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Coupled PIEM/FEM Algorithm Based on
Mindlin-Reissner Plate Theory for Bending Analysis of

Plates with Through-Thickness Hole
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Abstract: The Infinite Element Method (IEM) is widely used for the analysis
of elastostatic structures containing singularities. In the IEM method, the problem
domain is partitioned into multiple element layers, where the stiffness matrix of
each layer is similar to that of the other layers in the discretized domain. However,
in Mindlin-Reissner plate theory, the stiffness matrix varies through the layers of
the plate, and thus the conventional IEM algorithm cannot be applied. Accordingly,
the present study proposes a Plate Infinite Element Method (PIEM) in which the el-
ement stiffness matrix is separated into two sub-matrices; each being similar to the
equivalent sub-matrix of the element layers above and below it. The validity of the
proposed algorithm is demonstrated by comparing the results obtained for the de-
flection contour of a plate under four-point bending with those obtained using con-
ventional ABAQUS Finite Element Method (FEM) software. The PIEM algorithm
is then coupled with an FEM algorithm and used to investigate the effects of the
hole size, hole position and hole profile / area on the bending strength (Sb) of plates
containing through-thickness holes. In general, the results show that the combined
PIEM/FEM algorithm provides an accurate and computationally efficient means of
analyzing the bending behavior of plates containing through-thickness holes.

Keywords: IEM, FEM, Mindlin-Reissner plate theory, Four-point bending test,
through-thickness hole.

1 Introduction

A large number of structural components in engineering can be classified as plates.
Plates with through-thickness holes are used in many civil, mechanical, biome-
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chanical and aeronautical structures as a means of adapting the flexural rigidity of
the structure or interconnecting the various structural members [Yamamoto, Hongo,
Berglund, Sperling, Cofield, An, and Steinmann (in press)]. As a result, the bending
characteristics of plates containing opening holes have attracted significant atten-
tion in the literature for obtaining the design objectives of such structures. Various
methods are available for measuring the flexural rigidity of such plates, includ-
ing the three-point bending test (3PB), the four-point bending test (4PB), the ring-
on-ring test, and the ball-on-ring test [Feraboli and Kedward (2003); Huurman,
Gelpke, and Jacobs (2012)]. In the 4PB test, the plate is in a state of pure bending
and thus the 4PB test is considered to be the most reliable method for estimating
the relationship between the bending moment and the deflection. In performing the
4PB test, the flexural stiffness per unit width of the plate (Sb) [Lee and Park (2004)]
is defined as

Sb =
EI
W

=
ML2

8ωmaxW
(1)

where E is the Young’s Modulus, I is the moment of inertia, M is the bending
moment, L is the length of the plate, W is the width of the plate, and ωmax is the
maximum deflection of the plate.

The literature contains many numerical investigations into the mechanical response
of plates subjected to various types of loading. For example, many researchers
have examined the out-of-plane bending of finite thickness plates containing a cir-
cular hole using the Finite Element Method (FEM) [Komur and Sonmez (2008);
Yu, Guo, She, and Zhao (2008); Yang, Kim, Cho, and Beom (2008); Maiorana,
Pellegrino, and Modena (2009); Park, Kim, Kwon, and Chung (2012)]. Other re-
searchers have investigated the bending response of elastostatic plates containing
singularities using the Boundary Element Method (BEM) [Chen, Shen, and Chen
(2006); Chen, Hsiao, and Leu (2006); Lee, Chen, and Lee (2007); Dong, Lo, and
Cheung (2004)]. In addition, various researchers have analyzed the static and free
vibration responses of complex-shaped plates using the Mesh-Free Method (MFM)
[Liu and Chen (2001); Kee, Liu, and Lu (2008)]. However, in the FEM, BEM and
MFM methods, a re-modeling process is required to evaluate the effects on the
bending response of changes in the properties of the singularity (e.g., the hole size,
hole number, hole position, and so on). As a result, such methods, while highly
accurate, are time consuming and inefficient.

The Infinite Element Method (IEM) provides an alternative approach for solving
singularity-type engineering problems. In essence, the IEM approach involves dis-
cretizing the problem domain into a predefined number of element layers in such a
way that the stiffness matrix of each layer is similar to that of all the other layers in
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the domain. Ying [Ying (1992, 1995)] proved the existence of a transformation ma-
trix which relates the nodal displacement vectors of the inner and outer layers and
showed that the total stiffness matrix of the body under consideration can therefore
be degenerated to form a combined stiffness matrix relating only to the boundary
nodes and tractions. Liu proposed a two-dimensional hybrid IEM/FEM scheme for
analyzing various types of elastic and singularity problems [Liu and Chiou (2003,
2004); Liu, Tu, and Chung (2012)]. However, the IEM algorithm cannot be applied
directly to Mindlin-Reissner bending problems due to the incompatible differential
order of the shear stiffness component.

Figure 1: Physical and PIEM/FEM models of rectangular plate containing through-
thickness holes
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Accordingly, the present study proposes a Plate IEM (PIEM) algorithm based on
Mindlin-Reissner theory in which the conventional IEM element stiffness matrix is
decomposed into two sub-matrixes, where each sub-matrix is similar to the equiv-
alent sub-matrix of all the other element layers in the discretized domain. The
validity of the proposed PIEM algorithm is confirmed by comparing the numerical
results obtained for the 4PB deflection of a plate with those obtained using commer-
cial FEM software (ABAQUS). The PIEM algorithm is then integrated with a FEM
scheme in order to evaluate the bending response of plates containing through-
thickness holes with various sizes, positions and profiles / areas. In the proposed
PIEM/FEM algorithm, the region of the plate containing the through-thickness hole
is modeled using the PIEM scheme, while the remainder of the computational do-
main is meshed using the conventional FEM scheme (see Fig. 1). As a result,
in evaluating the effect on the plate stiffness of changes in the diameter, position
and profile / area of the through-thickness hole, it is necessary only to re-mesh the
PIEM region of the domain. Consequently, the numerical efficiency of the solution
procedure is significantly improved.

2 Mindlin-Reissner plate theory

Mindlin-Reissner plate theory is an extension of Kirchhoff-Love plate theory which
takes into account shear deformations through the thickness of the plate [Mindlin
(1951); Wang, Lim, Reddy, and Lee (2001)]. In applying Mindlin-Reissner theory,
the following assumptions are imposed: (a) the thickness of the plate is unchanged
during deformation; (b) the normal stress through the thickness can be ignored;
and (c) the normal line of the thickness is perpendicular to the neutral axis line
following deformation [Nguyen-Xuan, Rabczuk, Bordas, and Debongnie (2008);
Cui, Liu, and Li (2010)].

Given the assumptions above, the full three-dimensional solid mechanics problem
reduces to a two-dimensional problem. Therefore, the in-plane displacements are
given as shown in Eqs. (2) and (3), respectively, while the transverse displacement
has the form given in Eq. (4).

u =−zθx(x,y) =−z
(

∂ω

∂x
− γxz

)
(2)

v =−zθy(x,y) =−z
(

∂ω

∂y
− γyz

)
(3)

ω = ω(x,y) (4)
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where θx and θy are the rotations of the mid-plane about the y- and x- axes, re-
spectively; and γ is the angle caused by the transverse shear deformation. Figure 2
shows the free body diagram of the plate element, where the degrees of freedom of
each node in the plate element are transferred from [u,v,ω] to [θx,θy,ω].

Figure 2: Free-body diagram of plate element

The 4-node-plate finite element stiffness matrix can be derived by Mindlin-Reissner
theory and mapping the physical coordinates to the natural coordinates. The asso-
ciated plate stiffness is given by Eq. (5), in which kb is the bending stiffness and ks

is the shear stiffness. Note that the plate material is assumed to be linear elastic,
isotropic, and homogenous. The resultant equation of each element has the form
shown in Eq. (12).

k = kb + ks (5)

where

kb =
h3

12

1∫∫
−1

[Bb]
T [Db][Bb]det |J|dζ dη (6)

ks = hκ

1∫∫
−1

[Bs]
T [Ds][Bs]det |J|dζ dη (7)
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in which h is the thickness of the plate, κ is the shear energy correction factor
(usually equal to 5/6), and J is the Jacobian matrix.

[Bb] =


∂H1
∂x 0 0 ∂H2

∂x 0 0 ∂H3
∂x 0 0 ∂H4

∂x 0 0
0 ∂H1

∂y 0 0 ∂H2
∂y 0 0 ∂H3

∂y 0 0 ∂H4
∂y 0

∂H1
∂y

∂H1
∂x 0 ∂H2

∂y
∂H2
∂x 0 ∂H3

∂y
∂H3
∂x 0 ∂H4

∂y
∂H4
∂x 0

 (8)

where Hi is a 4-node plate finite element shape function.

[Db] =
E

1− v2

 1 v 0
v 1 0
0 0 1−v

2

 (9)

where E is the Young’s Modulus of the plate and v is the Poisson ratio.

[Bs] =

[
−H1 0 ∂H1

∂x −H2 0 ∂H2
∂x −H3 0 ∂H3

∂x −H4 0 ∂H4
∂x

0 −H1
∂H1
∂y 0 −H2

∂H2
∂y 0 −H3

∂H3
∂y 0 −H4

∂H4
y

]
(10)

[Ds] =

[
G 0
0 G

]
G = E

2(1+v) : shear modulus
(11)

 h3

12

1∫∫
−1

[Bb]
T [Db][Bb]det |J|dζ dη +hκ

1∫∫
−1

[Bs]
T [Ds][Bs]det |J|dζ dη


·

 θx

θy

ω

=

 Mθx

Mθy

fz

 (12)

3 Plate Infinite Element Method

3.1 Similarity characteristic

As shown in Fig. 3, the basic concept of IEM involves partitioning the computa-
tional domain into multiple layers of geometrically-similar elements. For element
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I in the upper-most layer, the local nodes are labeled as 1, 2, 3 and 4 in the coun-
terclockwise direction, while the global coordinates of each node are denoted as
(xI,yI). Taking the origin O as the reference point and assigning the proportional-
ity ratio ξ a value in the interval of [0,1], element II is obtained as shown in Fig. 3
with global coordinates of (xII,yII). The global coordinates of elements I and II
are related as follows:

(xII,yII) = ξ (xI,yI) (13)

Figure 3: Illustration of the 2-D similar isoparametric elements

The coordinates of any point within element I can be expressed in terms of the
nodal coordinates by means of a shape function Hi, as shown in Eqs. (14) and
(15). Multiplying both sides of Eqs. (14) and (15) by the proportionality ratio ξ ,
the coordinates of the corresponding point in element II are obtained as shown in
Eqs. (16) and (17), respectively.

xI =
4

∑
i=1

HixI
i (14)

yI =
4

∑
i=1

HiyI
i (15)

xII = ξ xI =
4

∑
i=1

HixII
i (16)

yII = ξ yI =
4

∑
i=1

HiyII
i (17)
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From Eqs. (16) and (17), and recalling Eqs. (8) and (9), it can be shown that:

[Bb]II =
1
ξ
[Bb]I (18)

[Db]II = [Db]I (19)

det[J]II = ξ
2 det[J]I (20)

From Eqs. (18) to (20), it is seen that the bending stiffness of the second element
layer is the same as that of the first element layer, i.e.,

[kb]II =
h3

12

1∫∫
−1

[Bb]
T
II[Db]II[Bb]II det |J|II dζ dη

=
h3

12

1∫∫
−1

1
ξ
[Bb]

T
I [Db]I

1
ξ
[Bb]Iξ

2 det |J|I dζ dη (21)

=
h3

12

1∫∫
−1

[Bb]
T
I [Db]I[Bb]I det |J|I dζ dη

= [kb]
−1
I

In adapting the conventional IEM method to Mindler-Reissner plate problems, let
the shear stiffness of the first element layer Bs be partitioned into two sub-matrices,
B∗s &B∗∗s , i.e.,

[Bs] = [B∗s ]+ [B∗∗s ] (22)

[B∗s ] =

[
0 0 ∂H1

∂x 0 0 ∂H2
∂x 0 0 ∂H3

x 0 0 ∂H4
∂x

0 0 ∂H1
∂y 0 0 ∂H2

∂y 0 0 ∂H3
y 0 0 ∂H4

∂y

]
(23)

[B∗∗s ] =

[
−H1 0 0 −H2 0 0 −H3 0 0 −H4 0 0

0 −H1 0 0 −H2 0 0 −H3 0 0 −H4 0

]
(24)

Substituting Eq. (22) into Eq. (7), it follows that

ks = hκ

1∫∫
−1

[[B∗s ]+ [B∗∗s ]]T [Ds] [[B∗s ]+ [B∗∗s ]]det |J|dζ dη (25)
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Let

[S∗] = hκ

1∫∫
−1

[B∗s ]
T [Ds][B∗s ]det |J|dζ dη (26)

[S∗∗] = hκ

1∫∫
−1

{[B∗s ]T [Ds][B∗∗s ]+ [B∗∗s ]T [Ds][B∗s ]}det |J|dζ dη (27)

[S∗∗∗] = hκ

1∫∫
−1

[B∗∗s ]T [Ds][B∗∗s ]det |J|dζ dη (28)

Thus, Eq. (25) becomes

ks = [S∗]+ [S∗∗]+ [S∗∗∗] (29)

Recalling Eqs. (16) and (17), the relationship between the shear stiffness of element
layers I and II is given as

[ks]II = [S∗]II +[S∗∗]II +[S∗∗∗]II

= [S∗]I +ξ [S∗∗]I +ξ
2[S∗∗∗]I (30)

Bring Eq. (21) & Eq. (30) into Eq. (5), the plate stiffness matrix becomes

[k]I = [kb]I +[S∗]I +[S∗∗]I +[S∗∗∗]I (31)

[k]II = [kb]I +[S∗]I +ξ [S∗∗]I +ξ
2[S∗∗∗]I (32)

...

[k]m = [kb]I +[S∗]I +ξ
m−1[S∗∗]I +ξ

2(m−1)[S∗∗∗]I (33)

3.2 Combined stiffness of PIEM

Figure 4 illustrates the IEM modeling process. The basic steps in the meshing pro-
cess can be summarized as follows: (1) Discretize the outer boundary Γ0 using a
total of m nodes ordered in the counterclockwise direction. (2) Choose the refer-
ence point, O, and using the specified proportionality constant, ξ , automatically
construct multiple similar curves Γ1,Γ2, . . . ,Γs of Γ0 centered at reference point O
with proportionality constants ξ 1,ξ 2, . . . ,ξ s, respectively. Note that s denotes the
number of element layers (specified in advance). Let the region bounded by curves
Γi−1 and Γi be denoted as the ith element layer (i = 1,2,3, . . . ,s). (3) Regularly
discretize each element layer Γi using the same number of nodes as that used for
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layer Γ0 and determine the coordinates of each node using Eq. (13). Each layer el-
ements are meshed automatically into four nodes quadrilateral elements in a radial
direction.

The stiffness matrix of the upper-most element layer has the form shown in Eq. (34),
where ka, kb and A are the sub-matrices of the stiffness matrix.

k1 =

[
[ka]1 [−A]T1
[−A]1 [kb]1

]
(34)

Substituting Eq. (34) into Eq. (12) and expanding, the stiffness matrices of the s
element layers in the computational domain are obtained as follows:[

[ka]1 [−A]T1
[−A]1 [kb]1

]
·
{

δ0
δ1

}
=

{
f0
f1

}
(35)

...[
[ka]i [−A]Ti
[−A]i [kb]i

]
·
{

δi−1
δi

}
=

{
− fi−1

fi

}
(36)

...[
[ka]s [−A]Ts
[−A]s [kb]s

]
·
{

δs−1
δs

}
=

{
− fs−1

fs

}
(37)

where δi is the nodal displacement vector associated with element layer Γ1 and fi

is the corresponding nodal force vector. Note that Γi and fi are defined respectively
as

δi = [θ i
x1θ

i
y1ω

i
1 . . .θ

i
xmθ

i
ymω

i
m]

T (38)

fi = [Mi
x1Mi

y1 f i
z1 . . .M

i
xmMi

ym f i
zm]

T (39)

Keep the first and last equation of Eq. (35) and Eq. (37), and combine the second
equation for the ith element-layer and the first equation for the (i+ 1)th element-
layer. Assuming that no internal force is applied to Γs(i.e., fs = 0), Eqs. (35) to (37)
become

[ka]1 ·δ0− [A]T1 ·δ1 = f0 (40)
...

−[A]Ti ·δi−1 +[[kb]i +[ka]i+1] ·δi− [A]Ti+1 ·δi+1 = 0 (41)
...

−[A]s ·δs−1 +[kb]s ·δs = 0 (42)
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Let

[M]s =[kb]s (43)
...

[M]i =[[kb]i +[ka]i+1]− [A]Ti+1 · [M]−1
i+1 · [A]i+1 (44)

...

[M]1 =[[kb]1 +[ka]2]− [A]T2 · [M]−1
2 · [A]2 (45)

Since [M]s is equal to known [kb]s, [M]s−1, [M]s−2, . . . , [M]2, and [M]1 can be calcu-
lated iteratively by means of Eqs. (43) to (45). Finally, substituting Eq. (48) into
Eq. (40), the combined stiffness matrix kIEM = {[ka]1− [A]T1 · [M]−1

1 · [A]1} is ob-
tained with the form shown in Eq. (49). In other words, all of the inner elements
layers are combined to form a single super-element with master nodes at the outer
boundary Γ0 only.

δs =[M]−1
s · [A]s ·δs−1 (46)

...

δi =[M]−1
i · [A]i ·δi−1 (47)

...

δ1 =[M]11 · [A]1 ·δ0 (48)

{[ka]1− [A]T1 · [M]−1
1 · [A]1} ·δ0 = f0 (49)

Ying [Ying (1995)] proved that kIEM converges toward a certain constant quantity
as the number of element layers approaches infinity, i.e.,

lim
s→∞

k(s)IEM = kIEM (50)

where s denotes the number of the defined element layers. However, Eq. (50) could
not be directly applied to the numerical formulation due to the infinity element lay-
ers is not countable in a physical sense. Therefore, Liu [Liu and Chiou (2003)] pro-
posed a convergence method to observe the diagonal trace terms k(s)IEM( j, j). When

the desired accuracy criteria ε =

∣∣∣∣ k(i+1)
IEM ( j, j)−k(i)IEM( j, j)

k(i+1)
IEM ( j, j)

∣∣∣∣×100%≤ 10−6 is satisfied, the

iterative program is terminated and the critical element layers number, “Scr”, is de-
termined as equal to the terminated iterative value, “i”. Scr is the minimum element
layers needed for the convergence; this implies that there are enough elements to
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cover the entire domain. The proportionality ratio ξ is another important factor in
the convergence study. Basically, the greater ξ is chosen, the more Scr is needed. In
other words, given a sufficiently large value of s, the stiffness k(s)IEM is approximately
equal to the combined stiffness kIEM.

0

1

2

s

Figure 4: IEM mesh and reference point

3.3 Integration of IEM and FEM schemes

Meshing the entire computational domain using the IEM scheme is not favorable
when the body of interest has a concave or complex characteristic. Accordingly,
the present study constructs a combined PIEM/FEM scheme in which the region of
the computational domain containing the singularity (i.e., a through-thickness hole
in the present case) is meshed using the PIEM scheme, while the remainder of the
domain is meshed using the conventional FEM scheme. As shown in Fig. 5, the
two regions of the domain are denoted as Π and Ω, respectively, and are connected
by a coupling interface Γ0 comprising common nodes, δ0. Note that the common
nodes are converted directly from the original master nodes on the boundary region
of the IE domain. Liu [Liu and Chiou (2003)] showed that the stiffness matrix for
the combined IEM/FEM domain has the form[

kcoupled + kIEM kT
c f

kc f kFEM

]
·
{

δ0
δFEM

}
= [kIE−FE ] ·

{
δ0

δFEM

}
=

{
0

fFEM

}
(51)

where δ0 and δFEM are the displacement vectors of the interface and non-interface
nodes, respectively; fFEM is the associated loading force vector; and kIE−FE is the
global system stiffness matrix.
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0

0

Figure 5: Combined PIEM / FEM mesh of computational domain

4 Numerical Examples

In this section, the validity of the proposed PIEM algorithm is demonstrated by
comparing the results obtained for the deflection of a plate under 4PB testing with
those obtained using conventional ABAQUS Finite Element Method (FEM) soft-
ware [Hibbitt, Karlsson, and Sorensen (2004)]. The combined PIEM/FEM scheme
is then used to investigate the effects of the hole size, hole position and hole pro-
file / area on the bending strength (flexural rigidity) of simply-supported rectangu-
lar plates containing a single through-thickness hole. (Note that the PIEM/FEM
scheme is programmed using MATLAB software [Kwon and Bang (2000)].)

4.1 Validation of PIEM algorithm

Consider the rectangular plate shown in Fig. 6 with dimensions of 100mm×50mm×
0.5mm (length×width×thickness). Assume that two of the opposite edges are sim-
ply supported (i.e., ω = 0), while the other two edges are free such that the ap-
plied bending moment (M = 100N−mm) vanishes along the two simply-supported
edges. Assume also that the plate has a Young’s Modulus of E = 200GPa and a
Poisson ratio of v = 0.30. Figure 7 presents the corresponding PIEM mesh pattern
before the mesh is degenerated to form a single super-element.

Figure 8 shows the results obtained for the bending displacement of the plate us-
ing commercial ABAQUS FEM software. Meanwhile, Fig. 9 compares the results
obtained for the deflection profile of edge AE of the plate (see Fig. 6) using the
proposed PIEM scheme with those obtained via the FEM method. Note that in im-
plementing the PIEM scheme, the proportionality ratio is assigned various values
in the range of ξ = 0.5 ∼ 0.9, while the number of element layers is specified in
the range of s = 10 ∼ 50. As mentioned in the Section 3, the greater ξ is chosen,
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the more s is need. Otherwise, the void will exist around the reference point in the
plate and reduce the plate stiffness. Therefore, the maximum deflection increases
rapidly under the improper setting (e.g., ξ = 0.9,s = 10).

The detail PIEM, ABAQUS result and relative difference (RD) estimate are pro-
vided in the Tab. 1. It is seen that a good agreement is observed when the propor-
tionality ratio and number of element layers are specified as ξ = 0.9 and s = 50, re-
spectively. The RD reduce from 126.504 % (ξ = 0.95, s = 10) to 0.016 % (ξ = 0.9,
s = 50). Thus, the basic validity of the proposed PIEM algorithm is confirmed. In
addition, it is observed that the accuracy of the PIEM scheme improves as ξ and s
increase.

Table 2 shows the comparisons of PIEM and FEM by execution time and number
of DOFs on an Intel Core-4.0 GHz computer. For the PIEM solver, the execution
time is only 0.254s, whereas, the execution time for the similar mesh configuration
using FEM is 1.8s. The present method reduces by about 85.88% the execution
time when compared with that of full FEM. Similarly, the complicated models are
more significant. This is due to the fact that number of DOFs of the PIEM model
is much fewer.

Accordingly, in performing the remaining simulations, the proportionality ratio and
number of element layers were specified as ξ = 0.9 and s = 50, respectively.

Figure 6: Simply-supported rectangular plate subject to 4BP testing

Table 1: Maximum deflection (mm) by PIEM in variation of proportionality ratios
ξ with specified element layers
PPPPPξ

s 10 20 30 40 50
Max. RD Max. RD Max. RD Max. RD Max. RD

deflection (%) deflection (%) deflection (%) deflection (%) deflection (%)
0.5 1.1169 9.423 1.1167 9.439 1.11669 9.440 1.11669 9.440 1.1167 9.439
0.6 1.17229 4.931 1.17218 4.940 1.1722 4.938 1.1722 4.938 1.1722 4.938
0.7 1.20743 2.081 1.20533 2.251 1.20534 2.250 1.20534 2.250 1.20534 2.250
0.8 1.25766 1.993 1.2243 0.713 1.2239 0.745 1.2239 0.745 1.2239 0.745
0.9 1.63912 32.928 1.27733 3.588 1.23824 0.418 1.23349 0.032 1.23289 0.016
0.95 2.793 126.504 1.66826 35.291 1.37839 11.783 1.28483 4.196 1.25257 1.580
Max. deflection of ABAQUS is 1.23309 mm
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Figure 7: Complete IEM mesh of simply-supported rectangular plate

Figure 8: ABAQUS solution for deflection contour profile of simply-supported
rectangular plate

Table 2: Execution time and DOFs of the PIEM and FEM approaches
Numerical Execution PIEM master PIEM Total Total Equivalent

method time (s) nodes layers nodes DOFs DOFs
PIEM 0.254 60 50 60 180 9000

FEM (ABAQUS) 1.800 - - 3042 9126 9126

4.2 Application of proposed PIEM / FEM scheme

Consider the rectangular plate shown in Fig. 10 containing a single through-thickness
hole in the center-point position and subject to four-point bending. Assume that
the region of the plate surrounding the hole is meshed using the proposed PIEM
scheme, while the remainder of the plate is meshed using the FEM scheme. Thus,
in investigating the effects on the bending strength of changes in the hole charac-
teristics (e.g., position, size and profile / area), it is necessary only to re-mesh the
PIEM region of the computational domain and to substitute the combined stiffness
of the IEM element into the global stiffness matrix.
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Figure 9: Comparison of ABAQUS and PIEM solutions for edge deflection of
simply-supported rectangular plate
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Figure 10: Combined PIEM/FEM mesh of simply-supported rectangular plate sub-
ject to 4PB testing

4.3 Example 1: effect on bending strength of hole diameter and plate thickness

Assume that the rectangular plate has a length of 100 mm, a width of 50 mm and a
thickness in the range of 0.2∼ 0.5mm. Assume also that the through-thickness hole
has a diameter in the range of 0 ∼ 40mm. Figure 11 presents the results obtained
using the combined PIEM/FEM scheme for the variation of the flexural stiffness
of the plate (Sb) with the hole diameter as a function of the plate thickness. As
expected, the results show that the flexural stiffness reduces rapidly with a reducing
plate thickness. Moreover, it is seen that the flexural stiffness reduces as the hole
diameter increases; particularly at higher values of the plate thickness.
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Figure 11: Variation of flexural stiffness with through-thickness hole diameter as
function of plate thickness

4.4 Example 2: effect on bending strength of hole position

Assume that the through-thickness hole is located at various x- and y-axis positions
of the plate, as shown in Fig. 12. Assume also that the plate has dimensions of
100 mm x 50 mm x 0.2 (length×width×thickness). Figures 13 and 14 show the
variation of the flexural stiffness with the x- and y-axis positions of the hole, re-
spectively, as a function of the hole diameter. In general, the results show that the
flexural stiffness reduces as the hole location moves toward the upper central region
of the plate (i.e., the point of maximum deformation).

Figure 12: Schematic illustration showing rectangular plate containing through-
thickness holes in various x- and y-axis positions
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Figure 13: Variation of flexural stiffness with x-axis position of through-thickness
hole as function of through-hole diameter

Figure 14: Variation of flexural stiffness with y-axis position of through-thickness
hole as function of through-hole diameter

4.5 Example 3: effect on bending strength of hole profile / area

Assume that the plate considered in the previous examples contains a single ellipti-
cal hole in the center-point position. As shown in Fig. 15, let the major axis of the
hole be denoted as 2a, the minor axis be denoted as 2b, and the edge angle (i.e., the
angle between the major axis and the horizontal axis) be denoted as θ . The analysis
considers four different elliptical holes. As shown in Tab. 3, the major and minor
axis lengths of elliptical hole 1 (E1) are defined in such a way that the area of the
hole is identical to that of a circular hole with a diameter of 20 mm. Meanwhile,



Plates with Through-Thickness Hole 591

the axis lengths of the remaining elliptical holes are specified in such a way that
the corresponding areas are equal to 0.8, 0.6 and 0.4 times the area of the circular
hole, respectively. Figure 16 shows the variation of the flexural stiffness with the
edge angle for each of the four considered elliptical holes. It is seen that the flexural
stiffness reduces significantly as the major axis of the elliptical hole rotates towards
90◦ (i.e., parallel to the bending moment M); particularly as the hole size increases.

Figure 15: Schematic illustration showing simply-supported rectangular plate with
elliptical hole subject to 4PB testing

Table 3: Areas of four considered elliptical holes relative to area of circular hole
with diameter of d = 20mm

Shape Circular E1 E2/E1 E3/E1 E4/E1
Area π×10×10 π×20×5 0.8 0.6 0.4

Figure 16: Variation of flexural rigidity with edge angle of elliptical hole as function
of hole area
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5 Conclusion

In Mindlin-Reissner plate bending problems, the conventional IEM formulation
cannot be directly applied due to the incompatible differential order of the shear
stiffness component. Accordingly, the present study has proposed a Plate IEM
(PIEM) scheme in which the shear element stiffness matrix is decomposed into
two shear stiffness sub-matrices (kb and ks) such that each sub-matrix is similar to
the equivalent sub-matrix in all of the other element layers in the discretized do-
main. The validity of the proposed scheme has been demonstrated by comparing
the results obtained for the deflection of a simple plate under 4PB testing with those
obtained using conventional ABAQUS FEM software. The PIEM scheme has been
combined with the conventional FEM scheme and used to analyze the effect of
the through-thickness hole size, position and profile/area on the bending strength
of a rectangular plate under 4PB testing. In combining the two schemes, the re-
gion of the computational domain containing the hole is meshed using the PIEM
scheme, while the remainder of the domain is meshed using the FEM method. The
combined PIEM/FEM method enables the effects of the hole size, hole position
and hole profile/area to analyzed by simply re-meshing the PIEM region of the do-
main and then updating the combined stiffness of the corresponding super-element
in the global stiffness matrix accordingly. In other words, the computational effi-
ciency of the proposed scheme is significantly higher than that of the conventional
FEM method, in which the entire domain must be re-meshed each time a change
in the through-thickness hole properties occurs. In general, the results presented
in this study have shown that the proposed PIEM/FEM scheme provides an easily-
implemented, computationally-efficient and accurate means of analyzing various
common engineering plate bending problems.
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