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Flexural wave dispersion in finitely pre-strained solid and
hollow circular cylinders made of compressible materials

S. D. Akbarov 1,2

Abstract: Flexural wave dispersion in finitely pre-stretched (or pre-compressed)
solid and hollow, circular cylinders is investigated with the use of the three-
dimensional linearized theory of elastic waves in initially stressed bodies. It is
assumed that the initial strains in the cylinders are homogeneous and correspond to
the uniaxial tension, or compression, along their central axes. The elasticity rela-
tions of the cylinders’ materials are described by the harmonic potential. The an-
alytical solution of the corresponding field equations is presented and, using these
solutions, the dispersion equations for the cases under consideration are obtained.
The dispersion equations are solved numerically and based on these solutions, dis-
persion curves and dispersion diagrams are constructed for various values of the
elongation parameter through which the magnitude of the initial strains is deter-
mined. The numerical results are obtained for the first and second lowest modes of
the solid cylinder and for the first three lowest modes of the hollow cylinder. Ac-
cording to the analyses, in particular, it is established that the finite initial uniaxial
stretching, as well the finite initial uniaxial compressing, change the dispersion of
the flexural waves in the solid and hollow cylinders not only quantitatively, but also
qualitatively.

Keywords: Flexural wave dispersion, backward wave, anomalous dispersion,
initial strain, cylinder

1 Introduction

Flexural waves are the most complicated waves which can propagate in infinite cir-
cular cylinders. Longitudinal and torsional axisymmetric waves in these cylinders
are particular cases of flexural waves. At the same time, flexural waves are more
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real than axisymmetric waves and can be generated by almost all types of time-
harmonic non-axisymmetric distributed external time–harmonic dynamical forces
acting on a certain part of the cylinder. Therefore, investigations of the propagation
and dispersion laws of flexural waves have been the subject of many researchers,
which have been made by employing both the three-dimensional exact equations of
the linear theory of elastodynamics (see Hudson (1943), Pao and Mindlin (1960),
Abramson (1957) and others) and the equation of motion for approximate beam and
shell theories (see Cooper and Naghdi (1957) and others). A detailed review of ear-
lier related works was given in a paper by Thurston (1978). Note that these investi-
gations continue to this day especially with respect to the circular cylinders which
are made of composite materials (see Yamakawa and Murakami (1997), Yuan and
Hsieh (1998), Ilmenkov and Kleshchev (2012) and others).

It should be noted that the present state of the governing branches of modern in-
dustry such as civil engineering, mechanical engineering, shipbuilding, aircraft and
others, requires the study of the influence of the nonlinear effects on the dispersion
of the flexural waves in circular cylinders. One of the main sources, according to
which these nonlinear effects arise, is the initial stresses in cylinders. It is evident
that the problems related to the wave propagation in the initially stressed bodies
cannot be investigated within the framework of field equations of the linear theory
of elastodynamics. Therefore, the studies of these problems are made within the
scope of the Three-Dimensional Linearized Theory of Elastic Waves in Initially
Stressed Bodies (TLTEWISB).

The relations and equations of the TLTEWISB are obtained from the exact re-
lations and equations of the non-linear theory of elastodynamics by linearization
with respect to small dynamical perturbations. The general questions of the TL-
TEWISB have been elaborated in many investigations such as in works by Biot
(1965), Truestell (1961), Eringen and Suhubi (1975), Guz (2004) and others. It
should be noted that there are some versions of the TLTEWISB which were de-
veloped in the monograph by Guz (2004). These versions of the TLTEWISB are
distinguished from each other with respect to the magnitude of the initial strains.
The version of the TLTEWISB developed for high-elastic materials, according to
which the initial strains in the bodies are determined within the scope of the non-
linear theory of elasticity without any restrictions on the magnitude of the initial
strains, is called the large (or finite) initial deformation version. The version of
the TLTEWISB, according to which the initial stress-strain state in bodies is de-
termined within the scope of the geometrically non-linear theory of elasticity and
under which changes to the elementary areas and volumes as a result of the initial
deformation are not taken into account, is called the first version of the small initial
deformation theory of the TLTEWISB. The second version has an initial stress-
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strain state in bodies, which is determined within the scope of the classical linear
theory of elasticity.

Now we consider a brief review of the investigations related to flexural wave propa-
gation in a pre-stressed circular solid cylinder. One of the first attempts in this field
was made by Mott (1973) in which, within the scope of the aforementioned second
version of the small initial deformation theory of the TLTEWISB, the influence of
the axial extensional as well as the axial compressional initial strains, on the phase
velocity of the first fundamental mode of the flexural waves was studied. The ma-
terial of the cylinder was assumed to be isotropic and in some particular cases (for
the case where the cylinder is made of Aluminum) it was established that as a result
of the existence of acceptable values of the initial extensional (compressional) axial
stress, the phase velocity of the flexural waves can increase (decrease) about 15%.

In papers by Guz, Kushnir and Makhort (1975) and Kushnir (1983) within the
scope of the aforementioned first version of the small initial deformation theory of
the TLTEWISB, the flexural wave propagation in the initially axially strained solid
(Guz, Kushnir and Makhort (1975)) and hollow (Kushnir (1983)) cylinders was
studied. The mechanical relations of the cylinders’ materials are described through
the Murnaghan potential, as a result of which the influence of the third order elastic
constants on the wave propagation velocity is also taken into account. Note that
in these works numerical investigations were made for the first five modes only in
the case where the initial stress in the cylinder, which is fabricated from steel, is
a stretching one and as a result of these investigations it was established that the
character of the influence of the initial stresses on the flexural wave propagation
velocity depends significantly on the values of the wavenumber and the number of
the mode.

Note that the results of the previous works are acceptable for cylinders made of
comparatively rigid materials such as Aluminum and Steel, but not for cylinders
made of high elastic materials with finite initial strains. The first attempt for the
study of the longitudinal wave propagation in the finite pre-strained solid cylinder
was made by Belward (1976) for the case where the cylinder is composed of an
incompressible Mooney material. However, in the paper by Belward (1976) there
are no numerical results nor any analyses related to the flexural waves.

To the best of the author’s knowledge, up to now there has not been any investi-
gation related to the study of flexural wave propagation in the initially finite pre-
strained circular cylinders. However, learning the rules of flexural wave propa-
gation in the finite pre-strained solid and hollow cylinders made of highly-elastic
elastomers or polymers can be useful for more accurate and correct understanding
and to control the dynamical processes occurring in these cylinders. Moreover, the
study of flexural wave propagation and dispersion in finite pre-strained cylinders



390 Copyright © 2013 Tech Science Press CMES, vol.92, no.4, pp.387-421, 2013

can be taken as the first step of the study of more complicated problems on the
dynamical processes related to the highly-elastic polymer tubes which are used for
transportation of various kinds of fluids.

Thus, these and many other reasons necessitate the investigation of the flexural
wave dispersion in the finite pre-strained solid and hollow cylinders made of highly-
elastic compressible and incompressible materials. In the present work we make
the first attempts in this field in the case where the cylinders are made from com-
pressible highly-elastic materials and their mechanical relations are described by
the harmonic potential. The investigations are made by utilizing the large (or fi-
nite) initial deformation version of the TLTEWISB and the numerical results on
the influence of the initial strains on the magnitude and on the character of the flex-
ural wave dispersions in the cylinders are presented and discussed for a few of the
lowest modes.

Moreover, the investigations carried out in the current paper can also be consid-
ered as developments of the studies by the author and his students (see Akbarov
and Guliev (2009, 2010), Akbarov and Ipek (2010, 2012), Akbarov, Guliev and
Tekercioglu (2010), Akbarov, Guliev and Kepceler (2011), Akbarov, Kepceler and
Egilmez (2011, 2012), Kepceler (2010) and Ozturk and Akbarov (2008, 2009a,
2009b) related to axisymmetric wave propagation in compound cylinders for the
non-axisymmetric wave propagation case.

2 Formulation of the problem and governing field equations

We consider the solid (Fig. 1a) and hollow cylinders (Fig. 1b) and assume that
the radius of the solid cylinder and the outer radius of the hollow cylinder is R, but
the thickness of the latter is h. In the natural state we determine the position of
the points of the cylinders by the Lagrangian coordinates in the cylindrical system
of coordinates Orθz. Assume that in the initial state the cylinders are stretched
or compressed statically along the Oz axis and as a result the axisymmetric homo-
geneous initial stress-strain state arises. The values related to the initial state we
denote by the upper index “0” and suppose that the initial state is determined by
the following displacement field:

u0
r = (λ1−1)r, u0

θ = 0, u0
z = (λ3−1)r, λ1 6= λ3, (1)

where u0
r (u0

z ) is the displacement, but λ1(λ3) is the elongation parameter along the
radial direction (along the Oz axis).

For the initial state of the cylinders, we associate the Lagrangian cylindrical system
of coordinates O′r′θ ′z′ and introduce the following notation

r′ = λ1r, z′ = λ3z (2)
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Figure 1: The geometry of the solid (a) and hollow (b) cylinders

The values related to the system of coordinates associated with the initial state
below, i.e. with O′r′θ ′z′, will be denoted by an upper prime.

Within this framework, let us investigate the flexural wave propagation along the
O′z′ axis in the cylinders using the coordinates r′, θ ′ and z′ in the framework of
the TLTEWISB. Thus, we write the basic relations of the TLTEWISB for the case
considered.

The equations of motion:

∂Q′r′r′
∂ r′

+
1
r′

∂Q′
θ ′r′

∂θ ′
+

∂Q′z′r′
∂ z′

+
1
r′
(Q′r′r′−Q′θ ′θ ′) = ρ

′ ∂
2ur′

∂ t2 ,

∂Q′r′θ ′
∂ r′

+
1
r′

∂Q′
θ ′θ ′

∂θ ′
+

∂Q′z′θ ′
∂ z′

+
1
r′
(Q′r′θ ′+Q′θ ′r′) = ρ

′ ∂
2uθ ′

∂ t2 ,

∂Q′r′z′
∂ r′

+
1
r′

∂Q′
θ ′z′

∂θ ′
+

∂Q′z′z′
∂ z′

+
1
r′

Q′r′z′ = ρ
′ ∂

2uz′

∂ t2 . (3)

The elasticity relations:

Q′r′r′ = ω
′
1111

∂ur′

∂ r′
+ω

′
1122

1
r′
(
∂uθ ′

∂θ ′
+ur′)+ω

′
1133

∂uz′

∂ z′
,

Q′θ ′θ ′ = ω
′
2211

∂ur′

∂ r′
+ω

′
2222

1
r′
(
∂uθ ′

∂θ ′
+ur′)+ω

′
2233

∂uz′

∂ z′
,

Q′z′z′ = ω
′
3311

∂ur′

∂ r′
+ω

′
3322

1
r′
(
∂uθ ′

∂θ ′
+ur′)+ω

′
3333

∂uz′

∂ z′
,

Q′r′θ ′ = ω
′
1221

∂uθ ′

∂ r′
+ω

′
1212(

1
r′

∂ur′

∂θ ′
− 1

r′
uθ ′),

Q′θ ′r′ = ω
′
2121

∂uθ ′

∂ r′
+ω

′
2112(

1
r′

∂ur′

∂θ ′
− 1

r′
uθ ′),
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Q′z′θ ′ = ω
′
3223

∂uθ ′

∂ z′
+ω

′
3232

∂uz′

r′∂θ ′
, Q′θ ′z′ = ω

′
2323

∂uθ ′

∂ z′
+ω

′
2332

∂uz′

r′∂θ ′
,

Q′z′r′ = ω
′
3113

∂ur′

∂ z′
+ω

′
3131

∂uz′

∂ r′
, Q′r′z′ = ω

′
1313

∂ur′

∂ z′
+ω

′
1331

∂uz′

∂ r′
. (4)

In (3) and (4) through Q′r′r′ , Q′
θ ′θ ′ ,. . . , and Q′r′z′ , perturbation of the components

of the non-symmetric Kirchhoff stress tensor is denoted. The notation ur′ , uθ ′ and
uz′ shows the perturbation of the components of the displacement vector, where
ρ ′ is the density of the cylinder material in the initial state. The constants ω ′1111,
ω ′1122,. . . , and ω ′1331 in (4), are determined through the following expressions:

ω
′
1111 =

1
λ3

(λ +2µ), ω
′
1122 =

1
λ3

λ , ω
′
1133 =

1
λ1

λ , ω
′
1221 =

1
λ3

µ,

ω
′
1313 = 2µ(λ1 +λ3)

−1, ω
′
1331 = 2µ(λ1 +λ3)

−1, ω
′
3113 =

λ 2
3

λ 2
1

2µ(λ1 +λ3)
−1,

ω
′
3333 =

λ3

λ 2
1
(λ +2µ), ω

′
2222 = ω

′
1111, ω

′
2233 = ω

′
1133, ω

′
2323 = ω

′
1313,

ω
′
2112 = ω

′
1221, ω

′
3223 = ω

′
3113, ω

′
2332 = ω

′
1331, ω

′
1111−ω

′
1122 = ω

′
1221+ω

′
1212.

(5)

For explanation of the foregoing equations and relations, according to Truestell
(1961), Eringen and Suhubi (1975), and Guz (2004), let us consider briefly some
basic relationships of the large (finite) elastic deformation theory, and their lin-
earization, which are used in the present investigation.

2.1 Some relations of the non-linear theory of elasticity for hyper-elastic bod-
ies.

Consider the definition of the stress and strain tensors in the large elastic deforma-
tion theory. For this purpose we use the Lagrange coordinates r, θ and z in the
cylindrical system of coordinates Orθz. In this case, the physical components of
Green’s strain tensor ε̃ in the Orθz coordinate system are determined by the physi-
cal components ur, uθ and uz of the displacement vector u through the relation (A1)
given in Appendix A.

Consider the determination of the Kirchhoff stress tensor. The use of various types
of stress tensors in the large (finite) elastic deformation theory is connected with the
reference of the components of these tensors to the unit area of the relevant surface
elements in the deformed or un-deformed state. This is because, in contrast to the
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linear theory of elasticity, in the finite elastic deformation theory, the difference
between the areas of the surface elements, taken before and after deformation must
be accounted for, for the derivation of the equation of motion and under satisfaction
of the boundary conditions. According to the aim of the present investigation, here
we consider two types of stress tensors denoted by q̃ and s̃, the components of
which refer to the unit area of the relevant surface elements in the un-deformed
state, but which act on the surface elements in the deformed state. The physical
components s(i j) of the stress tensor s̃ are determined through the strain energy
potential Φ = Φ(εrr,εθθ , ...,εθz) by use of the following expression:

s(i j) =
1
2

(
∂

∂ε(i j)
+

∂

∂ε( ji)

)
Φ, (6)

where (i j) = rr, θθ , zz, rθ , rz, zθ .

The physical components of the stress tensor q̃ are determined through the physical
components of the stress tensor s̃ and the displacement vector u by the expression
(A2) given in Appendix A.

The stress tensor q̃, whose components are determined by expression (A2), is called
the Kirchhoff stress tensor, but the stress tensor s̃ is called the Lagrange stress
tensor. According to the expressions (6) and (A2), the stress tensor s̃ is symmetric,
but the stress tensor q̃ is non-symmetric. In this case the equation of motion is
written as follows:

∂qrr

∂ r
+

∂qθr

r∂θ
+

∂qzr

∂ z
+

1
r
(qrr−qθθ ) = ρ

∂ 2ur

∂ t2 ,

∂qrθ

∂ r
+

∂qθθ

r∂θ
+

1
r
(qrθ +qθr)+

∂qzθ

∂ z
= ρ

∂ 2uθ

∂ t2 ,

∂qrz

∂ r
+

∂qθz

r∂θ
+

1
r

qrz +
∂qzz

∂ z
= ρ

∂ 2uz

∂ t2 , (7)

For determination of the stress-strain relations it is necessary to give the explicit
expression of the strain energy potential Φ in expression (6). In the present paper,
we will use the following expression for the potential Φ which was proposed in a
paper by John (1960) and was called the harmonic potential:

Φ =
1
2

λe2
1 +µe2, (8)

where

e1 =
√

1+2ε1 +
√

1+2ε2 +
√

1+2ε3−3,
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e2 =
(√

1+2ε1−1
)2

+
(√

1+2ε2−1
)2

+
(√

1+2ε3−1
)2

. (9)

In relations (8) and (9), λ and µ are material constants and εi (i = 1,2,3) are the
principal values of Green’s strain tensor.

This completes our consideration of the definition of the stress and strain tensors,
the determination of the relations between them, and the equation of motion in the
finite elastic deformation theory.

2.2 Determination of the initial strains and stresses.

Substituting the expression (1) into the relation (A1) and supplying them both with
the upper index “0” we obtain the following initial strains:

ε
0
rr = ε

0
θθ =

1
2
(
λ

2
1 −1

)
, ε

0
zz =

1
2
(
λ

2
3 −1

)
, ε

0
rθ = ε

0
rz = ε

0
θz = 0. (10)

It follows from (10) that in the initial state, the principal values of Green’s strain
tensor ε0

1 , ε0
2 , and ε0

3 coincide with ε0
rr, ε0

θθ
and ε0

zz, respectively. Consequently, sub-
stituting the expression (10) into the relations (8) and (9) we obtain the following
expression for the strain energy potential in the initial state:

Φ
0 =

1
2

λ (2λ1 +λ3−3)2 +µ

(
2(λ1−1)2 +(λ3−1)2

)
. (11)

According to the expression (10), the following relations can be written:

∂

∂ε0
rr
=

∂

∂ε0
θθ

=
1
λ1

∂

∂λ1
,

∂

∂ε0
zz
=

1
λ3

∂

∂λ3
. (12)

Using (11) and (12) we obtain the following expressions for the stresses in the
initial state:

s0
zz = [λ (2λ1 +λ3−3)+2µ (λ3−1)] (λ3)

−1 , s0
rθ = s0

rz = s0
zθ = 0,

s0
rr = s0

θθ = [λ (2λ1 +λ3−3)+2µ (λ1−1)] (λ1)
−1 . (13)

According to the problem statement, we can write that:

s0
rr = s0

θθ = [λ (2λ1 +λ3−3)+2µ (λ1−1)] (λ1)
−1 = 0,

and from this we obtain:

λ1 =

[
2− λ

µ
(λ3−3)

][
2
(

λ

µ
+1
)]−1

. (14)
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Also, we obtain from (13), (1) and (A2) the following expressions for the Kirchhoff
stress tensor in the initial state:

q0
zz = λ3s0

zz, q0
rr = λ1s0

rr = 0, q0
θθ = λ1s0

θθ = 0,

q0
θr = q0

rθ = q0
rz = q0

zr = q0
zθ = q0

θz = 0. (15)

It follows from the relations (1) and (15) that the equation (7) satisfies automatically
the initial strain-stress state.

2.3 Determination of the relations related to the perturbation state.

Now we assume that the considered cylinders with the foregoing initial strain-stress
state has an additional small perturbation determined by the displacement vector
with components u(k)r = u(k)r (r,θ ,z, t), u(k)

θ
= u(k)

θ
(r,θ ,z, t) and u(k)z = u(k)z (r,θ ,z, t).

Taking into account the smallness of the displacement perturbation, we linearize the
relationships (A1), (6), (A2) and (7) – (9) for the perturbed state in the vicinity of
the appropriate values for the initial state and then subtract from them the relation-
ships for the initial state. As a result, we obtain the equations of the TLTEWISB. As
an example, in the case under consideration, as a result of the aforementioned lin-
earization we obtain the following expressions for perturbation of the components
of Green’s strain tensor:

εrr = λ1
∂ur

∂ r
, εrθ = λ1

1
2

(
∂uθ

∂ r
+

∂ur

r∂θ
− uθ

r

)
, εrz =

1
2

(
λ1

∂ur

∂ z
+λ3

∂uz

∂ r

)
,

εθθ = λ1
1
2

(
∂uθ

r∂θ
+

ur

r

)
, εrz =

1
2

(
λ3

∂uz

r∂θ
+λ1

∂uθ

∂ z

)
, εzz = λ3

∂uz

∂ z
. (16)

Perturbation of the components of the stress tensor s̃ (denoted by capital letter S(i j),
where (i j)= rr, θθ , zz, rθ , rz, zθ) is determined from linearization of the relations
(6), (8) and (9). We do not consider this linearization procedure in detail here,
but note that as a result of this linearization the following expressions for S(i j) are
obtained:

Srr = λε +2µεrr, Sθθ = λε +2µεθθ , Szz = λε +2µεzz, ε = εrr + εθθ + εzz,

Srθ = 2µεrθ , Srz = 2µεrz, Szθ = 2µεzθ . (17)

Taking into account the relation (17), we obtain from (A2) (given in Appendix A)
the following expression for perturbation of the components of the Kirchhoff stress
tensor q̃ (denoted by capital letter Q(i j)).

Qrr = λ1Srr, Qrθ = λ1Srθ , Qrz = λ3Srz, Qθr = λ1Srθ , Qθθ = λ1Sθθ ,
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Qzr = λ1Szr +S0
zz

∂ur

∂ z
, Qzθ = λ1Szθ +S0

zz
∂uθ

∂ z
, Qzz = λ3Szz. (18)

Substituting (q0
(i j)+Q(i j)) and (u0

(i)+u(i)) (where (i) = r,θ ,z) instead of q(i j) and
u(i), respectively in Eq. (7) we obtain:

∂Qrr

∂ r
+

∂Qθr

r∂θ
+

∂Qzr

∂ z
+

1
r
(Qrr−Qθθ ) = ρ

∂ 2ur

∂ t2 ,

∂Qrθ

∂ r
+

∂Qθθ

r∂θ
+

1
r
(Qrθ +Qθr)+

∂Qzθ

∂ z
= ρ

∂ 2uθ

∂ t2 ,

∂Qrz

∂ r
+

∂Qθz

r∂θ
+

1
r

Qrz +
∂Qzz

∂ z
= ρ

∂ 2uz

∂ t2 . (19)

Multiplying Eq. (19) by (λ 2
1 λ3)

−1 and using the notation

ρ
′=(λ 2

1 λ3)
−1

ρ, r′= λ1r, z′= λ3z, Q′r′r′ =(λ1λ3)
−1Qrr, Q′z′z′ =(λ 2

1 )
−1Qzz,

Q′θ ′θ ′ = (λ1λ3)
−1Qθθ , Q′r′θ ′ = (λ1λ3)

−1Qrθ , Q′θ ′r′ = (λ1λ3)
−1Qθr,

Q′z′θ ′ =(λ 2
1 )
−1Qzθ , Q′θ ′z′ =(λ1λ3)

−1Qθz, Q′r′z′ =(λ1λ3)
−1Qrz, Q′z′r′ =(λ1λ3)

−1Qzr

(20)

we obtain Eq. (3) from Eq. (19). Moreover, from the relationships (17), (18) and
(20) we derive the expressions in (5) for ω ′1111, ω ′1122,. . . , and ω ′1331 which enter the
elasticity relations (4).

Now we formulate the boundary conditions. These conditions are:

for the solid cylinder

Q′r′r′
∣∣
r′=λ1R = 0, Q′r′θ ′

∣∣
r′=λ1R = 0, Q′r′z′

∣∣
r′=λ1R = 0. (21)

for the hollow cylinder

Q′r′r′
∣∣
r′=λ1R = 0, Q′r′θ ′

∣∣
r′=λ1R = 0, Q′r′z′

∣∣
r′=λ1R = 0,

Q′r′r′
∣∣
r′=λ1(R−h) = 0, Q′r′θ ′

∣∣
r′=λ1(R−h) = 0, Q′r′z′

∣∣
r′=λ1(R−h) = 0. (22)

This completes formulation of the problems and consideration of the related equa-
tions and relationships.
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3 Solution procedure and obtaining the dispersion equation

For solution of the eigenvalue problems (3) – (5), (21) and (22) we use the repre-
sentation:

ur′ =
1
r′

∂

∂θ ′
Ψ− ∂ 2

∂ r′∂ z′
X, uθ ′ =−

∂

∂ r′
Ψ− 1

r′
∂ 2

∂θ ′∂ z′
X,

uz′ = (ω ′1133 +ω
′
1313)

−1
(

ω
′
1111∆

′
1 +ω

′
3113

∂ 2

∂ z′2
−ρ

′ ∂ 2

∂ t2

)
X,

∆
′
1 =

∂ 2

∂ r′2
+

1
r′

∂

∂ r′
+

1
r′2

∂ 2

∂θ ′2
, (23)

which is proposed by Guz (1986a, 2004). Here the functions Ψand X are the solu-
tions of the equations(

∆
′
1 +ξ

′2
1

∂ 2

∂ z′2
− ρ ′

ω ′1221

∂ 2

∂ t2

)
Ψ = 0, [

(
∆
′
1 +ξ

′2
2

∂ 2

∂ z′2

)(
∆
′
1 +ξ

′2
3

∂ 2

∂ z′2

)
+

−ρ
′
(

ω ′1111 +ω ′1331
ω ′1111ω ′1331

∆
′
1 +

ω ′3333 +ω ′3113
ω ′1111ω ′1331

∂ 2

∂ z′2

)
∂ 2

∂ t2 +
ρ ′2

ω ′1111ω ′1331

∂ 4

∂ t4

]
X = 0,

(24)

where

ξ
′2
1 = ω

′
3113

(
ω
′
1221
)−1

, ξ
′2
2 = c′+

[
c′2−ω

′
3333ω

′
3113

(
ω
′
1111ω

′
1331
)−1
] 1

2
,

ξ
′2
3 = c′−

[
c′2−ω

′
3333ω

′
3113

(
ω
′
1111ω

′
1331
)−1
] 1

2
,

c′ =
(
2ω
′
1111ω

′
1331
)−1
[
ω
′
1111ω

′
3333 +ω

′
1331ω

′
3113−

(
ω
′
1133 +ω

′
1313
)2
]
. (25)

For the flexural waves we represent the functions Ψ and X as follows:

Ψ = Ψn(r′)sinnθ
′ sin(kz′−ωt), X = Xn(r′)cosnθ

′ cos(kz′−ωt). (26)

Substituting the expressions (26) into the equations (24) we obtain(
∆
′
1n +ζ

′2
1

)
Ψn = 0,

(
∆
′
1n +ζ

′2
2

)(
∆
′
1n +ζ

′2
3

)
Xn = 0,

∆
′
1n =

d2

dr′2
+

d
r′dr′

− n2

r′2
, (27)
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where

ζ
′2
1 = k2 (

ω
′
1221
)−1 (

ρ
′c2−ω

′
3113
)
, c =

k
ω

(28)

but ζ ′22 and ζ ′23 are determined as solutions of the equation

ω
′
1111ω

′
1331ζ

′4− k2
ζ
′2 [

ω
′
1111

(
ρ
′c2−ω

′
3333
)
+ω

′
1331

(
ρ
′c2−ω

′
3113
)
+(

ω
′
1133 +ω

′
1313
)2
]
+ k4 (

ρ
′c2−ω

′
3333
)(

ρ
′c2−ω

′
3113
)
= 0. (29)

In (28) and (29), c is the phase velocity of the flexural waves.

Thus, we find the solution of the equations in (27) as follows:

for the solid cylinder

Ψn = A1En(ζ
′
1kr′), Xn = A2En(ζ

′
2kr′)+A3En(ζ

′
3kr′), (30)

for the hollow cylinder

Ψn = A1En(ζ
′
1kr′)+B1Dn(ζ

′
1kr′), Xn = A2En(ζ

′
2kr′)+A3En(ζ

′
3kr′)+

A2Dn(ζ
′
2kr′)+A3Dn(ζ

′
3kr′), (31)

where

En(ζ
′
jkr′) = Jn(ζ

′
jkr′), Dn(ζ

′
jkr′) = Yn(ζ

′
jkr′) i f ζ

′2
j > 0,

En(ζ
′
jkr′) = In(ζ

′
jkr′), Dn(ζ

′
jkr′) = Kn(ζ

′
jkr′) i f ζ

′2
j < 0,

j = 1,2,3 (32)

In (32), Jn(x) and Yn(x) are Bessel functions of the first and second kind of the n−th
order and In(x)and Kn(x) are Bessel functions of a purely imaginary argument of
the n− thorder and Macdonald functions of the n− thorder, respectively.

Thus, using equations (30)-(33), (23), (4) and (5) we obtain the dispersion equa-
tions from (21) for the solid cylinder and from (22) for the hollow cylinder. This
dispersion equation is:

for the solid cylinder

det
∥∥β

s
i j

∥∥= 0, i; j = 1,2,3, (33)

for the hollow cylinder

det
∥∥β

h
i j

∥∥= 0, i; j = 1,2,3,4,5,6. (34)

The explicit expressions of β s
i j and β h

i j are given in Appendix B by formulae (B1)
and (B2) respectively.
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4 Numerical results and discussions

Now we consider the numerical results related to the dispersion curves which are
obtained by the numerical solution of the dispersion equations (33) (for the solid
cylinder) and (34) (for the hollow cylinder) in the case where n = 1in the expres-
sions (30) – (33) and in formulae given in Appendix B. Note that the algorithm of
the numerical solution is based on the well-known “bi-section” method. Taking the
equation (14) into account, we estimate the magnitude and character of the initial
strains through the elongation parameter λ3 which enters the expressions (1), (2)
and (5). Consequently, the results obtained in the cases where λ3 > 1 (λ3 < 1)
will illustrate the influence of the initial stretching (compressing) of the cylinders
on the dispersion curves. But the results obtained in the case where λ3 = 1 will
correspond to the classical ones which were obtained and analyzed in the works
by Hudson (1943), Pao and Mindlin (1960), Abramson (1957), Yamakawa and
Murakami (1997), Yuan and Hsieh (1998), Ilmenkov and Kleshchev (2012) and
others. Note that in obtaining the numerical results, which will be discussed below,
it is assumed that λ

/
µ = 1.5.

4.1 Solid cylinder.

First, we analyze the dispersion curves related to the solid cylinder and consider
Fig. 2a which shows the dispersion curves related to the first mode. These curves
are constructed for various values of the parameter λ3. The dispersion curve con-
structed in the case where λ3 = 1 coincides with the corresponding one given in
the paper by Abramson (1957). It follows from these results that the initial com-
pression of the solid cylinder causes the wave propagation velocity to decrease. In
this case the cut-off values of kR(denoted by (kR)c f ) arise, before which the flexu-
ral wave cannot propagate in the cylinder and the values of (kR)c f increase with a
decrease in λ3. The numerical results show that the high wavenumber limit value
of the wave propagation velocity, i.e. the limit value of c

/
c2 as kR→ ∞, is cR

/
c2

where c2 =
√

µ
/

ρ and cR = cR(λ3), is the Rayleigh wave’s velocity in the initially
stressed half-plane, the material of which coincides with the cylinder’s material.
Note that the values of cR(λ3) are determined by the solution of the equation:

(ρ ′c2
R−ω

′
1221)ω

′
2112

[
ω
′
2222(ρ

′c2
R−ω

′
1111) + ω

′2
1122

]2
−

ω
′
2222(ρ

′c2
R−ω

′
1111)

[
ω
′
2112(ρ

′c2
R−ω

′
1221) + ω

′2
1212

]2
= 0. (35)

The low wavenumber limit values of the wave propagation velocity, i.e. the values
of c
/

c2 as kR→ (kR)c f , are almost zero.
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Figure 2: Dispersion curves related to the mode 1 in the cases where (a) 0.8≤ λ3 ≤
1.0and 1.15 ≤ λ3 ≤ 1.3; (b) 1.02 ≤ λ3 ≤ 1.1, as well as dispersion diagrams (c)
related to the cases where 1.02≤ λ3 ≤ 1.1. Solid cylinder

The behavior of the dispersion curves obtained under initial tension is more compli-
cated than those obtained under initial compression of the cylinder. The dispersion
curves related to the initially tensioned cylinder in the cases where 1.02≤ λ3≤ 1.10
are given in Fig. 2b, but the dispersion curves related to the cases where 1.15 ≤
λ3 ≤ 1.30 are given in Fig. 2a. It follows from Fig. 2b that in the cases where
1.02 ≤ λ3 ≤ 1.10, the behavior of the dispersion curves of mode 1 is unusual. So,
in these dispersion curves there are points (indicated by circles in Fig. 2b) at which
dc
/

d(kR) = ∞. Using the group velocity definition cg = dω
/

dk and the expression
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k = ω/c we can make the following mathematical manipulations:

cg =
dω

dk
=

dω

d(ω
/

c)
=

c2dω

cdω−ωdc
=

c2dω
/

dk
cdω

/
dk−ωRdc

/
d(kR)

=
c2cg

ccg−ωRdc
/

d(kR)
(36)

We obtain

cg(ccg−ωR
dc

d(kR)
− c2) = 0 (37)

from (36). According to equation (37), we can conclude that at the points for
which dc

/
d(kR) =∞, the solution of the equation (37), which has a real physical

meaning, is cg = 0. Consequently, at the points for which dc
/

d(kR) = ∞ and in
the narrow vicinity of these points, the stop band zones arise. At the same time,
the dependence between kR(denoted by (kR)∗) at which cg = 0, and λ3, is non-
monotonic. For example, we obtain: (kR)∗= 5.16, 4.66, 4.34, 4.25, 4.32, 4.55 and
6.66 for λ3= 1.02, 1.03, 1.03, 1.04, 1.05, 1.06, 1.07 and 1.1, respectively.

Note that, according to Fig. 2b, we can conclude that both (upper and lower)
branches of the dispersion curves obtained for the same value of λ3, seem to be con-
nected at the points kR = (kR)∗. The wave propagation velocities of these branches
approach each other as kR→ (kR)∗ and these branches may have a different char-
acter in the near vicinity of the stop band zones. For explanation of these characters
we consider the dispersion diagrams given in Fig. 2c which correspond to the dis-
persion curves illustrated in Fig. 2b and recall that if c > cg, the dispersion is con-
sidered normal, but if c < cg, it is an anomalous dispersion. Moreover, sometimes
there exist cases where cg < 0 and their related waves are called backward waves.
The existence and the experimental observation of the backward waves in cylinders
and plates were considered in papers by Meitzler (1965), Wolf et al (1988), Lui et
al (2000), Werby and Überall (2002), Martson (2003) and others.

It should be noted that the aforementioned normal and anomalous dispersions, as
well as the existence of the backward waves can be easily determined by observa-
tion of the dispersion diagrams, i.e. the graphs of the dependence between ωR

/
c2

and kR. If this diagram has a part which is similar to that shown in Fig. 3a (Fig.
3b) then this part corresponds to the normal (anomalous) dispersion. Moreover, if
the dispersion diagram contains a part which is similar to that shown in Fig. 3c or
3d, then the range of the frequency corresponding to this part causes the backward
waves to appear.

Consequently, according to the foregoing definitions and the dispersion diagrams
given in Fig. 2c which correspond to the dispersion curves given in Fig. 2b, we
can conclude that the dispersion related to the lower branch of the dispersion curve
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Figure 3: The form of the dispersion diagrams related to the (a) normal, (b) anoma-
lous, (c) and (d) backward waves

in the very near vicinity of the stop band zones can be taken as an anomalous one.
But in the remaining part of the dispersion curves given in Fig. 2b, it corresponds
to a normal dispersion.

We recall that the results given in Figs. 2b and 2c relate to the cases where 1.02≤
λ3 ≤ 1.10. But the results obtained for the cases where λ3 ≥ 1.15, namely for the
cases where 1.15 ≤ λ3 ≤ 1.30 are given in Fig. 2a. It follows from the dispersion
curves given in Fig. 2a, which are related to the latter cases, that before a certain
value of kR(denoted by (kR)′) an increase in the magnitude of the initial stretching,
i.e. an increase in the values of the parameter λ3, causes the wave propagation
velocity to increase. But in the cases where kR > (kR)′, the opposite is true; the
wave propagation velocity decreases with λ3 in the range kR as shown in Fig. 2b.

Also, the results illustrated in Figs. 2a and 2b show that the low wavenumber limit
values of c

/
c2 increase monotonically with λ3.

Now we analyze the dispersion curves related to the second mode. The numerical
results show that the character of these curves depends significantly on the values
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Figure 4: Dispersion curves related to the mode 2 in the cases where (a) 1.02 ≤
λ3 ≤ 1.1, (b) 0.8≤ λ3 ≤ 0.95 and λ3 = 1.15, 1.2 and 1.3 (for the first group ones),
(c) λ3 = 0.8, 0.9, 1.15, 1.20 and 1.4 (for the second group ones); (d) and (e) show
dispersion diagrams related to the cases where λ3 = 1.15, 1.2 and 1.3 for the first
and second group ones respectively. Solid cylinder
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Figure 5: Dispersion curves related to the first mode in the cases where 0.85≤ λ3≤
1.2 for h/R = 0.1. Hollow cylinder

of the parameter λ3, i.e. on the initial strains in the cylinder. For example, in the
cases where 1.0 < λ3 ≤ 1.10 the behavior of the dispersion curves which are illus-
trated in Fig. 4a, is similar to that which is obtained in the classical case, i.e. in
the case where λ3 = 1.0. Moreover, Fig. 4a shows that before a certain value of kR
(denoted by (kR)∗II) an increase in the values of λ3 causes to decrease, but after this
value, i.e. for kR > (kR)∗II , increase in the values of the wave propagation velocity
c
/

c2. Consequently, in the above-noted cases, the influence of the initial tension
of the cylinder on the dispersion curves and on the wave propagation velocity is
quantitative only. However, a further increase in the values of the parameter λ3, as
well as a further decrease in the values of this parameter (under λ3 < 1.0) compli-
cates the character of the dispersion curves. As an example of the influence of the
further increase and decrease of λ3 on the character of the dispersion curves, we
consider the cases 1.15 ≤ λ3 ≤ 1.3 and 0.80 ≤ λ3 ≤ 0.95. The numerical results
show that the dispersion curves which relate to these cases are divided into two
separate groups. The dispersion curves related to the first (second) group are given
in Fig. 4b (Fig. 4c), but the dispersion diagrams for the first (second) group are
given in Fig. 4d (Fig. 4e). It follows from these results that each of these disper-
sion curves has a narrow stop band zone in the near vicinity of the point at which
dc
/

d(kR) = ∞ (or cg = 0). In these figures the points are indicated with circles
and a zoom into these circles shows that each of the dispersion curves and each of
the dispersion diagrams, has two separate branches. Let us call these branches the
upper and lower ones.
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It follows from Fig. 3 and Fig. 4d that in the near vicinity of the stop band zone
the upper branches of the first group of dispersion curves relate to the backward
waves, but the lower branches relate to the anomalous dispersion. Also, it follows
from Fig. 3 and Fig. 4e that in the near vicinity of the stop band zone the lower
branches of the second group of dispersion curves relate to the backward waves,
but the upper branches relate to the anomalous dispersion.

According to Fig. 4b, we can conclude that if 1.15≤ λ3 ≤ 1.3, then the wave prop-
agation velocity related to the upper (lower) branch of the first group of dispersion
curves decreases (increases) with λ3. But in the cases where 0.80 ≤ λ3 ≤ 0.95,
the wave propagation velocity related to the upper (lower) branch increases (de-
creases). However, Fig. 4c shows that the influence of the initial strains on the
wave propagation velocity related to the second group of dispersion curves has a
more complicated character. Yet, according to Fig. 3c, we can conclude that in the
cases where 1.15 ≤ λ3 ≤ 1.3, the wave propagation velocity related to the second
branch of the second group of dispersion curves decreases with λ3.

This completes the analyses of the numerical results related to the flexural wave
propagation in the solid cylinder.

Figure 6: Dispersion curves related to the first mode in the cases where 0.80≤ λ3≤
1.2 for h/R = 0.3. Hollow cylinder

4.2 Hollow cylinder.

Dispersion curves related to the first mode are given in Figs. 5, 6, 7, 8 and 9 for
the cases where h

/
R = 0.1, 0.3, 0.5, 0.75 and 0.9, respectively. In these figures

the dispersion curves are constructed for various values of the parameter λ3. Anal-
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yses of these results show that under initial compression of the cylinder, i.e. in
the cases where λ3 < 1.0, there exist cut-off values of kR (denoted by (kR)h

1c f ) af-
ter which the wave propagation takes place. We recall that a similar one has also
been established for the dispersion curves of the solid cylinder. However, under
flexural wave propagation in the relatively thin hollow cylinder (for example under
h
/

R < 0.3) and for the relatively small values of the parameter λ3 (for example,
under λ3 ≤ 0.9), there is not only (kR)h

1c f , but also (kR)h
2c f before which the dis-

persion curves exist. In other words, the dispersion curves of the first mode exist
only in the region (kR)h

1c f < kR < (kR)h
2c f . Examples for such dispersion curves

are given in Fig. 5 which are depicted for the cases where λ3 = 0.85and 0.90. It
should be noted that the values of (kR)h

1c f and (kR)h
2c f increase with λ3.

Figure 7: Dispersion curves related to the first mode in the cases where 0.80≤ λ3≤
1.2 for h/R = 0.5. Hollow cylinder

To understand the character of the dispersion curves above, we consider the dis-
persion diagrams illustrated in Fig. 10. Note that these diagrams correspond to
the dispersion curves shown in Fig. 5 and, according to Fig. 3, they confirm that
the part of the dispersion curves after the circles constructed for the cases where
λ3 = 0.8 and 0.9, as well as the part of the dispersion curves between the circles,
constructed for the case where λ3 = 0.95, relate to the backward waves.

It follows from Figs. 5 – 9 that under initial compression of the cylinder the wave
propagation velocity decreases with a decrease in the parameter λ3. However, un-
der initial tension of the cylinder the influence of this tension on the wave propaga-
tion velocity has a complicated character. At the same time, the low wavenumber
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Figure 8: Dispersion curves related to the first mode in the cases where 0.80≤ λ3≤
1.2 for h/R = 0.75. Hollow cylinder

Figure 9: Dispersion curves related to the first mode in the cases where 0.80≤ λ3≤
1.2 for h/R = 0.9. Hollow cylinder
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limit values of c
/

c2 increase monotonically with λ3. Moreover, the values of c
/

c2
obtained before a certain value of kR also increase with λ3 when λ3 > 1.0.

It should be noted that the high wavenumber limit values of c
/

c2 approach (except
for the dispersion curves which exist in the finite intervals of kR) cR(λ3)

/
c2 as

kR→ ∞, where cR(λ3) is determined from the solution of the equation (35).

Figure 10: Dispersion diagrams related to the case shown in Fig. 5

Figure 11: Dispersion curves related to the modes 2 and 3 in the cases where 0.80≤
λ3 ≤ 1.2 for h/R = 0.1. Hollow cylinder
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Figure 12: Dispersion curves related to the modes 2 and 3 in the cases where 0.80≤
λ3 ≤ 1.2 for h/R = 0.3. Hollow cylinder

Figure 13: Dispersion curves related to the modes 2 and 3 in the cases where 0.80≤
λ3 ≤ 1.2 for h/R = 0.5. Hollow cylinder
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Figure 14: Dispersion curves related to the modes 2 and 3 in the cases where 0.80≤
λ3 ≤ 1.2 for h/R = 0.75. Hollow cylinder

Figure 15: Dispersion curves related to the modes 2 (a) and 3 (b) in the cases where
0.80≤ λ3 ≤ 1.2 for h/R = 0.9. Hollow cylinder
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Figure 16: Comparison of the dispersion curves related to the hollow cylinder and
obtained for the first mode with the corresponding ones related to the solid cylinder
in the cases where λ3 =0.8 (a), 0.9 (b), 1.0 (c) and 1.2(d)

This completes consideration of the dispersion curves related to the first mode.
Now we consider the dispersion curves related to the second and third modes which
are given in Figs. 11 – 15 and constructed in the cases where h

/
R = 0.1, 0.3, 0.5,

0.75 and 0.9, respectively. It follows from the analyses of the graphs given in these
figures that the character of the influence of the initial strains in the hollow cylinder
on the flexural wave propagation velocity depends not only on the values of h

/
R,

but also on the values of the dimensionless wavenumber kR. For example, Fig.
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11 shows that in the case where h
/

R = 0.1 for kR > 0.2 and in the cases where
λ3 > 1.0, an increase in the values of λ3 causes an increase in the values of c

/
c2

in the second and third modes. At the same time, a decrease in the values of λ3
in the cases where λ3 < 1.0 causes a decrease in c

/
c2. But in mode 2 (mode 3),

the values of c
/

c2 are greater (less) than the corresponding ones obtained in the
case where λ3 = 1.0. Observations of Figs. 12, 13 and 14, show that in the cases
where 0.3≤ h

/
R≤ 0.75, the dispersion curves (with respect to the influence of the

parameter λ3 on these curves) have almost the same character as those given in
Fig. 11. In addition, the character of the dispersion curves obtained in the cases
where h

/
R = 0.9 for the third mode and shown in Fig. 15b, is also similar to that

of the dispersion curves which are obtained for h
/

R≤ 0.75. However, in the cases
where h

/
R = 0.9, the character of the dispersion curves which are obtained for

the second mode and shown in Fig. 15a, becomes similar to the character of the
dispersion curves which are obtained for the solid cylinder and shown in Fig. 4b.
The latter similarity can be explained by the fact that the dispersion curves obtained
for the hollow cylinder must approach those obtained for the solid cylinder with
h
/

R. According to this fact, it can be predicted that the dispersion curves obtained
for the hollow cylinder in the first mode must also approach the corresponding ones
obtained for the solid cylinder with h

/
R. Note that this prediction is proven with

the graphs given in Fig. 16 which are constructed in the cases where λ3 = 0.8(Fig.
16a), 0.9 (Fig. 16b), 1.0 (Fig. 16c) and 1.2 (Fig. 16d). Indeed it follows from Fig.
16 that for each selected value of the parameter λ3, the dispersion curves obtained
for the hollow cylinder approach the corresponding ones obtained for the solid
cylinder with h

/
R. Note that these results also prove the validity and reliability of

the algorithm and PC programs used in the present investigations.

5 Conclusion

Thus, in the present paper the flexural wave dispersion in the finitely pre-stretched
(or pre-compressed) solid and hollow cylinders has been investigated with the use
of the TLTEWISB. It is assumed that the initial strains in the cylinders are homo-
geneous and correspond to the uniaxial tension or compression along their central
axes. The elasticity relations of the cylinders’ materials are described by the har-
monic potential. The analytical solution of the corresponding field equations is
presented and, using these solutions, the dispersion equations for the cases under
consideration are obtained. The dispersion equations are solved numerically and
based on these solutions, the dispersion curves and dispersion diagrams are con-
structed for various values of the elongation parameter λ3, through which the mag-
nitude of the initial strains is determined. The curves and diagrams are obtained
for the first and second lowest modes of the solid cylinder, and for the first three
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lowest modes of the hollow cylinder. Analyses of these numerical results allow us
to make the following general conclusions:

• Finite initial uniaxial stretching, as well as finite initial uniaxial compressing,
change the dispersion of the flexural waves in the solid and hollow cylinders
not only quantitatively, but also qualitatively;

• As a result of the existence of the finite initial strains in the cylinders, parts
of the dispersion curves can arise which relate to the backward waves and
anomalous dispersion;

• The high wavenumber limit values of the flexural wave propagation velocity
in the cylinders in the first mode approach the Rayleigh wave propagation
velocity in the corresponding pre-strained half-plane;

• Initial tension of the cylinders causes the low wavenumber limit values of the
flexural wave propagation velocity in the first mode to increase;

• Initial compression of the cylinders causes cut-off values of the dimension-
less wavenumber in the first mode to appear and these cut-off values increase
monotonically with the initial compression;

• Initial compression of the relatively thin hollow cylinder in the first mode
causes not only cut-off values of the dimensionless wavenumber to arise, but
also causes a value of this wavenumber to appear, after which the flexural
wave propagation stops.

Details of the foregoing and many other conclusions are given in the text of the
paper.

Appendix A.

First, we write the expression for calculation of the physical components of Green’s
strain tensor through the physical components of the displacement vector in the
cylindrical system of coordinates.

εrr =
∂ur

∂ r
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2
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∂ur

∂ r

)2
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∂ r
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. (A1)

The expressions through which the physical components of the Kirchhoff stress
tensor are expressed through the physical components of the Lagrange stress tensor
and displacement vector are

qrr = srr(1+
∂ur

∂ r
)+ srθ (

∂ur

r∂θ
− uθ

r
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∂ur
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,
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. (A2)
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Appendix B.

The explicit expressions of β s
i j(i; j = 1,2,3) in the equation (33) are

β
s
11 = k2

ω
′
1111

[
nζ ′1
kR′

E ′n(ζ
′
1kR′)− n

(kR′)2 En(ζ
′
1kR′)

]
+

ω
′
1122k2 1

kR′

[
−nζ

′
1E ′n(ζ

′
1kR′)+

n
kR′

En(ζ
′
1kR′)

]
,

β
s
12 = k3

[
ω
′
1111ζ

′2
2E ′′n (ζ

′
2kR′)+ω

′
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1
kR′

(
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En(ζ

′
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′
2E ′n(ζ

′
2kR′)
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′
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′
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]
,
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,
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. (B1)

The explicit expression of β h
i j(i; j = 1,2,3,4,5,6) in the equation (34) is
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β h
i j = β s

i j for i; j = 1,2,3,
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In (B1) and (B2) the following notation is used

χ
′ = kR′(1+h

/
R), R′ = λ1R, E ′n(x) =
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