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Error Expansion of Classical Trapezoidal Rule for
Computing Cauchy Principal Value Integral

Jin Li ! and De-hao Yu 23

Abstract: The composite classical trapezoidal rule for the computation of Cauchy
principal value integral with the singular kernel 1/(x—s) is discussed. Based on the
investigation of the superconvergence phenomenon, i.e., when the singular point
coincides with some priori known point, the convergence rate of the classical trape-
zoidal rule is higher than the globally one which is the same as the Riemann integral
for classical trapezoidal rule. The superconvergence phenomenon of the composite
classical trapezoidal rule occurs at certain local coordinate of each subinterval and
the corresponding superconvergence error estimate is obtained. Some numerical
examples are provided to validate the theoretical analysis.

Keywords: Cauchy principal value integral, classical trapezoidal rule, error ex-
pansion, superconvergence

1 Introduction

Consider the Cauchy principal value integral
][lﬂx)dx—g(s),se (a,b) (1)
aX—S

where f(x) is Holder continuous on interval [a,b], —ﬁf’denotes a Cauchy principal
value integral and s the singular point.

There are several different definitions which can be proved mathematically equal,
such as the definition of subtraction of the singularity, regularity definition, direct
definition and so on. In this paper we adopt the following one

X . s—€ f(x b f(x
][lﬂ)dx = lim / &dx—i— de , )
aXx—3S§ £—0 a xX—3Ss s+teX—S
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Cauchy principal value integrals have recently attracted a lot of attention. The main
reason for this interest is probably due to the fact that Cauchy principal value in-
tegral equations have shown to be an adequate tool in boundary element methods
for the modeling of many physical situations, such as acoustics, fluid mechanics,
elasticity, fracture mechanics and electromagnetic scattering problems and so on.
Numerous work has been devoted in developing efficient quadrature formulas, such
as the Gaussian method[ Criscuolo and Mastroianni (1989); Diethelm (1995a);
Hasegawa (2004); Monegato (1984)] the Newton-Cote methods[ Koler (1997);
Amari (1994); Diethelm (1994); Liu Zhang and Wu (2010); Li (2011); Li (2011)],
spline methods [Orsi (1990); Dagnino and Santi (1990)] and some other method
[Natarajan and Mohankumar (1995); Kim and Choi (2000); Kim and Yun (2002);
Behforooz (1992); Xu and Yao (1998); Junghanns and Silbermann (1998); Chen
and You (1999); Chen and Hong (1999)].

The general (composite) Newton-Cotes method for the computation of Cauchy
principal value integrals and Hadamard finite-part integrals with the singular kernel
calculated analysis and the density function numerical approximated were studied
in [Liu Zhang and Wu (2010)] and [Wu and Sun (2008)] which focus on its point-
wise superconvergence phenomenon, which means that the rate of convergence of
the Newton-Cotes quadrature rule is higher than what is globally possible when the
singular point coincides with some a priori known point. The necessary and suffi-
cient conditions satisfied by the superconvergence point are also given. Moreover,
the superconvergence estimates are obtained and the properties of the superconver-
gence points are investigated.

It is the aim of this paper to investigate the superconvergence phenomenon of clas-
sical trapezoidal rule for it and, in particular, to derive error estimates. This pa-

per focuses on the superconvergence phenomenon of classical trapezoidal rule for
[

Cauchy principal integrals with the density function = is replaced by the approx-
imation function 2&2),1’ =0,1,---,n, where x; is the mesh point. This method

can be considered as the direct method to compute the Cauchy principal integral
different from the idea presented by [Linz (1985)] in the paper to calculate the hy-
persingular integral on interval. We prove both theoretically and numerically that
the composite classical trapezoidal rule can reach the superconvergence rate O(h?)
when the singular point s is far away from the end of the interval with the local
coordinate of the singular point s equal to 0.

The rest of this paper is organized as follows. In Sect.2, after introducing some
basic formulas of the classical trapezoidal rule, we present the main results. In
Sect.3, the proof of the main results is finished. Finally, several numerical examples
are provided to validate our analysis.
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2 Main result

Leta=xp < x; < - <x,-1 <X, =b be a uniform partition of the interval [a,b]
with mesh size h = (b — a) /n. Define by f7.(x) the linear interpolant for f(x)

fL(x):f(;"),i:o,L...,n. 3)

and a linear transformation

(7+1) (xig1 —xi)
2

x:x,'(’L') = +xi, TE [_171]7 (4)

from the reference element [—1, 1] to the subinterval [x;,x;11]. Replacing f(x) in
Eq. 2 with f(x) gives the composite classical trapezoidal rule:

L(fss):= bf.L(_x) dx = ~i"(x),-(s)f(xi) = ]Ebf(x) dx—E,(f;s), Q)

X—S

;(s) = (6)

is the Cote coefficients.

In the following analysis, C will denote a generic constant that is independent of £
and s and it may have different values in different places.

Theorem 1 Assume f(x) € C%[a,b],a € (0,1]. For the classical trapezoidal rule
1,(f,s) defined as Eq. 5. Assume that s = xp,, + (1 + T)h/2, there exist a positive
constant C, independent of h and s, such that

[Ea(f35)] < C(|Inh|+ 7! (7))h?, )
where
Y1) = min B=% 1217 )
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Proof: Let R(x) = f(x) — @ - M , then we have |R(x)| < Ch*. As

E(F:5) :][abf(x)dx_”zl{ Fx)h . f(xm)h}

xX—s = 12xi—s)  2(xiy1—s)

:r:i;][xm{f(x) fxi) f(xi“)J dx

x—s 2(xi—s) 2(xip1—s

R ) M oy Fory

5 ][Xfﬂf(X) S L =)
i=0 | /i r=s
L[ G (i =

+_Z )dx

=2/ (x—5)(xir1 — )

B[f St

i

i=0

€))

nill Xl+1f(xl+1)(xl+1 )dx
i—0 2 Jy ( )(xH-l —s)

ni /XHrI R(x) dx ][xm+l R(x) d
= —dax
i=0,Am7 % AT X XS

m

l n—1 x,+|M xm+w .
+2i—(§;&m/xl' (x—s)(x; — )d +2 o (X — s)(xm—s)d

1= it f (X)) (Xip1 —x)
- d
5L, L e g

_l’_

Xi+1 _s)

(x—
+l xmﬂf(xm-&-l)((xm#—l )dx

2 Xm ( ) ‘xm+1 _S)

=R+ Dy + By + By + K5 + K

where

) | R g (10)

i=0,i#m

Dy = ][xm“R(x) dx (11)

X—S

m

1 n-l i f(xq) (i —x)
= 21’(;#1/ mdx (12)
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)
K = 2 o (x— s)(xm—s)d (13)

Z /X,+1 _xl+])<Xi+] _'x) dx (14)

0,im —5)(*xit1 =)

He = 1 s if (Xt 1) (K1 — X) dx.

15
2 Jo (= 5)Comet — ) ()

For Eq. 10,we have

n—1 Xit1 R Xm 1 b 1
y / TRE G| < one ( / ——dx+ dx>
i=0i#m?% XS a S—X X1 X— S

(b—s)(s—a) (16)

(Xm41 = 8) (s —2m)

C(|Inh|+ |Iny(t)|)h*

=Ch%In

As for Eq. 11,

][xmﬂ R(x) d
—dax
Xm X—=S

| [ BB |

" xX—s S —Xm 17)
< Challny(r)\.
For Eq. 12, we have
n—l Xit1 f )
Z / dx
1 0,i#m xl_s)
Xit+1
< cpl+e Z /
i=0,i£m (18)
_ cplte 1 B 1 i 1 _ 1
S—Xp S—a b—s xpi1—s

<cy '(n)n?.
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As for Eq. 13,
1 Xm+1 m " —
‘][ )i —x)

2 ), (x—5)(xm—s) *

o xm ][ m+1
x"l

1 f Xm) ][x'n+1 Xm—S)— (x—) 4
= X
‘X)ﬂ

(X — ) —5)
_ 1 fxm Xm+1xm_sd +/Xm+| (19)
(Xm —s)
L f(xm)h f(xm) X1 — S
= |- I
2(xm—s)+ 2 " S — Xm
< Cy Y (T)h® + Ch® |]n T 2
§— Xm
<Cy ! (t)h”
Similarly we have
1ol e f(xig) (i —x) 1
= dx| <C 7)h* 20)
S0 D M v T S A
and
Lo tf (1) (1 — X) —1
He| = 7][ dx| <C h*. 21
= | e e <o ey

Combining from Eq. 16 to Eq. 21 together, the proof is completed.

Now we present the error estimate for the classical trapezoidal rule in the following
theorem. We firstly define
1/t x
—— dr, <1,
2/)t—x  x2—1 o

Po(x) = L (22)
T dr, x> 1

2)01t—x x2-—1

oo

So(t) == ¢o() + Y 90(2i+ 7) + ¢o(—2i+ 1), 7 € (—1,1). (23)

i=1
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Theorem 2 Assume f(x) € C*[a,b]. For the classical trapezoidal rule I,(f,s) de-
fined as Eq. 5. Assume that s = x|, + (1+ T)h/2, there exist a positive constant C,
independent of h and s, such that

Eq(f3s) = —f(5)So(T) +Zn(s), (24)
where
%0 (s)| < C(|Inh|+|Iny(7)| +n0°(s))h> (25)

Y(7) is defined as Eq. 8 and

s—a b—s

() =max{ L L 26)

It is known that the global convergence rate of the composite classical trapezoidal
rule is lower than Riemann integral. For the influence of the 1 (s), when the singular
point is near the end of the interval, there are no convergence rate; while the singular
point is far away from the end of the interval, the convergence rate can reach O(h?)
which is the same as the convergence rate of Riemann integral.

3 Proof of theorem 2

In this section, we study the superconvergence phenomenon of the composite clas-
sical trapezoidal rule for Cauchy principal integrals.

3.1 Preliminaries

Lemma 1 Under the same assumptions of theorem 2, it holds that
2(x; = ) (i1 — 5)f (x) = (x = 5) (xi1 — ) f (x:)
— (=) (xi = 5)f (xig1) = [(xir1 — 5) (xi —x) + (xi = 5) (i1 —2)] £ (s) 27)

+R} (x)+ R?c (x) + R} (x)+ R;‘c (x)

where
R}(X) = %[(xi-&—l —5)(x; —x) + (x; — 5) (X1 — )] (x — 8)2f" (B (28)
R3(x) = —[(xiv1 — ) (6 =) + (x5 — ) (xiz1 = %)) (x = 5)° /" (Bi2) (29)

R3(x) = =3 " (00) (v =) 1 — ) — ) (30)
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and
Rj(x) = ~f (042) (x = ) (xi = 8) (xi41 —x)° 31
here Bi1, Bia, 01, Qo € (X, Xix1).

Proof:Performing Taylor expansion of f; (x) at the point x, we have

f (o)

) = 00+ £ () (6 —x) + = (3 = x)° 32)
Pl = £+ £ @0+ 2 (33)
Similarly, we have

£ = £+ 7/ (5) e 5) 4 3 (B x—5)° (34)
and

F1(x) = f(s)+ " (B) (x—s). (35)

Combining Eq. 32 to Eq. 35 together we get the results.

Lemma 2 Assume s € (X, Xm+1) for some m and let ¢; =2(s —x;)/h— 1,0 <i <
n—1. Then, we have

Xm+1, 2 1 1
—2][ [ - — } dx, i=m,
m | X—S  Xm—S  Xpmy1—S

)= 36
¢O(C) Yit1 2 1 1 . (30)
_2/ — - dx, i#m.
X X—S Xi—S§ Xit+1 — S

Proof: Following the definition of Eq. 2 and the linear transformation Eq. 4, we
have

S 2 1 1
][ [ — — ] dx
Xm X—=S Xm—S§ Xm+1 —S
_ ][x”’“z m—8) (1 =) = (= 5) (i1 —8) — (= 5)(m —5)

(r—5) Com — 9) (1 —9) *

L { ( / . ) (6 =) 1 = ) + (et —3) (6 — 8) } G

£—0 ste (x—5) (X —5) (Xmy1 — 9)

Cmn— Cm — 1

d
2 T—cp)(c3,—1) 4

= _*q)O(Cm)
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The case j # m can be proved by applying the same approach to the correspondent
Riemann integral.

Setting

Em(x) - f(x) -

(x=9) [ fCom)  fmt1) _f@)z__x—S_ x—s
2 Xn—S  Xpil—S 2 Xn—S  Xpi1—S|

(38)

Lemma 3 Let f(x) € C*[a,b] , denote E,(x) to be the error functional for the
composite classical trapezoidal rule as Eq. 38. Assume s # x; foranyi=0,1,--- n,
then there holds

][xm“Em(x)dx‘ < Ch2|Iny(7)|. (39)

X—S

m

Proof:As f(x) € C?[a,b], we get E,(x) € C?|a,b]. By the definition of

b b _ b—
][ S / FO=ZFS) oy rs)m| 225, 40)
aX—S a X—S s—a
then we have
Xm IE Xm+1 E — E —
][ +’"(’C)dx_/ M En ) ZEnS) g (5 i S 1)
X, X— X xX—s S — Xm
then we get
‘x)?l xm —_ —
][ Enl) dx‘ = / HEnbOZEnS) 4| g (5t =
Xm X—S5 Xm - 5= Xm (42)
< Ch?|Iny(7)|
and the proof is completed.
Lemma4 Fort € (—1,1), and m > 1, we have
Y oo2i+T)+ Y go(—2i+7)| < ChPn*(s). (43)
i=m i=n—m+1
Proof: By the definition of ¢ (7),we have
1—7 27
=—log|—|—— _ —_20 44
¢0(T) Og 1+T 12 N 1 QI(T)a ( )
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which means
1—- 17
3] e =200 (45)

Noting that s = x,,, + %111 =a+ (m+T1)h, we have 2(s —a)/h = T+2m+1 and

<C
Z/ \21—!—’5—1‘\3

dx C Ch?
:C/ 3 2 2
omel X0 (TH2m41)2 (s—a)

(2i+71)

(46)

On the other hand, since b = a+nh, we have 2(b—s)/h=2(n—m)—1— 7 and

> 1 dt
<c /7
B i:n—2m+1 1 2i—T+1P

o dx C Ch?
:C/2< e Re—m)—1—1 " (b—s)%
47)

i ¢0(T—2i)

i=n—m+1

Combining Eq. 46 and Eq. 47 together and the proof of this Lemma is completed.
Proof of Theorem 2: By Lemma 1, we have

([+ )i F [ Joah St ]

X1 ) X—S i—bim 2(x;i—s8)  2(xip1—9)

nil /xm [f(x)_ fla)  fxi) ]dx

x—s 2(xi—s) 2(xit1—9)

i=0,izm 7
_ f(s) ’f /xm [ 2 11 ] e
2 i=0,i£m 7 i X—S Xi—S8 Xiy1—S
S R R -
i=0,i5m 7 ¥i 4 X—5 Xi—S Xjy1—S

. [ L) >{ 11 }dx
i—07m i 2 X—S Xi—sS

Xi+1 =S
Lt
i=0,im 7 %i 4(xi —s)

B AL

i=0,i#m”* 4(X,'+] _S)
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By the definition of E,,(x) , we have

x—=s5 2xn—s) 2(xpt1—9)

xm+1E X+ 2 1 1
= s [ L }dx.
X X — Xm X—S Xm — S Xm+1— S

m

el fx) ) )
][ [ . ]d (49)

Putting Eq. 48, Eq. 49 together yields

e e ]
“ i=0 i

xX—s 2(xi41— )

:':i;/x’“ {f(x)_ fla) f(xm)J I

x—s 2(xi—s) 2(xir1—s

o ) ) i) (50)
ARk il

x—=s 2(xi—s) 2(xip1—9)

]

= —S(5)S0(7) + Zn(s)

where
Hn(s) =R +Ry+R3+Ry

and

O S LT R

l.fo#m xX; 4 -85 Xi—S Xip1—S 1)
Z /x,+1 F"(Bi)(x —s)? [ R ]dx
=0 1m 2 X—8 Xi—S Xiy1—S
. ¥ [ a2,
=— " dx
2 o i (52)

B "i s () (i — %)
i=0,im /i 4(xip1 =)

xl‘” Em
Ry — ][ ) (53)

X—S

m
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Ri=f Zq)o 2i+ 1)+ Z do(—2i+7)|. (54)
i=n—m+1
Now we estimate %, (s) term by term. For the first part of R;,we have
"il /'“‘"+1 frB)x—s?r 2 1 1],
i O#m 4 X—S Xi—S Xiy]1—S o
S [ ) [l ) e —le)]
i= 0176m Xi— S Xitl —S
Z /x,+1 f” [ X)(x—x;i+x;—s) N (xit1 —x)(x —xip1 +Xip1 — 8) .
i= Olaém Xi—S$ X+l =S
Xit+1 f//
Z / x,+x,~+1 —2x)dx
i= Ol;ém
¥ [ f” (U [ F1(Bn) (i1 =2
i=0,im X - i=0,i£m % 4 Xi+1 —S
(55)
For the first part of Eq. 55, there are no singularity, then we get
n—1 xic1 £1(R.
) f (ﬁll)(x,-+xi+1 —2x)dx
i=0,i#m”* 4
1 nzl Xit1 h
—5 X [ e - xdx
i=0,i#m " *i
1 nzl Xiel
=5 B —ndet F [ 1By
i=0,i#m " i 1 Ot;ém
1 i1 - (56)
=3 f”(gli)/ (xi—x dx+Z Z (&) / dx
i=0,i#m Xi i=0,i#m Xi
1 " il h h 1" 1"
=13 X G0 [y —oder T Y (&) G
i=0,i#m JXi i=0,i#m
hz = /! /!
=7 Y, (f"(&)—r" (&)
i=0,i#m
< CK?

where &1;, &, Bit € (xi,xit1).
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59

For the second part and third part of Eq. 55, there are no singularity, then we have

(i=x?

4 Xi—S§

n—1 Xiv1 £ : X;
‘_ ¥ 7" (Bn) (

i=0,i#m >

Xit+1

n—1

,oz#m/ |x,_s|

< Ch? Z /x'+1
|X—S\

i=0,i#m "~

1 1
<Ch® < / dx+ dx)
a §—=X Xm+1 X—S

epep (=95 —a)
= O G =) (=)

< C(|Inh|+ |Iny(7)|)h*

< Ch?

and

‘_ ¥ [ e 2 <+ (o)
i=0,i#m YN

4 Xit1—S

Similarly, for the second part of Ry, we have

S AL O LCEi e S W A
i=0.idm 7% 2 X—S8 X—S Xip1—S
< C(|Inh| +|Iny(7)|) 2

For R,, we have

n—1 Xit1 (x —x)?
Z * de < C(|Inh| + |Iny(7)|) h?
T 4(x;—s)
and
n—1 X 1" - 7 - 2
- 1 f7 (o) (Xip1 —x) dx SC(|lnh|+\lnY(7)|)h2
i=0,izm i 4(xi+l o S)

As for R3 and R4, by Lemma 3 and lemma 4, the we get
|2(5)] < |Rt| + [Ro| + Rs| +|Ra| < C(|Inh| + [Iny(z)| +n*(s))1?

and the proof is completed.

(37

(58)

(59)

(60)

(61)

(62)
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3.2 The calculation of So(t)

Let O, (x) be the function of the second kind associated with the Legendre polyno-

mial P, (x), defined by [Andrews (2002)]

o) = 310|401 =)~

We also define

W(f,r)::f(r)+i[f(2i+f)+f(—2i+'c)],’ce(—1,1).
i=0

Then, by the definition of W,

1 147 1&/ 2i+l+t  2i—1-7
w = -1 oL
(Qo)(®) = i Z<n2i—1+f+n2i+1—f)

1 2i+1
= L2 T,
2ise 2i4+1—71

, B T d 2i+7T —2i+71
W(xQo)(7) = 7‘2 <(2i+r)2— TR T 1>

it follows that

So(Q),7) = W(Qo +x0),7) = ntan%

For Sy(7) =0, we have

Corollary 1 Under the same assumption of theorem 2,we have
|En(f35)| < C(|Inh| +1°(s))n>

and n(s)is defined as Eq. 26.

Based on the theorem 2, we present the modify classical trapezoidal rule
L(f;s5) = I(f35) — f(5)So(7),

and

AUDES LN AT

then we have

(63)

(64)

(65)

(66)

(67)

(68)
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Corollary 2 Under the same assumption of theorem 2,we have

Ey(f3) < C(|Inh| + |Iny(t)|+1°(s))? (69)

where y(7) and 1 (s) is defined as Eq. 8 and Eq. 26,respectively.

4 Numerical Examples

In this section, some computational results are given to illustrated our theoretical
analysis.

Example 1 Consider the Cauchy principal value integral with f(x) =x%,a=—1,b=
1 and the exact value is

3

25 + 2%—1— % —&—sélogu.
We adopt the uniform meshes to examine the convergence rate of the trapezoidal
rule 7, (x%,s) and the modified classical trapezoidal rule [, (x®,s) with the dynamic
point with s = x(, /4 + (1 +7)h/2 and s = a+ (T + 1)h/2.
The left of table 1 show that when the local coordinate of singular point 7 = 0,
the quadrature reach the convergence rate of O(h?) as for the non-supersingular
point the there are no convergence rate which agree with our theorematically anal-
ysis. From the right of the table 1 shows the modify classical trapezoidal rule
have the convergence rate of O(h?) at both the superconvergence point and non-
superconvergence point which coincide with our Corollary 2. For the case of
s =a+ (t+1)h/2, table 2 show that there are no superconvergence phenomenon
for the classical trapezoidal rue and the modify classical trapezoidal rule which
coincide with our theoretically analysis.

Table 1: Errors of the (modified) classical trapezoidal rule I,(x%,s) and I,(x%,s)
with s = X[n/4] + (1 =+ ’L')h/2

I,(x%,5) I,(x%,5)

n 7=0 T= % T= % T= % T= %

32 1.3437e-003  -2.5900e-002 -4.2668e-002 | 1.2926e-003 1.2756e-003
64 3.4884e-004 -3.6459e-002 -6.1341e-002 | 3.4242e-004 3.4029e-004
128  8.8818e-005 -4.2489¢-002 -7.2485e-002 | 8.8016e-005 8.7749e-005
256  2.2405e-005 -4.5713e-002 -7.8570e-002 | 2.2305e-005 2.2272e-005
512 5.6264e-006 -4.7381e-002 -8.1749e-002 | 5.6139e-006 5.6097e-006
1024 1.4097e-006 -4.8229¢-002 -8.3373e-002 | 1.4082e-006 1.4076e-006
h¢ 1.9793 - - 1.9685 1.9647
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Table 2: Errors of the (modified) classical trapezoidal rule I,(x®,s) and I,(x%,s)
withs =a+ (t+1)h/2

1,(x%,s) I,(x%,5)

n 7=0 T= % T= % T= % T= %

32 -2.1969e-001 -2.4502e+000 -4.0226e+000 | -9.4925e-002 -7.5008e-002
64  -2.4502e-001 -2.8380e+000 -4.7362e+000 | -1.1311e-001 -9.1582e-002
128  -2.5769e-001 -3.0494e+000 -5.1299e+000 | -1.2229e-001 -9.9966e-002
256  -2.6403e-001 -3.1596e+000 -5.3365e+000 | -1.2689e-001 -1.0418e-001
512 -2.6719e-001 -3.2160e+000 -5.4423e+000 | -1.2920e-001 -1.0629e-001
1024  -2.6878e-001 -3.2444e+000 -5.4958e+000 | -1.3036e-001 -1.0735e-001
h¢ - - - - -

Table 3: Errors of the (modified) classical trapezoidal rule I,(x* — 1,s) and I, (x*> —

1,s) with s = xp,, 14 + (1 4+ 7)1/2

L(x>—1,s) L(x>—1,s)

n =0 T=1 T=1% T=1 T=3

32 7.8101e-004  2.4973e+000 4.3504e+000 | 7.4135e-004 7.2854e-004
64 2.0592e-004 2.4283e+000 4.2193e+000 | 2.0064e-004 1.9890e-004
128  5.2854e-005 2.3926e+000 4.1510e+000 | 5.2171e-005 5.1945e-005
256  1.3388e-005 2.3745e+000 4.1163e+000 | 1.3301e-005 1.3272e-005
512 3.3688e-006 2.3654e+000 4.0987e+000 | 3.3579e-006 3.3542e-006
1024  8.4495e-007 2.3608e+000 4.0899e+000 | 8.4358e-007 8.4312e-007
h* 1.9705 - - 1.9559 1.9510

Table 4: Errors of the (modified) classical trapezoidal rule I,(x* — 1,s) and I, (x*> —
l,s) withs=a+ (t+1)h/2

(x> —1,s) L(x*—1,s)

n =0 T=1 T=7% T=1 T=7%

32 1.6628e-002  2.9965¢-001 5.6304e-001 | 1.2032e-002  1.0990e-002
64 8.3822e-003  1.5163e-001 2.8529e-001 | 6.0914e-003 5.5717e-003
128 4.2078e-003  7.6264e-002 1.4359¢-001 | 3.0641e-003 2.8046e-003
256  2.1081e-003 3.8244e-002 7.2028e-002 | 1.5366e-003 1.4069¢-003
512 1.0551e-003 1.9150e-002 3.6073e-002 | 7.6945e-004 7.0463e-004
1024 5.2779e-004 9.5822e-003  1.8051e-002 | 3.8501e-004  3.5260e-004
h% 0.9955 0.9934 0.9926 0.9932 0.9924
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Example 2 Consider the Cauchy principal value integral with f(x) = x> —1,a =
—1,b =1 and the exact value is

1+s
1—s

25+ (1 —s5?)log

We adopt the uniform meshes to examine the convergence rate of the trapezoidal
rule I,(x*> — 1,5) and the modified classical trapezoidal rule 7,(x*> — 1,s) with the
dynamic point with s = xj,, ;4 + (1 +7)h/2 and s = a+ (7 + 1)1 /2.

The left of table 3 show that when the local coordinate of singular point T = 0,
the quadrature reach the convergence rate of O(h?) as for the non-supersingular
point there are divergence. From the right of the table 3 shows the modify classical
trapezoidal rule have the convergence rate of O(h?) at both the superconvergence
point and non-superconvergence point which coincide with our Corollary 2. For
the case of s = a+ (74 1)h/2, table 4 show that the convergence for the classical
trapezoidal rue and the modify classical trapezoidal rule are both O(h) for both the
superconvergence point and the non-superconvergce point because of the end of the
boundary condition f(a) = f(b) = 0.

Example 3 Now we consider an example of less regularity. Leta = —b = —1, and
s =0 and

f(x) = Fi(x) := x* 4 (2 +sign(x)) |x|> 703, i = —1,0, 1.

Obviously, .Z%;(x) € C'=*+93[—1,1](i = —1,0.8,1). The exact value of the integral

18
104

3-2i
The numerical results are presented in Table 5 and Table 6. When the density func-
tion f(x) is smooth enough i = —1, the error bound is O(h?), and if the density
function has less regularity i = 0.8, 1, the convergence rate is O(h*’) and O(h?)
respectively, there is no superconvergence phenomenon, which means the regular-
ity of density function can not be reduced.

fz(%(x),())

Table 5: Errors of the mod-classical trapezoidal rule

n i=-—1 h* i=0.8 h* i=1 h*

32 1.0270e-002 7.1836e-002 3.1441e-001

64 2.6245e-003  1.9684 3.9924e-002 8.4743e-001 2.1687e-001  5.3587e-001
128 6.6343e-004 1.9840 2.3495e-002 7.6492e-001  1.5198e-001  5.1295e-001
256  1.6680e-004 1.9918 1.4192e-002 7.2732e-001 1.0712e-001  5.0462e-001
512 4.1821e-005 1.9958 8.6680e-003  7.1126e-001  7.5659e-002  5.0164e-001
1024 1.0471e-005 1.9978 5.3188e-003  7.0460e-001  5.3478e-002  5.0058e-001
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Table 6: Errors of the mod-classical trapezoidal rule

n i=—1 h* i=0.8 h* i=1 h*
32
64 7.6457e-003 7.0460e-001 9.7550e-002

128 1.9610e-003 1.9630 1.6429e-002 9.5779e-001  6.4889e-002  5.8816e-001
256 4.9663e-004 1.9814 1.6429e-002 8.2045e-001  4.4856e-002  5.3267e-001
512 1.2498e-004  1.9905 5.5236e-003  7.5216e-001  3.1461e-002  5.1176e-001
1024 3.1350e-005 1.9951 3.3492e-003  7.2178e-001  2.2182e-002  5.0418e-001

5 Conclusion

In this paper, we study the composite classical trapezoidal rule for numerical eval-
uation integrals defined on interval with Cauchy singular kernel. Based on the error
expansion in each subinterval, the superconvergence phenomenon is obtained. This
kind of Cauchy principal value integral equation is widely used in many engineer-
ing area [ Yu (2002);Yu (1993);Han and Atluri (2007)]. Certainly, in using this
method to evaluate the Cauchy principal value integral, the case where the singular
point happens to be a superconvergence point is rare. However, by using certain
mesh techniques or by extrapolation [Li Wu and Yu (2009)], the most potentially
useful and important aspect of the superconvergence result is the solution of the sin-
gular integral equation. The results in this paper show a possible way to improve
the accuracy of the collocation method for singular integral equations by choosing
the superconvergence points to be the collocation points.
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