ(x)) = BT

Ψ(x), (32)

with the collocation points xi =
i−1

2M+1 , where i = 1,2, ...,2M+1 +1.

Eq. (32) gives a system of (2M+1 + 1) algebraic equations with 2(2M+1 + 1) un-
knowns, for A and B vectors given in eq. (27).

Combining eqs. (31) and (32), we have a total of 2(2M+1 +1) system of algebraic
equations with 2(2M+1 + 1) unknowns for A and B. Solving those equations for
the unknown coefficients in the vectors A and B, we can obtain the solution u(x) =
AT Ψ(x).

5 Variational Iteration Method (VIM)

Let us consider, a nonlinear Fredholm integral equation of second kind given in eq.
(1). For solving eq. (1) by variational iteration method, first we have to take the
partial derivative of eq. (1) with respect to x.

u′(x) = f ′(x)+
∫ 1

0
K′(x, t)F(t,u(t))dt, (33)

We apply variational iteration method for the eq. (33). According to this method,
correction functional can be defined as

un+1(x) = un(x)+
∫ x

0
λ (ξ )

(
u′n(ξ )− f ′(ξ )−

∫ b

a
K′(ξ , t)F(t, ũn(t))dt

)
dξ , (34)

where λ (ξ ) is a general Lagrange multiplier which can be identified optimally by
the variational theory, the subscript n denotes the nth order approximation and ũn

is considered as a restricted variation, i.e. δ ũn = 0. The successive approximations
un(x),n≥ 1 for the solution u(x) can be readily obtained after determining the La-
grange multiplier and selecting an appropriate initial function u0(x). Consequently
the approximate solution may be obtained by using u(x) = lim

n→∞
un(x).

To make the above correction functional stationary, we have

δun+1(x) = δun(x)+δ
∫ x

0 λ (ξ )
(

u′n(ξ )− f ′(ξ )−
∫ b

a K′(ξ , t)F(t, ũn(t))dt
)

dξ

= δun(x)+
∫ x

0 λ (ξ )δ (u′n(ξ ))dξ

= δun(x)+ λδun|ξ=x−
∫ x

0 λ ′(ξ )δun(ξ )dξ

(35)
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Under stationary condition δun+1 = 0, implies the following Euler Lagrange equa-
tion

λ
′(ξ ) = 0, (36)

with the following natural boundary condition

1+λ (ξ )|
ξ=x = 0 . (37)

Solving the eq. (36) along with boundary condition (37), we get the general La-
grange multiplier λ =−1.

Substituting the identified Lagrange multiplier into eq. (34), results in the following
iterative scheme

un+1(x) = un(x)−
∫ x

0

(
u′n(ξ )− f ′(ξ )−

∫ b

a
K′(ξ , t)F(t, ũn(t))dt

)
dξ , n≥ 0 (38)

By starting with initial approximate function u0(x) = f (x) (say), we can determine
the approximate solution u(x) of the eq. (1).

6 Illustrative examples

Example 1. Consider the equation

u(x) =− x
9
− x2

8
+ x3 +

1∫
0

(x2t + xt2)u2(t)dt, 0≤ x≤ 1,

with the exact solution u(x) = x3. The approximate solution is obtained by the
method of B-spline wavelets explained in section 4 for M = 2 and M = 4 and
also by VIM explained in section 5. The following table 1 cites the numerical
solutions obtained by B-spline method and VIM accomplished with corresponding
exact solutions and table 2 cites the absolute errors obtained by B-spline method
and VIM. Figure 1-2 and Figure 3-4 present the comparison graphically between
the numerical solutions obtained by B-spline wavelet method with exact solutions
and VIM solutions respectively.

Example 2.
Consider the equation

u(x) =
7
8

x+
1
2

∫ 1

0
xtu2(t)dt, 0≤ x≤ 1,

with the exact solution u(x) = x. The approximate solution is obtained by the
method of B-spline wavelets explained in section 4 for M = 2 and M = 4 and
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Table 1: Comparison of numerical solutions obtained by B-spline method and VIM
with exact solution

x Linear B-spline wavelet
method

Variational
Iteration
Method
(VIM)

Exact solution

M = 2 M = 4
0 -0.000249587 -3.61701e-6 0 0
0.1 0.00166976 0.00105608 0.000965618 0.001
0.2 0.0105762 0.00816602 0.00792412 0.008
0.3 0.0313409 0.0272625 0.0268755 0.027
0.4 0.068719 0.0642781 0.0638198 0.064
0.5 0.12735 0.125145 0.124757 0.125
0.6 0.223711 0.216493 0.215687 0.216
0.7 0.355417 0.343778 0.34261 0.343
0.8 0.527106 0.512931 0.511526 0.512
0.9 0.743534 0.729887 0.728434 0.729
1.0 1.00957 1.00058 0.999336 1

Table 2: Absolute errors obtained by B-spline method and VIM
XXXXXXXXXXx

Absolute error
Linear B-Spline wavelet
method

Variational Iteration
Method (VIM)

M = 2 M = 4
0 0.0002495 3.61701e-6 0
0.1 0.0006695 0.0000560 0.0000343
0.2 0.0025762 0.0001660 0.0000758
0.3 0.0043409 0.0002625 0.0001245
0.4 0.0047190 0.0002781 0.0001802
0.5 0.0023496 0.0001454 0.0002430
0.6 0.0077114 0.0004932 0.0003130
0.7 0.0124172 0.0007776 0.0003901
0.8 0.0151063 0.0009313 0.0004743
0.9 0.0145338 0.0008869 0.0005656
1.0 0.0095707 0.0005807 0.0006641
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Figure 1: Comparison of numerical solution obtain by B-spline (M = 2) with exact
solution

Figure 2: Comparison of numerical solution obtain by B-spline (M = 4) with exact
solution

Figure 3: Comparison of numerical solution obtain by B-spline (M = 2) with VIM
solution
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Figure 4: Comparison of numerical solution obtain by B-spline (M = 4) with VIM
solution

also by VIM explained in section 5. The following table 3 cites the numerical
solutions obtained by B-spline method and VIM accomplished with corresponding
exact solutions and table 4 cites the absolute errors obtained by B-spline method
and VIM. Figure 5-6 and Figure 7-8 present the comparison graphically between
the numerical solutions obtained by B-spline wavelet method with exact solutions
and VIM solutions respectively.

Table 3: Comparison of numerical solutions obtained by B-spline method and VIM
with exact solution

x Linear B-spline wavelet
method

Variational
Iteration
Method
(VIM)

Exact solution

M = 2 M = 4
0 0 0 0 0
0.1 0.100087 0.100005 0.1 0.1
0.2 0.200174 0.200011 0.2 0.2
0.3 0.300261 0.300016 0.3 0.3
0.4 0.400348 0.400022 0.4 0.4
0.5 0.500435 0.500027 0.5 0.5
0.6 0.600522 0.600033 0.6 0.6
0.7 0.700609 0.700038 0.7 0.7
0.8 0.800696 0.800043 0.8 0.8
0.9 0.900783 0.900049 0.9 0.9
1.0 1.00087 1.00005 1 1
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Table 4: Absolute errors obtained by B-spline method and VIM
XXXXXXXXXXx

Absolute error
Linear B-Spline wavelet
method

Variational Iteration
Method(VIM)

M = 2 M = 4
0 0 0 0
0.1 0.0000869 5.42599e-6 1.09593e-8
0.2 0.0001739 0.0000108 2.19186e-8
0.3 0.0002609 0.0000162 3.28778e-8
0.4 0.0003478 0.0000217 4.38371e-8
0.5 0.0004348 0.0000271 5.47964e-8
0.6 0.0005218 0.0000325 6.57557e-8
0.7 0.0006087 0.0000379 7.6715e-8
0.8 0.0006957 0.0000434 8.76743e-8
0.9 0.0007827 0.0000488 9.86335e-8
1.0 0.0008696 0.0000542 1.09593e-7

Figure 5: Comparison of numerical solution obtain by B-spline (M = 2) with exact
solution

Example 3.
Consider the equation

u(x) = cos(x)− 1
2

xsin(2)+
∫ 1

0
x(u2(t)− sin2(t))dt, 0≤ x≤ 1,

with the exact solution u(x) = cos(x). The approximate solution is obtained by the
method of B-spline wavelets explained in section 4 for M = 2 and M = 4 and also
by VIM explained in section 5. The following table 5 cites the numerical solutions
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Figure 6: Comparison of numerical solution obtain by B-spline (M = 4) with exact
solution

Figure 7: Comparison of numerical solution obtain by B-spline (M = 2) with VIM
solution

Figure 8: Comparison of numerical solution obtain by B-spline (M = 4) with VIM
solution
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obtained by B-spline method and VIM accomplished with corresponding exact so-
lutions and table 6 cites the absolute errors obtained by B-spline method and VIM.
Figure 9-10 and Figure 11-12 present the comparison graphically between the nu-
merical solutions obtained by B-spline wavelet method with exact solutions and
VIM solutions respectively.

Table 5: Comparison of numerical solutions obtained by B-spline method and VIM
with exact solution

x Linear B-spline wavelet
method

Variational Itera-
tion Method
(VIM)

Exact solution

M = 2 M = 4
0 1.0013 1.00008 1 1
0.1 0.994854 0.994995 0.994897 0.995004
0.2 0.979103 0.980006 0.979853 0.980067
0.3 0.954196 0.955265 0.955016 0.955336
0.4 0.920326 0.921014 0.920633 0.921061
0.5 0.877732 0.877591 0.877048 0.877583
0.6 0.824168 0.825263 0.824694 0.825336
0.7 0.763003 0.764727 0.764093 0.764842
0.8 0.694726 0.696581 0.695851 0.696707
0.9 0.619877 0.621499 0.620647 0.62161
1.0 0.53905 0.540222 0.539233 0.540302

Example 4.
Consider the equation

u(x) =−sin(x)− x3
(
− 367

4096 cos(4)sin(4)+ 11357
98304 −

2095
32768 cos2(4)

)
+
∫ 1

0 x3t5u2(t)dt,

0≤ x≤ 1,

with the exact solution u(x) = sin(−4x). The approximate solution is obtained by
the method of B-spline wavelets explained in section 4 for M = 2 and M = 4 and
also by VIM explained in section 5. The following table 7 cites the numerical solu-
tions obtained by B-spline method and VIM accomplished with corresponding ex-
act solutions and table 8 cites the absolute errors obtained by B-spline method and
VIM. Figure 13-14 and Figure 15-16 present the comparison graphically between
the numerical solutions obtained by B-spline wavelet method with exact solutions
and VIM solutions respectively.
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Table 6: Absolute errors obtained by B-spline method and VIM
XXXXXXXXXXx

Absolute error
Linear B-Spline wavelet
method

Variational Iteration
Method (VIM)

M = 2 M = 4
0 0.0013027 0.0000813 0
0.1 0.0001501 9.23203e-6 0.0001069
0.2 0.0009632 0.0000600 0.0002139
0.3 0.0011401 0.0000718 0.0003209
0.4 0.0007350 0.0000472 0.0004279
0.5 0.0001495 8.82354e-6 0.0005348
0.6 0.0011679 0.0000721 0.0006418
0.7 0.0018390 0.0001148 0.0007488
0.8 0.0019810 0.0001252 0.0008558
0.9 0.0017320 0.0001110 0.0009628
1.0 0.0012520 0.0000807 0.0010697

Figure 9: Comparison of numerical solution obtain by B-spline (M = 2) with exact
solution

Figure 10: Comparison of numerical solution obtain by B-spline (M = 4) with
exact solution
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Figure 11: Comparison of numerical solution obtain by B-spline (M = 2) with VIM
solution

Figure 12: Comparison of numerical solution obtain by B-spline (M = 2) with VIM
solution

Figure 13: Comparison of numerical solution obtain by B-spline (M = 2) with
exact solution
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Table 7: Comparison of numerical solutions obtained by B-spline method and VIM
with exact solution

x
Linear B-spline wavelet method Variational

Iteration
Method
(VIM)

Exact solu-
tion

M = 2 M = 4
0 -0.00247969 -0.0000376591 0 0
0.1 -0.391555 -0.389409 -0.389418 -0.389418
0.2 -0.711074 -0.716931 -0.717356 -0.717356
0.3 -0.922784 -0.9315 -0.93204 -0.932039
0.4 -1.00002 -0.999602 -0.999576 -0.999574
0.5 -0.927696 -0.910438 -0.909302 -0.909297
0.6 -0.673206 -0.675445 -0.675471 -0.675463
0.7 -0.328869 -0.334689 -0.335 -0.334988
0.8 0.0599757 0.0585377 0.058356 0.0583741
0.9 0.4454819 0.44283 0.442495 0.44252
1.0 0.77698 0.758118 0.756767 0.756809

Table 8: Absolute errors obtained by B-spline method and VIM
XXXXXXXXXXx

Absolute error
Linear B-Spline wavelet
method

Variational Iteration
Method (VIM)

M = 2 M = 4
0 0.0024796 0.0000376 0
0.1 0.0021369 9.45907e-6 3.53614e-8
0.2 0.0062817 0.0004255 2.82891e-7
0.3 0.0092549 0.0005389 9.54757e-7
0.4 0.0004443 0.0000283 2.26313e-6
0.5 0.0183982 0.0011404 4.42017e-6
0.6 0.0022571 0.0000183 7.63806e-6
0.7 0.0061188 0.0002991 0.0000121
0.8 0.0016015 0.0001635 0.0000181
0.9 0.0028986 0.0003096 0.0000257
1.0 0.0201778 0.0013154 0.0000353
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Figure 14: Comparison of numerical solution obtain by B-spline (M = 4) with
exact solution

Figure 15: Comparison of numerical solution obtain by B-spline (M = 2) with VIM
solution

Figure 16: Comparison of numerical solution obtain by B-spline (M = 4) with VIM
solution
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7 Conclusion

In this present work, semi-orthogonal compactly supported linear B-spline wavelets
have been applied to find the numerical solution of nonlinear Fredholm integral
equation of second kind. Using this procedure, the integral equation has been re-
duced to solve a system of nonlinear algebraic equations. The aim of this work
was to derive the approximate solution of nonlinear Fredholm integral equation.
We have achieved this goal by applying Variational Iteration Method and the ap-
proximate solutions are then compared with B-spline wavelet method solution. The
obtained results are found to be in good agreement with the B-spline wavelet so-
lution. The absolute errors can be reduced if we take B-splines of higher order.
Comparisons with B-spline wavelet method reveal that the VIM is very effective
and convenient. In addition, no linearization, discretization or perturbation is re-
quired by VIM.
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