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Abstract: Route selections for vehicles can be equivalent to determine the op-
timized operation processes for vehicles which intertwine with each other. This
paper attempts to utilize the whole methodology of model predictive control to
engender rational routes for vehicles, which involves three important parts, i.e.
simulation prediction, rolling optimization and feedback adjustment. The route
decisions are implemented over the rolling prediction horizon taking the real-time
feedback information and the future intertwined operation processes into account.
The driving behaviors and route selection speculations of drivers and even traffic
propagation models are on-line identified and adapted for the simulation prediction
in next prediction horizon. The mesoscopic traffic model is utilized for the simula-
tion prediction so as to achieve both computing efficiency and prediction accuracy,
where the partial link density in front of the vehicle rather than the density of total
link is utilized to calculate the vehicle propagation velocity. The path traveling time
is accumulated in a way related to the departure time and the operation process of
a vehicle. The system architecture is composed of two parts. One is to simulate the
true traffic system with stochastic behaviors such as speed fluctuations and inclina-
tions to obey or disobey navigation commands, and the other one is the simulation
prediction, rolling optimization and feedback adjustment system. In this way, the
case study of medium traffic network shows that the simulation prediction-based
rolling-horizon feedback implementation can prevent possible congestion in ad-
vance. It provides an engineering solution to the real-time closed-loop prediction-
based traffic navigation.

Keywords: route guidance, dynamic traffic assignment, model predictive con-
trol, network flow optimization, non-analytical iterative algorithm.

1 School of Electronic and Information Engineering, Beijing Jiaotong University.
Email: yhzhou@bjtu.edu.cn.



478 Copyright © 2013 Tech Science Press CMES, vol.92, no.5, pp.477-491, 2013

1 Introduction

Route guidance is classified into static and dynamic types. The static route guid-
ance assumes the link traveling time is constant and deals with the calculation of
path traveling time in a simple way. The dynamic route guidance (DRG) involves
reactive and predictive categories. The reactive DRG calculates the path traveling
time according to the current link traveling time, while the predictive one should
accumulate the predicted link traveling time along the running process of a vehicle
to educe the total path traveling time. Much work still remains to be done in the
area of predictive DRG.

The purpose of centralized traffic control and management is to assign vehicles to
the routes with shortest path traveling time and at the same time keep road network
with smooth flow. The complexity lies in that dynamic traffic assignment (DTM)
for real-time route guidance should be implemented in the rolling horizon accord-
ing to the feedback of traffic conditions and the prediction of future traffic demands
and operations. DTM has developed along the two technological lines, i.e. the
analytic and simulation approaches in terms of traffic propagation models. The
analytic DTA [Ran and Boyce (1996)] depends on the macroscopic traffic propaga-
tion models [Daganzo (2006); Tyagi, Darbha, and Rajagopal (2008); Vikram, Mit-
tal, and Chakroborty (2011)] with sound mathematical properties. The simulation-
based DTA [Peeta and Mahmassani (1995a)] generally employs the microscopic or
mesoscopic simulation models [Nagel and Schreckenberg (1992); Bando, Hasebe,
Nakayama, Shibata, and Sugiyama (1995); Chowdhury, Santen, and Schadschnei-
der (2000); Celikoglu and Dell’Orco (2007); Fujii, Yoshimura, and Seki (2010);
Zhou, Mi, and Yang (2012)] to record the movements of vehicles such that the
traffic signal control [Galán Moreno, Sánchez Medina, Álvarez Álvarez, and Ru-
bio Royo (2009)] can be conveniently incorporated into DTA. The O-D (origin-
destination) matrices should be more accurate in a short period than that in the
total planning horizon, the rolling horizon implementation of DTM has been dis-
cussed [Peeta and Mahmassani (1995b); Ran, Lee, and Shin (2002)]. In order to
resist disturbances and improve robustness, the splitting rate-based feedback con-
trol strategy has been proposed for the route guidance [Wang, Papageorgiou, and
Messmer (2003)], and the H∞-based control strategy has been incorporated into
DTM [Kachroo, Özbay (2005)].

This paper will address the prediction-based rolling-horizon feedback implemen-
tation of DTM for the application of real-time route guidance based on the to-
tal methodology of model predictive control. Model predictive control [Camacho
and Bordons (1995)] is composed of three parts, i.e. simulation prediction, rolling
optimization and feedback adjustment. The application of model predictive con-
trol to traffic signal control has been extensively discussed [Hegyi, De Schutter,
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and Hellendoorn (2005); Aboudolas, Papageorgiou, Kouvelas, and Kosmatopou-
los (2010)]. This paper emphasizes the integrative application of three aspects in
the methodology of model predictive control to route guidance at the real-time
network-wide level. Dynamic route guidance based on model predictive control is
also called traffic navigation predictive control. We adopt the path-based approach
to optimize the operation performances of total road network and vehicles.

The complicated part of traffic navigation predictive control is to solve the fixed
point problem [Liu, He, and He (2009)] P= f (P) where P is the time shortest paths
and f stands for calculating the time shortest paths after the propagation of traffic
flow which is hard to be denoted in an analytical form. The nonlinear problem P =
f (P) is equivalent to F(P)=0. The iterative methods have been extensively studied
for the nonlinear algebraic equations F(x)=0 utilizing the optimal descent vectors
[Liu and Atluri (2011); Liu, Dai, and Atluri (2011a, 2011b); Liu and Atluri (2012)].
In this paper, we attempt to develop the non-analytical iterative algorithm to solve
the problem P = f (P). In each iterative step, the enumerated time shortest paths
for vehicles represent the feasible directions to minimize the objective function. We
utilize the mesoscopic traffic simulation model to describe the traffic propagation,
which denotes the speed of a vehicle as the function of traffic density in front of that
vehicle on a link. The path traveling time related to the departure time of a vehicle
is calculated along the operation process of the vehicle rather than the illogical
accumulation of the link traveling time as that of the reactive DRG.

The rest of the paper is organized as follows. Section 2 develops the architecture
and the optimization model of traffic navigation predictive control system. In sec-
tion 3, the complexity of solution process to the addressed problem is analyzed, and
the solution algorithm and the simulation process are elucidated. Section 4 demon-
strates the simulation results of comparative study and testifies the advantage of
traffic navigation predictive control and the efficiency of the proposed solution pro-
cess. Finally, the conclusions are drawn in section 5.

2 Traffic navigation predictive control

2.1 System architecture

Fig. 1 shows the architecture of traffic navigation predictive control system which
generates the commands of route guidance utilizing the total mechanism of model
predictive control. The routes for navigated vehicles Ua(kT) at time kT are given
out through the optimizer which considers the effects of current route decisions on
the future performances of traffic flow system in the specified prediction horizon
and allows the future performance to asymptotically approach the set-point Ys.

The pseudo set-point part engenders Ys(kT) according to the set-pint Ys and the
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Figure 1: Architecture of traffic navigation predictive control system.

current performance Y(kT). The traffic navigation actuator is composed of com-
ponents to transmit navigation commands through the communication network to
vehicles. The traffic flow detection deals with the acquisition of traffic flow infor-
mation. The information processing part is to abstract the useful information from
the real-time collected raw data. The part of traffic flow prediction model is to iden-
tify the driving and path selection behaviors of drivers as well as macroscopic and
mesoscopic traffic propagation models according to the real-time feedback traffic-
flow data. Through the traffic flow simulation and the performance evaluation
within the prediction horizon, the future performance of traffic flow system can
be verified for the selected navigation strategies. The real-time performance should
be calculated if it is not detectable and be estimated if the acquired information is
incomplete. For example, the traffic density can not be directly detected and can be
calculated through the number of vehicles on a link. If the number of vehicles on a
link can not be attained, however it can be roughly estimated through the speed of
link flow.

2.2 Optimization model

The purpose of centralized real-time traffic assignment is to strategically schedule
the vehicles to less congested roads so that the smoother traffic flow in total road
network and the faster traveling time for vehicles can be achieved. The route guid-
ance based on model predictive control is to find optimal routes through feedback
adjustment and simulation prediction in the rolling prediction horizon. The opti-
mization objectives of total road network and individual vehicle are, respectively,
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formulated as:

min J1 =
1

Lα

L

∑
l=1

P

∑
k=1

αl |ys(l, t + kT )− yp(l, t + kT )| (1)

min Jn = t ′n(o,d, t) n = 1, ...,N (2)

where ys(l, t+kT ) and yp(l, t+kT ) are the future ideal and predicted performances
(such as densities) of link l at time t+kT in the prediction duration PT (k=1, . . . ,
P), respectively. T is the simulation period, and P is the total number of predic-
tion periods, called the prediction horizon. ys(l, t + kT ) is given by ys(l, t + kT ) =
y(l, t)e−λkT + ys(l, t)(1− e−λkT ) where y(l, t) is the performance of link l at time
t and λ is the asymptotic rate. αl (l=1, . . . , L) is the weighting factor where L is
the number of links. Lα is a scale constant to make J1 become an average value.
t ′n(o,d, t) is the predicted traveling time of vehicle n from current origin o to des-
tination d at time t. The individual satisfaction degree of vehicle n at time t is
defined as Sn(o,d, t) = t

′
min(o,d, t)/t

′
n(o,d, t) where t

′
min(o,d, t) is the minimal trav-

eling time of a vehicle from current origin o to destination d at time t.

For the multi-objective optimization algorithm, a large number of Pareto-optimal
solutions will be enumerated, however in practice only one is selected to be imple-
mented on the system. Thereupon, we regard the objective functions expressed in
Eq. 2 as constraints, which will be discussed at next section.

Once certain routes are assigned to the corresponding vehicles, the operation per-
formances of total network and vehicles will be predicted according to the traffic
propagation models, including macroscopic, mesoscopic and microscopic simula-
tion models. The macroscopic model does not care the detailed positions of in-
dividual vehicle on the link, and regard the vehicles entering into the link during
a period as a package to calculate their link traveling time according to the rela-
tionship between flow or density and link traveling time. The microscopic model
records the concrete positions of individual vehicle on the link, which reflects the
interactive behaviors among vehicles with speed fluctuations incurred, such as cel-
lular automaton and car following models. The mesoscopic model deals with the
speed updates similar to the macroscopic one, however the recording approach of
vehicle positions resembles that of the microscopic one. Hence, the mesocopic
model can predict the traffic flow with fast speed as the macroscopic one but with
moderate accuracy tantamount to the microscopic one.

Set Y(t) as the link densities. The prediction of link performance at time t+kT is
generally denoted as

yp(l, t + kT ) = f

(
N

∑
n=1

δ (l,n, t + kT ), Ll

)
(3)
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where the instrumental variable δ (l,n, t + kT ) denotes whether vehicle n is on link
l (=1) or not (=0) at t+kT, Ll is the length of link l, and f is the function to calculate
the density.

Set the mesoscopic traffic model as an example to describe the operation processes
of vehicles:

v′(l,n, t + kT ) = g

(
f

(
N

∑
m=1

η(l,m, t + kT ), Ll−d(l,n, t + kT )

))
(4)

v(l,n, t + kT ) = min
(
gap/T, v′(l,n, t + kT )

)
(5)

v′(l, t + kT ) =
N

∑
n=1

δ (l,n, t + kT )v(l,n, t + kT )/
N

∑
n=1

δ (l,n, t + kT ) (6)

d′ = d(l,n, t + kT −T )+ v(l,n, t + kT −T )T (7)

i f d′ ≤ Ll d(l,n, t + kT ) = d′

else d(l +1,n, t + kT ) = d′−Ll (8)

where v(l,n, t+kT ) refers to the velocity of vehicle n on link l at t+kT, and v′(l,n, t+
kT ) is the initially calculated value of v(l,n, t + kT ). The instrumental variable
η(l,m, t + kT ) denotes whether vehicle m is on link l and in front of vehicle n (=1)
or not (=0) at t+kT. Ll is the length of link l. d(l,n, t+kT ) is the position of vehicle
n on link l at t+kT. The gap is the distance between the head of vehicle n and the
rear of its preceding adjacent one. v′(l, t + kT ) is the average velocity of flow on
link lat t+kT. Eq. 4 indicates that the velocity of vehicle n on link l is determined
by the vehicle density in front of vehicle n on that link. In most cases, the traffic
propagation satisfies the first-in-first-out (FIFO) rule, and Eq. 5 ensures the realiza-
tion of FIFO. Eq. 6 implies that the average velocity of link flow is determined by
the speeds of vehicles on the link. Eq. 7 and Eq. 8 demonstrate the position update
of vehicle n on adjacent links l and l+1 on the route of vehicle n.

Given v′(l, t + kT ), the link traveling time is calculated as

T T (l, t + kT ) = arg
M

minH

(
M

∑
j=0

v′(l, t + kT + jT )T −Ll

)
(9)

where H(x) is defined as

H(x) =
{

x i f x≥ 0
+∞ otherwise

. (10)

Similarly, the time-dependent path traveling time can be accumulated link by link.
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The relationship between link speed and density has been empirically formulated
as [Mihaylova, Boel, and Hegyi(2007)]:

v = v f exp
{
− 1

am

[
D

Dcrit

]am
}
+n (11)

where v f is the speed of free flow on a link, D is the link density, Dcrit is the critical
density, n is the stochastic variable, and am is an adjustable parameter.

3 Solution algorithm

3.1 Solution complexity

To predict the future traffic condition in the prediction horizon, the current and
future traffic demands should be known. If the prediction only concerns the current
traffic demands, the traffic navigation predictive control is the partially predictive
type. And if the prediction involves both the current and predicted traffic demands,
it is called the fully predictive one.

No matter which traffic propagation model is utilized, the consistency of flow or
density with the speed should be maintained. The decision variables are the paths
of navigated vehicles. There exists no direct continuous function to describe the
relationship between link density or path traveling time and vehicle routes. The link
traveling time is related to the newly produced traffic demands at the inlet of that
link and the propagated flow from the adjacent links to that one. The path traveling
time is time-dependent and rests with the propagation processes of vehicles. Since
the operation processes of vehicles interact among each other, the heuristic non-
analytical iterative algorithm is a feasible measure to find out the quasi-optimal
solutions to the complex optimization problem.

3.2 Iterative process

The heuristic algorithm originates from two basic facts. The first is that all the
vehicles should be assigned to the routes with shortest traveling time from their
respective current origins to the destinations as described by Eq. 2. Another one
lies in that if the flow speed of each link is fast or the link density is low, the
vehicles can run with shortest times from their respective current origins to the
destinations. Thus, the current time shortest paths of vehicles indicate the feasible
direction to minimize the objective function J1. Based upon these viewpoints, the
iterative process is described as follows.

Step 1: Set the initial performance J1(t) = +∞ and the optimal routes Po(t) = NIL
at instant t =0. And the iteration step i=1.
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Step 2: Assign the routes P(i) to the vehicles with shortest traveling time from their
respective current origins to the destinations.

Step 3: Undertake traffic simulation utilizing propagation models to predict the
future operation.

Step 4: Calculate the current performance J1(i).

Step 5: If J1(i)< J1(i−1), record Po(t) = P(i). Continue the iterative process.

Step 6: If |J1(i)− J1(i−1)| < ε (a small number) or i ≥ I(the maximum iteration
number), terminate the iteration process. Or, i = i+1, go to Step 2.

3.3 Simulation process

The simulation system is composed of two parts. One is to simulate the true traf-
fic system, and the other one is the navigation part to engender the optimal routes.
The true traffic system has stochastic components, such as the speed fluctuations
described in Eq. 11 and the inclinations to obey or disobey the navigation com-
mands. The navigation part is to identify the driving and path selection behaviors,
adjust the prediction models, undertake the simulation prediction, and determine
the quasi-optimal routes.

Step 1: t=0.

Step 2: Load vehicles produced at instant t.

Step 3: Calculate the movements with randomness for the vehicles who have not
arrived at their destinations according to the current optimal routes Po(t).

Step 4: If MOD(t, Ti) = 0 where Ti is the time interval to update routes, recalculate
the optimal routes from instant t according to the feedback information from the
simulated true traffic system.

Step 5: If t ≥ Tt (the termination instant), stop. Else, t = t +T , go to Step 2.

4 Simulation results

4.1 Road network

We utilize the arterial roads of Beijing city as shown in Fig. 2 to undertake sim-
ulation. It includes 50 nodes and 168 links. The same road segment between two
nodes but with different running directions for vehicles is denoted as different links.
A certain scale of feasible routes between nodes are recorded beforehand to save
the calculation burden of time shortest paths. At the inlet of each link, the vehi-
cle is stochastically produced with its own running destination every 18s. In total,
10106 vehicles are generated for the single-lane road network. The vehicles will
be loaded at their born instants. The simulation period T =18s, and the prediction
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horizon P=200. The routes will be recalculated for the running vehicles every 3T .
For the true movements in road network, we assume the stochastic variable in Eq.
11 yields to the normal distribution N(0, 5).

Figure 2: Road network.

4.2 The performance of road network

Fig. 3 (a) and (b) demonstrate the link densities under the cases of static route
guidance based on the distance shortest paths and of traffic navigation predictive
control based on the time shortest paths, respectively. The density is measured by
D = Ll/Lv where Ll is the link length and Lv is the average vehicle length including
the safety margin distance between two adjacent vehicles. Set Lv = 5m. From
Fig. 3 (a), we can learn that if all the vehicles run along the distant shortest paths,
some links will be incredibly congested because their densities are greater than
1. In the traffic navigation predictive control, we let Y(t) be the link densities with
ys(l, t) = 0.3 and λ →+∞. If ys(l, t+kT )< yp(l, t+kT ), αl = 1; otherwise αl = 0.
Fig. 3 (b) indicates that although the partial traffic navigation predictive control is
utilized, it still can prevent the possible link congestion and assign the vehicles to
the routes with shortest traveling times. The system- and user-optimal objectives
can be both achieved utilizing the proposed approach to engender the navigation
commands.
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Figure 3: Link density. (a) is for static route guidance. (b) is for traffic navigation
predictive control.

4.3 Consistency of density and speed

In the simulation of vehicle operation processes, the mesoscopic traffic simulation
model is utilized. For the individual vehicle on a link, its speed is modeled to be
related to the partial link density in front of the vehicle. The speed of link flow is
the average of vehicle speeds on the link. Such an approach apparently prevents
the impractical phenomenon that the operation of the front vehicle is affected by
that of the rear one. Fig. 4 depicts two representative link densities and speeds,
which reflects the statistical law in most cases that the link speed decreases with
the increase of link density.
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Figure 4: Samples of the consistency between density and speed on a link. (a) is
for link 50. (b) is for link 135 in the case of Fig. 3 (b).

4.4 Iterative process

The routes are updated every 3T according to the current and predicted traffic con-
ditions. Fig. 5 represents the iteration processes at 9T , 39T , 60T , 78T , 87T , 96T ,
105T , 123T and 189T . From those figures, it can be learned that the feasible-
direction non-analytical iterative algorithm possesses the convergent property al-
though the local oscillations may happen. Therefore, it can facilitate finding out
the quasi-optimal solutions within a few iteration steps for the engineering imple-
mentation.

Figure 5: Samples of the iteration processes.
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4.5 Feedback adjustment

We design two cases to demonstrate how the feedback adjustment takes effect.
In case I, 25% vehicles are assumed to disobey the navigation commands, while
in case II, 50% ones are assumed. The vehicles disobeying the commands are
identified to run along the distance shortest paths. The feedback information will
be reflected in the route optimization. Fig. 6 (a) and (b) display the link densities
for case I and II, respectively. Apparently, the performance will deteriorate with
the number increase of disobedient vehicles, but it is still better than that in case all
vehicles run along the distance shortest paths.

Figure 6: Link density. (a) is for case I: 25% vehicles disobey the navigation
commands. (b) is for case II: 50% vehicles disobey the navigation commands.
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5 Conclusions

We have proposed one kind of engineering-oriented solution to DTM for the real-
time route guidance based on model predictive control, i.e. simulation prediction-
based rolling-horizon feedback implementation. For the stochastic and time-variant
traffic system, there exists the randomness of traffic demands and propagations.
The real-time feedback will be beneficial for the DTM to engender the valid com-
mands for route guidance. The current route decision is established on the basis that
the simulated traffic operations in the prediction horizon are the compromise be-
tween the system- and user-optimal performances. Through the feasible-direction
non-analytical iterative algorithm, the time shortest paths are gradually enumer-
ated and the instantaneous optimal solutions are reserved through the comparison
between system performances obtained at iteration steps. The time shortest path
of a vehicle is overviewed in its operation process where the accumulation of link
traveling times has the instant-related logicality. The mesoscopic simulation model
describes the speed of a vehicle related to the density in front of that vehicle on
a link. The crowded links are predicted and furthermore averted because of long
traveling times during the enumeration processes of time shortest paths. In the end,
the quasi-optimal solutions are attained to be implemented during the future certain
periods. This process is repeated over the rolling horizon to periodically update the
routes in view of stochastic traffic demands and propagations.
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