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A comparative study of three domain-integral evaluation
techniques in the boundary-domain integral equation

method for transient thermoelastic crack analysis in FGMs

A.V. Ekhlakov1,2, O.M. Khay1,3, Ch. Zhang1, X.W. Gao4,
J. Sladek5 and V. Sladek5

Abstract: A boundary-domain integral equation method is applied to the tran-
sient thermoelastic crack analysis in functionally graded materials. Fundamental
solutions for homogeneous, isotropic and linear elastic materials are used to de-
rive the boundary-domain integral equations. The radial integration method, the
Cartesian transformation method and the cell-integration method are applied for
the evaluation of the arising domain-integrals. Numerical results for dynamic stress
intensity factors obtained by the three approaches are presented, compared and dis-
cussed to show the accuracy and the efficiency of the domain-integral evaluation
techniques.

Keywords: Radial integration method, Cartesian transformation method, cell-
integration method, dynamic stress intensity factors, functionally graded materials.

1 Introduction

Functionally graded materials (FGMs) represent a new class of composite materials
formed by continuously changing composition of constituents in space. Compared
to the conventional composite materials, FGMs possess many superior thermal and
mechanical properties as well as corrosion-resistant and wear-resistant properties
[Suresh and Mortensen (1998)]. Investigation of the fracture and fatigue properties
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of FGMs under extreme mechanical and thermal loadings is important to their ther-
mal and mechanical integrity, reliability and durability in engineering applications.
Thermoelastic fracture analysis may provide a fundamental understanding of and
a deep insight into the failure mechanisms of FGMs that may aid in the design,
optimisation and applications of FGMs. Due to the high mathematical complexity
of the governing equations of transient linear coupled thermoelasticity for FGMs,
which are given by the coupled partial differential equations with variable coeffi-
cients, advanced numerical methods have to be developed and applied. In principle,
the finite element method (FEM) [Keramidas and Ting (1976); Eischen (1987); An-
las; Santare and Lambros (2000); Cannarozzi and Ubertini (2001)], the boundary
element method (BEM) [Aliabadi (2002); Balaš; Sládek and Sládek (1989)] and
the meshless Petrov-Galerkin method [Sladek; Sladek and Zhang (2005); Sladek;
Sladek; Zhang and Tan (2006); Sladek; Sladek; Solek and Atluri (2008a, 2008b);
Sladek; Sladek; Solek; Tan and Zhang (2009)] can be applied to the thermoe-
lastic fracture analysis in FGMs. The BEM has been developed and success-
fully used in homogenous, isotropic and linear elastic solids [Hosseini-Tehrani;
Hosseini-Godarzi and Tavangar (2005); Gao; Zhang; Sladek and Sladek (2008)].
Dong and Atluri (2013a, 2013b) have proposed SGBEM-FEM alternating/coupling
methods based on weakly-singular Symmetric Galerkin BEM (SGBEM) [Dong
and Atluri (2012)]. These methods can be applied to fracture and fatigue analysis
curved, branching and intersecting cracks in complex structures. Applications of
BEM to continuously non-homogeneous, isotropic and linear elastic solids are very
restricted since the required fundamental solutions for the general FGMs are either
not available or mathematically extremely complicated. To circumvent this diffi-
culty, a boundary-domain integral equation method (BDIEM) for two-dimensional
(2-D) transient linear coupled thermoelastic crack analysis in finite, continuously
non-homogeneous, isotropic and linear elastic FGMs subjected to a thermal shock
is presented in this paper. The Laplace-transform technique is applied to eliminate
the time-dependence in the governing equations. To derive boundary-domain inte-
gral equations (BDIEs) the fundamental solutions for homogeneous, isotropic and
linear elastic solids are applied. In this case, the BDIEs contain domain integrals,
which vanish when the material under investigation is homogeneous. It should be
remarked that the BDIE’s have been formulated for the primary fields (displace-
ments and temperature) to simplify the analysis. Therefore, the presented BDIEM
cannot be directly used in complex structural geometries. From the mathemati-
cal point of view there are no limitations to derive the BDIEs for the secondary
fields (tractions and thermal flux), for which it is not to difficult to use the proposed
method. For fracture analysis curved, branching or intersecting cracks in complex
structures can be applied for example the SGBEM-FEM alternated method [Dong
and Atluri (2013a, 2013b)]. Since an analytical evaluation of the occurring domain
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integrals cannot be carried out in general cases, numerical techniques are required.
To this end, the direct technique, the cell-integration method (CIM), can be used,
in which the interior of the domain has to be discretized into internal cells. By us-
ing this technique, Ekhlakov; Khay; Zhang; Sladek and Sladek (2010, 2012a) have
presented the boundary-domain element method for thermoelastic crack analysis.
But in the CIM, an important advantage of the BEM is lost due to the domain dis-
cretization. Several numerical methods for computing domain integrals have been
proposed in the literature over the past years. The most extensively employed meth-
ods are the dual reciprocity method (DRM) [Nardini and Brebbia (1983)], multiple
reciprocity method [Nowak and Brebbia (1989)] and the fast multipole method
[Greengard and Rokhlin (1987)]. A powerful robust transformation technique,
the so-called radial integration method (RIM), has been proposed by Gao (2002a,
2002b). It can be applied to any complicated domain integrals including singular
ones. The RIM combined with the BEM based on the BDIEs has been success-
fully applied to fracture analysis in FGMs [Gao; Zhang; Sladek and Sladek (2008);
Ekhlakov; Khay; Zhang; Sladek; Sladek and Gao (2012b)]. Hematiyan (2007,
2008) has developed the Cartesian transformation method (CTM) to treat domain
integrals without any internal cells in the domain of the problem. In the CTM,
a domain integral is transformed into a boundary integral and a one-dimensional
integral in the Cartesian coordinate system.

This paper is focused on a comparative study of three domain-integral evaluation
techniques: the RIM, the CTM and the CIM. A spatial collocation-based BDIEM
is developed in the Laplace-transformed domain. To obtain the time-dependent
solutions, the Laplace-inversion algorithm by Stehfest (1970) is applied. Numerical
examples for computing dynamic stress intensity factors (SIFs) are presented and
discussed to compare the accuracy and the efficiency of the three domain-integral
evaluation techniques.

2 Problem formulation and boundary-domain integral equations

Let us consider a two-dimensional (2-D), continuously non-homogeneous,
isotropic and linear thermoelastic FGM. In the absence of body forces and heat
sources, the cracked FGM satisfies the governing equations of transient linear cou-
pled thermoelasticity [Balaš; Sládek and Sládek (1989)]

σi j, j(x, t) = ρ(x)üi(x, t),

[k(x)θ,i(x, t)],i−ρ(x)c(x)θ̇(x, t)− k(x)η(x)u̇k,k(x, t) = 0, (1)

the Duhamel-Neumann constitutive equations

σi j(x, t) = ci jkl(x)uk,l(x, t)− γ(x)θ(x, t)δi j, (2)
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the initial and boundary conditions

ui(x, t)|t=0 = u̇i(x, t)|t=0 = 0, θ(x, t)|t=0 = 0,

ui(x, t) =
_ui(x, t), x ∈ Γu, θ(x, t) =

_

θ(x, t), x ∈ Γθ ,

ti(x, t) =
_
t i(x, t), x ∈ Γt , q(x, t) = _q(x, t), x ∈ Γq,

ti (x, t) = 0, x ∈ Γc q(x, t) = 0, x ∈ Γc.

(3)

In Eqs. (1)-(3), σi j, ui and ti = σi jn j represent the stress, the displacement and the
traction components, θ and q =−kθ, j n j are the temperature and the heat flux, x is
the position vector, t is the time variable, n j are the components of the outward unit
normal vector, δi j denotes the Kronecker symbol, γ(x) is the stress-temperature
modulus, Γu and Γt are the parts of the external boundary Γ = Γu∪Γt , in which the
displacements _ui and the tractions

_
t are prescribed, Γθ and Γq are the parts of the

external boundary Γ = Γθ ∪Γq with the specified temperature
_

θ and the heat flux
_q, Γc = Γ+

c ∪Γ−c represents the upper and the lower crack-faces Γ+
c and Γ−c . The

material parameters of the FGM, namely the mass density ρ(x), Young’s modulus
E(x), thermal conductivity k(x), specific heat c(x) and linear thermal expansion
coefficient α(x), are assumed to depend continuously on the Cartesian coordinates,
while the Poisson’s ratio ν is a constant. In this case, the fourth order elasticity
tensor can be written as

ci jkl(x) = µ(x)
[

2ν

1−2ν
δi jδkl +δkiδl j +δk jδli

]
(4)

with µ(x) =
E(x)

2(1+ν)
,

where µ(x) is the shear modulus. Unless otherwise stated, a comma after a quantity
represents spatial derivatives, superscript dots indicate time derivatives, the con-
ventional summation rule over double indices is implied, and Latin indices take the
values of 1 and 2. Substituting Eqs. (2) and (4) into Eqs. (1) and then applying the
Laplace-transform yield

ci jkl ūk,l j− γθ̄,i−ρ p2ūi +
[
ci jkl, jūk,l− γ,iθ̄

]
= 0,

θ̄,ii− p
κ

θ̄ −η pūk,k +
k,i
k θ̄,i = 0,

(5)

where the superimposed bar denotes the Laplace-transformed quantity, p is the
Laplace-transform parameter, and κ(x) is the thermal conductivity.
The integral representations of the displacements and the temperature at an arbi-
trary point of the domain are derived from the Betti’s reciprocal theorem in con-
junction with the fundamental solutions of the Laplace-transformed linear coupled
thermoelasticity for homogeneous solids. By moving the observation point to the
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boundary x ∈ Γ or keeping it in the domain x ∈ Ω the following BDIEs for the
mechanical and thermal fields are obtained as

ū j(x, p) =−
∫
Γ

[
T̄i j(x,y, p)ūi(y, p)− 1

γ̃(y)Ūi j(x,y, p)t̄i(y, p)
]

dΓy

+κ0
∫
Γ

[
Z̄ j(x,y, p)θ̄(y, p)− 1

η̃(y)Ū j(x,y, p)q̄(y, p)
]

dΓy + F̄(u)
j (x, p),

θ̄(x, p) = κ0η0 p
γ0

∫
Γ

[
T̄i(x,y, p)ūi(y, p)− 1

γ̃(y)Ūi(x,y, p)t̄i(y, p)
]

dΓy

−κ0
∫
Γ

[
F̄(x,y, p)θ̄(y, p)− 1

η̃
T̄ (x,y, p)q̄(y, p)

]
dΓy + F̄(θ)(x, p).

(6)

The functions F̄(u)
j and F̄(θ) are defined as

F̄(u)
j (x, p) =−p2ρ0

∫
Ω

(
ρ̃(y)
γ̃(y) −1

)
Ūi j(x,y, p)ūi(y, p)dΩy +µ0

∫
Ω

[
c0

ikik
α̃(y)

γ̃,k(y)
γ̃(y) Ūi j(x,y, p)

−
(

1
α̃(y) −1

)( 1
1−2ν

δliδkm +δklδim
)

Ūl j,m(x,y, p)
]

ūi,k(y, p)dΩy

+
∫
Ω

[
p
(

1
η̃(y)κ̃(y) −1

)
Ū j(x,y, p)− γ0

γ̃, j(y)
γ̃(y) Ūkk(x,y, p)

]
θ̄(y, p)dΩy

+κ0
∫
Ω

[(
1

η̃(y) −1
)

Ū j,i(x,y, p)− 1
η0

1
η̃(y)

γ̃,i(y)
γ̃(y) Ū j(x,y, p)

]
θ̄,i(y, p)dΩy,

(7)

F̄(θ)(x, p) = κ0η0 p
γ0

{
p2ρ0

∫
Ω

(
ρ̃(y)
γ̃(y) −1

)
Ūi(x,y, p) ūi(y, p)dΩy −µ0

∫
Ω

[
c0

ikik
α̃(y)

γ̃,k(y)
γ̃(y)

×Ūi(x,y, p)−
(

1
α̃(y) −1

)( 1
1−2ν

δliδkm +δklδim
)

Ūl,m(x,y, p)
]

ūi,k(y, p)dΩy

}
−p

∫
Ω

[(
1

η̃(y)κ̃(y) −1
)

T̄ (x,y, p)−κ0η0
γ̃, j(y)
γ̃(y) Ū j(x,y, p)

]
θ̄(y, p)dΩy

−κ0
∫
Ω

[(
1

η̃(y) −1
)

T̄,i(x,y, p)− 1
η0

1
η̃(y)

γ̃,i(y)
γ̃(y) T̄ (x,y, p)

]
θ̄,i(y, p)dΩy.

In Eqs. (6) and (7), x and y represent the source and observation points, Ūi j,Ūi

and T̄ are the fundamental solutions for the displacements and the temperature for
homogeneous, isotropic and linear thermoelastic solids, while T̄i j, T̄i, Z̄i and F̄ are
the fundamental tractions and temperature gradient, respectively [Balaš; Sládek
and Sládek (1989)], a tilde denotes the ratio of the non-homogeneous quantity to
the corresponding homogeneous quantity that is designated by a subscript zero.
The BDIEs (6) contain boundary and domain integrals with singular kernels. The
strongly singular integrals are understood as the Cauchy principal value integrals.
Making use of the singularity subtraction technique and the variable transforma-
tion technique, the strong and the weak singularities in Eqs. (6) can be removed
[Aliabadi (2002)].
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3 Numerical implementation of the BDIEM

In order to solve the BDIEs in the Laplace-transformed domain, a collocation
method is employed for the spatial discretization by using quadratic elements [Ali-
abadi (2002)]. The boundary Γ is divided into Nq quadratic boundary elements
Γq. After regularization the domain-integrals can be rewritten by application of the
Gauss-Ostrogradsky theorem and arranging as

F̄(u)
j (x, p) =

∫
Γ

f (1)i j (x,y, p)ūi(y, p)dΓy+
∫
Γ

f (2)j (x,y, p)θ̄(y, p)dΓy

+
∫
Ω

g(1)i j (x,y, p)ūi(y, p)dΩy +
∫
Ω

g(2)j (x,y, p)θ̄(y, p)dΩy,

F̄(θ)(x, p) =
∫
Γ

f (3)i (x,y, p)ūi(y, p)dΓy +
∫
Γ

f (4)(x,y, p)θ̄(y, p)dΓy

+
∫
Ω

g(3)i (x,y, p)ūi(y, p)dΩy +
∫
Ω

g(4)(x,y, p)θ̄(y, p)dΩy,

(8)

where the functions f (1)i j , f (2)j , f (3)i , f (4) and g(1)i j , g(2)j , g(3)i and g(4) are obtained
from Eqs. (7), see Ekhlakov; Khay; Zhang; Sladek; Sladek and Gao (2012b)
for more details. In Eqs. (8), the boundary integrals can be computed together
with other boundary integrals in the BDIEs, while for computing the domain-
integrals three different domain-integral evaluation techniques are tested in the
present analysis. The first approach is the conventional CIM [Aliabadi (2002)], in
which the interior of the domain is discretized into quadrilateral domain elements
for evaluating the domain-integrals [Ekhlakov; Khay; Zhang; Sladek and Sladek
(2010, 2012a)]. Although the CIM gives accurate results, the domain discretiza-
tion removes the main advantages of the BEM in that only the boundary of the
domain needs to be discretized into boundary elements. For this reason, two mesh-
less techniques are considered, namely the RIM and the CTM. For convenience,
the domain-integrals in Eqs. (8) can be represented without loss of generality by

Ī(u)(x, p) =
∫
Ω

Ḡi(x,y, p)ūi(y, p)dΩy, Ī(θ)(x, p) =
∫
Ω

Ḡ(x,y, p)θ̄(y, p)dΩy. (9)

In Eqs. (9), the functions Ḡi and Ḡ correspond to the functions g(1)i j , g(3)i and

g(2)j , g(4) from Eqs. (8), respectively. The direct transformation of the domain-
integrals (9) is impracticable because they contain the unknown displacements and
temperature. The unknown fields can be represented by a series of prescribed basis
functions as commonly used in the DRM [Nardini and Brebbia (1983)].
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3.1 Approximation of the unknown fields

The displacements and the temperature are approximated by a series of the pre-
scribed radial basis functions and the linear polynomials in global coordinates as

ūi(x, p) =
NA

∑
A=1

α
A
i ϕ

A(R)+a j
i x j +a0

i , θ̄(x, p) =
NA

∑
A=1

β
A
ϕ

A(R)+b jx j +b0, (10)

NA

∑
A=1

α
A
i (p) = 0,

NA

∑
A=1

α
A
i (p)xA

j = 0,
NA

∑
A=1

β
A(p) = 0,

NA

∑
A=1

β
A(p)xA

j = 0, (11)

where ϕA(R) is the radial basis function of the distance R = |x− xA| from the ap-
plication point A to the field point x, xA

j denotes the Cartesian coordinates of the
application point A, NA is the total number of the application points consisting of
all boundary nodes and some selected internal nodes, and αA

i , β A, a j
i and b j are

the unknown expansion coefficients to be determined. Here, the combination of
the radial basis functions and the polynomials in terms of the global coordinates
are applied to obtain satisfactory results [Chen; Golberg and Bowman (1999); Gao
(2002a)]. The approximation of the unknown functions by (10) has been success-
fully applied for the fracture analysis of FGMs [Gao; Zhang; Sladek and Sladek
(2008); Ekhlakov; Khay; Zhang; Sladek; Sladek and Gao (2012b)]. The fourth
order spline-type radial basis function [Gao (2002a)] is used

φ
A(R) =

{
1−6

(
R
dA

)2
+8
(

R
dA

)3
−3
(

R
dA

)4
, 0≤ R≤ dA,

0, R≥ dA,
(12)

where dA is the support size for the application point A as shown in Fig. 1a. The
unknown coefficients αA

i , β , ak
i and bk can be determined by applying the applica-

tion point A in Eqs. (10)-(11) to every nodes. This leads to the following systems
of linear algebraic equations

ū = ΦΦΦ · ᾱ, θ̄ = ΦΦΦ · β̄ , (13)

where ū and θ̄ denote the vectors of the displacements and the temperature at all
application points A, respectively, and α and β are the vectors consisting of the
unknown coefficients αA

i , β , ak
i and bk. It is assumed that the two application

points do not coincide. Therefore, the square matrix ΦΦΦ is invertible and thereby

α = ΦΦΦ
−1 · ū, β = ΦΦΦ

−1 · θ̄ . (14)

It should be noted that the matrix ΦΦΦ is uniquely determined by the location of the
application points and independent of the value of the Laplace-transform parameter
p. Thus, the matrix ΦΦΦ has to be evaluated only once.
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Figure 1: (a) Approximation of the unknown fields by the prescribed basis func-
tions, (b) Relationship between distances

Substitution of Eqs. (10) into the domain-integrals of Eqs. (9) yields

Ī(u)(x, p) = αA
i (p)

∫
Ω

Ḡi(x,y, p)ϕA(R)dΩy +ak
i (p)

∫
Ω

Ḡi(x,y, p)xkdΩy

+a0
i (p)

∫
Ω

Ḡi(x,y, p)dΩy,

Ī(θ)(x, p) = β A(p)
∫
Ω

Ḡ(x,y, p)ϕA(R)dΩy +bk(p)
∫
Ω

Ḡ(x,y, p)xkdΩy

+b0(p)
∫
Ω

Ḡ(x,y, p)dΩy.

(15)

The proposed approximation of the unknown fields in Eqs. (10) is used in the RIM
and the CTM.

3.2 Radial integration method

For the transformation of the appearing domain integrals Ī(u)(x, p) and Ī(θ)(x, p) in
Eqs. (9), the RIM by Gao (2002a, 2002b) can be used. Applying the RIM to the
domain integrals of Eqs. (15) results in

Ī(u)(x, p) = αA
i (p)

∫
Γ

1
r

∂ r
∂n F̄(1A)

i (x,y, p)dΓy +ak
i (p)

∫
Γ

r,k
r

∂ r
∂n F̄(1)

i (x,y, p)dΓy

+
[
ak

i (p)xk +a0
i (p)

]∫
Γ

1
r

∂ r
∂n F̄(0)

i (x,y, p)dΓy,

Ī(θ)(x, p) = β A(p)
∫
Γ

1
r

∂ r
∂n F̄(1A)(x,y, p)dΓy +bk(p)

∫
Γ

r,k
r

∂ r
∂n F̄(1)(x,y, p)dΓy

+
[
bk(p)xk +b0(p)

]∫
Γ

1
r

∂ r
∂n F̄(0)(x,y, p)dΓy.

(16)
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In Eqs. (16), the radial integrals are defined as

F̄(1A)
i (x,y, p) =

r(y)∫
0

rḠi(x,y, p)ϕA(R)dr, F̄(1A)(x,y, p) =
r(y)∫
0

rḠ(x,y, p)ϕA(R)dr,

F̄(1)
i (x,y, p) =

r(y)∫
0

r2Ḡi(x,y, p)dr, F̄(1)(x,y, p) =
r(y)∫
0

r2Ḡ(x,y, p)dr,

F̄(0)
i (x,y, p) =

r(y)∫
0

rḠi(x,y, p)dr, F̄(0)(x,y, p) =
r(y)∫
0

rḠ(x,y, p)dr.

(17)

The radial integrals in Eqs. (17) are functions of the boundary point y for the bound-
ary integrals in Eqs. (16). It is important to note here that in the integrals (16) the
appearing term r,k is constant. The radial integrals in Eqs. (17) are regular and
can be computed numerically by using standard Gaussian quadrature formula. For
the evaluation of the radial integrals, the radial basis function ϕA(R) should be
expressed as a function of r. The following relations are used (see Fig. 1b)

yk = xk + r,kr and R =
√

r2 + sr+ R̄2 with s = 2r,iR̄i.

3.3 Cartesian transformation method

The Cartesian transformation method by Hematiyan (2007, 2008) is another
numerical method for the evaluation of the domain-integrals without domain dis-
cretization. Following the CTM, the domain-integrals Ī(u)(x, p) and Ī(θ)(x, p) in
Eqs. (15) are expressed as

Ī(u)(x, p) = αA
i (p)

Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡi(x,y, p)ϕA(R)dy∗1

]
dy2

+ak
i (p)

Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡi(x,y, p)xkdy∗1

]
dy2

+a0
i (p)

Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡi(x,y, p)xkdy∗1

]
dy2,

Ī(θ)(x, p) = β A(p)
Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡ(x,y, p)ϕA(R)dy∗1

]
dy2,

+bk(p)
Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡ(x,y, p)xkdy∗1

]
dy2

+b0(p)
Nq

∑
q=1

∫
Γq

[
y1(y2)∫

a
Ḡ(x,y, p)dy∗1

]
dy2.

(18)
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where a is an arbitrary constant that can be taken as the mean value of x1 over the
boundary Γ. The one-dimensional integrals in Eqs. (18) are evaluated by Gaussian
quadrature formula. By using Nl integration intervals along the y1-direction, we
obtain

Ī(u)(x, p) = αA
i (p)

Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠi(x,y(ηi,η j), p)ϕA(R(ηi,η j))

+ak
i (p)

Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠi(x,y(ηi,η j), p)xk(ηi,η j)

+a0
i (p)

Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠi(x,y(ηi,η j), p),

Ī(θ)(x, p) = β A(p)
Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠ(x,y(ηi,η j), p)ϕA(R(ηi,η j))

+bk(p)
Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠ(x,y(ηi,η j), p)xk(ηi,η j)

+b0(p)
Nq

∑
q=1

Jq
Ni

∑
i=1

wi
Nl

∑
l=1

Jl
N j

∑
j=1

w jḠ(x,y(ηi,η j), p),

(19)

where Ni and N j are the numbers of the integration points for the integration over
the boundary element Γq and the l-th interval of the inner integrals, ηm, wm and
Jm are the Gaussian points, the weights and the Jacobian of the transformation,
respectively. In this manner, the domain-integrals can be evaluated without domain
discretization.

3.4 System of linear algebraic equations

After numerical integrations and imposing the prescribed boundary conditions the
system of 3N linear algebraic equations can be written as

Abxb = yb + Dbu, for boundary nodes,
Aixb + ui = yi + Diu, for internal nodes,

(20)

where N = Nw +Nd is the total number of the unknown quantities, Nw and Nd

correspond to the number of the boundary nodes and the number of the internal
nodes, respectively, the superscripts b and i denote the quantities at a boundary
point and an interior point, respectively. In Eqs. (20), xb is the 3Nwvector of the
unknown values of the displacements ūi, the tractions t̄i, the temperature θ̄ and the
heat flux q̄ at the boundary collocation points, ui is the 3Nd vector of the unknown
displacements ūi and the temperature θ̄ at the interior collocation points, u is the
3N vector composed of vectors xb and ui, yb and yi denote the 3Nw and 3Ndvectors
of the prescribed boundary quantities. The sizes of the matrices Ab, Ai, Db and Di
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are 3Nw× 3Nw, 3Nd × 3Nw, 3Nw× 3N and 3Nd × 3N, respectively. It should be
noted that the matrices Db and Di stem from the evaluation of the domain integrals
F̄(u)

j and F̄(θ). The system of linear algebraic equations (20) is solved numerically
to obtain the boundary unknowns xband the primary interior field quantities ui for
discrete values of the Laplace-transform parameter p. The final time-dependent
solutions are found by the numerical inversion of the Laplace transform using the
Stehfest’s algorithm [Stehfest (1970)].

3.5 Computation of the stress intensity factors

There are many established methods available for the evaluation of SIFs. In this
analysis, the extrapolation technique following directly from the asymptotic ex-
pansion of the displacements in the vicinity of the crack-tip is employed [Aliabadi
(2002)]. The asymptotic stress and displacement fields near the crack-tip in con-
tinuously non-homogeneous and linear elastic FGMs have the same singularity
and structure as those in homogeneous and linear elastic solids [Eischen (1987)].
Hence, the SIFs can also be used to linear thermoelastic FGMs. For a central crack
of the length 2a that is located on the x1−axis with the crack-tips at x1 = ±a, the
dynamic SIFs are related to the crack-opening-displacements ∆ui(x1, t) by{

K±I (t)
K±II (t)

}
=

√
2π

κν +1
µ

tip lim
x1→±a

1√
a∓ x1

{
∆u2 (x1, t)
∆u1 (x1, t)

}
, (21)

where K±I (t) and K±II (t) represent the mode-I and mode-II dynamic SIFs, κν = 3−
4ν or κν = (3−ν)/(1+ν) for plane strain or plane stress state, respectively, and
µtip is the shear modulus at the crack-tips x1 =±a. For convenience, the dynamic
SIFs and the time are normalized as K̄(t) = K(t)/α0E0θ0

√
πa and t̄ = t k0/a2ρ0c0.

4 Numerical examples

To compare the three different domain-integral evaluation techniques in the
presented BDIEM two thermoelastic crack problems are analyzed. In the first ex-
ample, an edge crack in a rectangular, isotropic, continuously non-homogeneous
and linear thermoelastic FGM plate subjected to a cooling thermal shock θ(x, t) =
−θ0H(t) at the lateral side is considered (Fig. 2a). Here, θ0 is the constant am-
plitude and H(t) is the Heaviside step function. The geometry is described by the
plate width w = 1, plate height 2h = 3w and crack length a = 0.4w. The material
gradation in the xi-direction is given by an exponential law E(x) = E0 exp(αg|xi|),
k(x) = k0 exp(βg|xi|) and c(x) = c0 exp(γg|xi|) with the gradient parameters αg =
ln(Eb/E0)/`, βg = ln(kb/k0)/` and γg = ln(cb/c0)/`, where E0 = E(0), k0 = k(0),
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c0 = c(0) and Eb = E(`), kb = k(`)and cb = c(`) are the Young’s modulus, the ther-
mal conductivity and the specific heat at the left and the right side of the plate with
the material gradation in the x1-direction (Fig. 2b) or at the bottom and the top side
of the plate with the gradation in the x2-direction (Fig. 2c), i.e. ` is equal to w or
h, respectively. The mass density, the Poisson’s ratio and the linear thermal expan-
sion coefficient are taken as constant, e.g., ρ(x) = 1, ν = 0.25 and α(x) = 0.02,
respectively. Plane strain condition is assumed in the numerical analysis.

Figure 2: An edge crack in a rectangular FGM plate under thermal shock

Figure 3: Different numbers of the internal nodes

Due to the selected material gradations, the symmetry of the loading conditions and
the plate geometry only one half of the plate is considered in the numerical compu-
tations (Fig. 2.b-c). In this case, only the mode-I dynamic SIF occurs whereas the
mode-II dynamic SIF is identically zero. The plate is discretized into 48 bound-
ary nodes and 125 internal nodes. For a better approximation of the displacements
and the temperature near the crack-tip, the density of nodes in the vicinity of the
crack-tip increases towards the crack-tip.
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To investigate the influence of the material gradation on the dynamic SIFs, two ma-
terial gradient parameters are selected as αg = βg = γg = ±0.7. In order to check
the influence of the number and the distribution of internal nodes on the numerical
results obtained by the meshless domain-integral evaluation techniques, the cracked
plate with the material gradation in the x1-direction is first analyzed with 0, 63, 125
and 379 internal nodes distributed as shown in Fig. 3. Figures 4 and 5 show the
normalized mode-I dynamic SIFs versus the dimensionless time obtained by the
RIM and the CTM for different numbers of the internal nodes as well as by the
FEM. The FEM calculations are carried out by using the multiphysics simulation
code COMSOL with 8400 isoparametric quadrilateral elements. Numerical results
obtained by the present BDIEM and the FEM are in a good agreement. The compu-
tated results are relatively close for different numbers of the internal nodes, which
indicates that both meshless domain-integral evaluation techniques are insensitive
to the used numbers of the internal nodes.

Figure 4: Effects of the number of internal nodes on SIFs obtained by RIM

To achieve a sufficient accuracy of the numerical results some internal nodes are
necessary. On the other hand, a large number of the internal points will lead to a sig-
nificant increase in the computational cost. The time variations of the normalized
mode-I dynamic SIFs for the cracked FGM plate with the material gradations par-
allel (Fig. 2b) and perpendicular (Fig. 2c) to the crack-line and the gradient pa-
rameters αg = βg = γg = ±0.7 are presented in Figs. 6 and 7. The numerical re-
sults obtained by all three domain-integral evaluation techniques show very a good
agreement, despite some small discrepancies of the dynamic SIF obtained by the
CTM in the large time range.

As second example, we consider a central crack in a rectangular FGM plate under
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Figure 5: Effects of the number of internal nodes on SIFs obtained by CTM

Figure 6: Comparison of the normalized mode-I dynamic SIFs obtained by the
RIM, the CTM and the CIM for the material gradation in the x1-direction
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a thermal shock (Fig. 8a). The geometry of the cracked plate is given by the width
w = 1, height h = 2.4w and crack length 2a = 0.8w. The coordinate origin is
placed at the crack center. The material gradation in the xi-direction is assumed
also to have exponential laws E(x) = E0 exp(αgxi), k(x) = k0 exp(βgxi) and c(x) =
c0 exp(γgxi) with the same calculation parameters as in the first example.

Figure 7: Comparison of the normalized mode-I dynamic SIFs obtained by the
RIM, the CTM and the CIM for the material gradation in the x2-direction

Figure 8: A central crack in a rectangular FGM plate under a thermal shock

First, the material gradation parallel to the crack-line is analyzed (Fig. 8b). By
virtue of symmetry of the problem with respect to the x1-axis, only one half of the
plate is numerically analyzed. In this case, only the mode-I dynamic SIF occurs
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Figure 9: Normalized mode-I dynamic SIFs for the cracked homogeneous (a) and
FGM (b) plate

Figure 10: Comparison of the normalized dynamic SIFs obtained by the RIM, the
CTM and the CIM for the material gradation in the x2-direction
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whereas the mode-II dynamic SIF is identically zero. In this example, 48 boundary
nodes and 125 internal nodes are used in the discretization. To test the accuracy
of the implemented BDIEM, the normalized dynamic mode-I dynamic SIFs K̄±I (t)
at the crack-tips x1 = ±a for the homogeneous material (αg = βg = γg = 0) are
compared with the FEM results in Fig. 9a, which show a good agreement between
both methods. The time variations of the normalized dynamic mode-I dynamic
SIFs at the crack-tips x1 = ±a obtained by the RIM, the CTM, the CIM and the
FEM for the gradient parameters αg = βg = γg = 0.7 are shown in Fig. 9b. One
can observe a good agreement of the numerical results provided by the different
domain-integral evaluation techniques and the FEM.

Finally, the material gradation perpendicular to the crack-line is taken for the
cracked plate (Fig. 8c). Due to symmetry of the considered problem with respect to
the x2-axis, only one half of the plate is modeled by the BDIEM as shown in Fig. 8c.
The sub-domain technique is used in the present analysis [Aliabadi (2002)]. The
plate is virtually divided into two sub-domains along the crack-line. The BDIEs are
applied to each sub-domain and the continuity conditions on the common boundary
of the sub-domains are used to obtain the final system of algebraic equations. The
material non-homogeneity induces a mixed mode crack-tip loading even though the
cracked plate is subjected to a pure thermal loading on the top and the bottom side
symmetric to the crack-faces, i.e. the mode-II dynamic SIF is also present along
with the mode-I dynamic SIF. For the discretization of the FGM plate, 64 boundary
and 123 internal nodes are used. The time variations of the normalized mode-I and
mode-II dynamic SIFs for the gradient parameters αg = βg = γg = 0.7 are shown
in Fig. 10. Again one can observe a good agreement among the results provided by
the RIM, the CIM and the FEM, while the CTM results show some differences.

5 Conclusions

In this paper, three domain-integral evaluation techniques in the BDIEM for
transient thermoelastic crack analysis in 2-D, continuously non-homogeneous,
isotropic and linear thermoelastic FGMs are presented and compared. Fundamen-
tal solutions for homogeneous, isotropic and linear thermoelastic solids are used to
derive the BDIEs The material non-homogeneity is described by domain-integrals.
After regularization procedures the domain-integrals are evaluated by the RIM, the
CTM and the CIM. Numerical results for the dynamic SIFs are presented and dis-
cussed for a stationary crack in a finite FGM plate under a thermal shock. The
following conclusions can be drawn from the present numerical analysis:

• The three implemented domain-integral evaluation techniques as presented
in this paper can be used for transient thermoelastic crack analysis in FGMs.
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Numerical examples for dynamic SIFs show that the domain-integral evalu-
ation techniques are quite accurate and robust.

• The two meshless methods for computing the domain-integrals are quite in-
sensitive with respect to the used number of the internal nodes. To achieve
a sufficient accuracy of the numerical results, much fewer internal nodes are
required than in the CIM. The two meshless methods based on RIM and
CTM can be easily implemented.

• The order of singularity of the integrands can be reduced by one in the RIM.
Consequently, the weakly singular integrals can be computed directly.

• Regarding the computational efficiency, the two implemented meshless
methods are fast while the CIM requires more internal points to obtain satis-
factory results. The CTM is the fastest method. However, the RIM gives the
most accurate results than other methods. Their computational cost can be
significantly reduced when the radial integrals (17) can be evaluated analyti-
cally.
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