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Simulation of Natural Convection Influenced by Magnetic
Field with Explicit Local Radial Basis Function

Collocation Method

K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

Abstract: The purpose of the present paper is to extend and explore the ap-
plication of a novel meshless Local Radial Basis Function Collocation Method
(LRBFCM) in solution of a steady, laminar, natural convection flow, influenced
by magnetic field. The problem is defined by coupled mass, momentum, energy
and induction equations that are solved in two dimensions by using local colloca-
tion with multiquadrics radial basis functions on an overlapping five nodded sub-
domains and explicit time-stepping. The fractional step method is used to cou-
ple the pressure and velocity fields. The considered problem is calculated in a
square cavity with two insulated horizontal and two differentially heated vertical
walls with magnetic field applied in the horizontal direction. Numerical predic-
tions are calculated for different Grashof numbers, ranging from 104 to 106, and
Hartman numbers, ranging from 0 to 100, at Prandtl numbers 0.71 and 0.14. The
results of the method are compared to predictions, obtained by other numerical
methods, including FLUENT [Fluent (2003)]. Good agreement has been achieved.
The LRBFCM has been used in this kind of problems for the first time. The main
advantage of the method is its simple numerical implementation and no need for
polygonisation.

Keywords: Natural convection, magnetohydrodynamics, local radial basis func-
tion collocation method, multiquadrics, fractional step method.

1 Introduction

Natural convection [Bejan (1995); Kaviany (2001)] has been extensively studied
both experimentally as well as numerically, due to its common occurrence in na-
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ture and technology. It is known that convection in electrically conductive fluid
can be significantly suppressed by the application of an external magnetic field
[Davidson and Thess (2002); Cheng-Wen, Jian-Fei, Cong-Shan, Sheng-Wei and
Da-Chuan (2009); Sarris, Kakarantzas, Grecos and Vlachos (2005)]. [Rudraiah,
Barron, Venkatachalappa and Subbaraya (1995)] carried out analysis for differen-
tially heated rectangular cavities with transverse magnetic field for fluids with small
Prandtl (Pr) numbers. Similar calculations were performed [Al-Najem, Khanafer
and El-Refaee (1998)] for different orientations of the cavity. Several different nu-
merical methods have already been used to solve the problem. Among them are Fi-
nite Element Method [Salah, Soulaimani and Habashi (2001); Sathiyamoorthy and
Chamkha (2010); Skala and Barta (2012)], Finite Volume Method (FVM) [Di Pi-
azza and Ciofalo (2002a); Di Piazza and Ciofalo (2002b); Sarris, Kakarantzas, Gre-
cos and Vlachos (2005)], Meshless Local Petrov-Galerkin Method [Arefmanesh,
Naja and Nikfar (2010)], Global Radial Basis Function Collocation Method (GRBFCM)
[Colaço, Dulikravich and Orlande (2009)], and Meshless Diffuse Approximate
Method [Sadat and Couturier (2000)].

A Local Radial Basis Function Collocation Method (LRBFCM) is applied in the
present paper to numerically solve the governing equations of the magnetohydro-
dynamic (MHD) convection problem in a cavity. The idea behind this method is
to approximate the function locally over a set of neighboring nodes using Radial
Basis Functions (RBFs) [Buhmann (2000)] and to use collocation for determining
the expansion coefficients. The method belongs to the class of meshless numerical
methods [Atluri and Shen (2002); Atluri (2004); Šarler and Atluri (2010); Gu and
Liu (2005); Fasshauer (2007); Liu (2010)] which represent an appealing alternative
to the classical numerical methods. Meshless method is a numerical technique that
uses a set of scattered nodes [Wendland (2005)], both on the boundary and within
the computation domain, to represent the solution of physical phenomena. The
main feature of meshless methods is omission of the polygonalisation between the
nodes which can be remarkably demanding, particularly in realistic 3D geometrical
situations.

The LRBFCM was first proposed in 2006 [Šarler and Vertnik (2006)] for diffusion
problems. Since then, it has been successfully applied to various academic and in-
dustrial cases, such as diffusion-convection problems with phase change [Vertnik
and Šarler (2006)], direct chill casting problems for aluminium alloys with mate-
rial [Vertnik, Založnik and Šarler (2006)], interface moving boundaries on macro-
scopic [Kosec and Šarler (2009)] and microscopic [Kovačević and Šarler (2005)]
levels, natural convection problems [Kosec and Šarler (2008a); Kosec and Šar-
ler (2008b)], turbulent combined forced and natural convection problems [Vertnik
and Šarler (2009),Vertnik and Šarler (2011)], macrosegregation [Kosec, Založnik,
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Šarler and Combeau (2011)], natural convection problems with small Pr number
[Kosec and Šarler (2012)], continuous casting of steel [Vertnik, Šarler and Senčič
(2012)], etc. The method has been applied among others also in solid mechan-
ics problems, such as in bending of composite plates [Ferreira, Roque and Martins
(2003)] and large deformation problems such as hot shape rolling of steel [Hanoglu
and Šarler (2011)]. The r- and h-adaptive mesh refinements have been developed in
[Kovačević and Šarler (2005)] and [Kosec and Šarler (2011)]. Efficient numerical
implementation of the method on multiple graphics processing units can be found
in [Kosec and Zinterhof (2013)].

Recently, there is a strong development in the direction of combining meshless
concepts, based on radial basis functions and finite volume concepts [An-Vo, Mai-
Duy and Tran-Cong (2011a, b); An-Vo, Mai-Duy, Tran and Tran-Cong (2013)] as
well as RBFs and finite difference concepts [Wright and Fornberg (2006); Bayona,
Moscoso, Carretero and Kindelan (2010)]. There is very recently also a strong
development in solving multidimensional problems, based on RBFs in one di-
mension, and iterative alternating direction schemes [Thai-Quang, Mai-Duy, Tran,
Tran-Cong (2012); Thai-Quang, Le-Cao, Mai-Duy, Tran-Cong (2012); Ngo-Cong,
Mai-Duy, Karunasena, Tran-Cong (2012); Ngo-Cong, Mai-Duy, Karunasena, Tran-
Cong (2012)].

LRBFCM is in the present paper extended to MHD flow problems and tested on
several examples.

2 Governing Equations

Laminar natural convection flow in domain Ω with boundary Γof an incompressible
Newtonian fluid in the presence of a magnetic field is considered. The governing
equations of momentum, mass and energy conservation have the following form:

ρ[
∂v
∂ t

+∇ · (vv)] =−∇p+µ∇
2v+F, (1)

∇ ·v = 0, (2)

∂T
∂ t

+∇ · (vT ) = α ∇
2T (3)

where v is the velocity, p pressure, µ viscosity, α thermal diffusivity and T stands
for temperature of the fluid. In order to describe the influence of magnetic field and
buoyancy on the fluid flow, a body force term F = Fb +Fm is used. Fb describes
thermal Boussinesq buoyancy force gρβT (T − Tre f ), where g is gravitational ac-
celeration, ρ is the considered constant reference density of the fluid, βT is thermal
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expansion coefficient, and Tre f is reference temperature. Fm = j×B describes the
Lorentz force, expressed from the total current density (given by Ohm’s law)

j = jd + ji; jd =−σ∇ϕ, ji = σ (v×B) , (4)

where σ , ϕ , and B represent fluid’s electric conductivity, electric potential, and
applied magnetic field, respectively. ji is induced electric current density, which is
a consequence of electric charge displacement that happens as a result of charges
moving due to the applied magnetic force. jd is diffusive electric current, pointing
in an opposite direction to ji, which is a consequence of charge separation. The
direction of j can point in the direction of either of its components ji and jd . Lorentz
force can either aid or oppose the flow motion depending on which term (inductive
or diffusive) in current density prevails. By considering that the electric charge
must be preserved (∇ · j = 0), electric potential can be calculated from Poisson’s
equation

∇
2
ϕ = ∇ · (v×B). (5)

The governing equations (1, 2, 3) are solved in two dimensions. For this purpose,
Cartesian coordinate system with base vectors ix, iy and coordinates x, y is intro-
duced. Since the Lorentz force is calculated from the cross product, the velocity
vector v and magnetic field density B are written in three-dimensions with the as-
sumption that the third coordinate equals 0 (v= vxix+vyiy, B=Bxix), thus resulting
in a Lorentz force that is written as follows Fm = σvyB2

x iy. Such a situation is thus
reduced to two dimensions.

The magnetic Reynolds number Rem is defined as

Rem = v0`µ0σ , (6)

where v0 is characteristic velocity, µ0 is magnetic permeability of free space and
` is characteristic length. It indicates whether the magnetic advection or magnetic
diffusion term has more influence. It is assumed here that Rem�1, which means
that the induction is negligible in comparison to the applied magnetic field. Small
magnetic Reynolds number Rem�1 is in practice applicable in liquid-metal mag-
netohydrodynamics (MHD), which is the target application direction of the present
research. In this situation, the induced magnetic field remains very small in com-
parison to the applied magnetic field. The magnetic field thus relaxes towards a
purely diffusive state, determined by boundary conditions. The inhomogeneities in
the field are smoothed out.



Simulation of Natural Convection Influenced by Magnetic Field 331

2.1 Boundary and initial conditions

In the present paper, the domain Ω is considered to be a square cavity. The con-
figuration of the problem is presented in Fig. 1. We seek the solution (p,T ,v) of
mass (Eq. 2), momentum (Eq. 1) and energy conservation (Eq. 3) equations at time
t0 +∆t by assuming the known initial velocity v0, temperature T0 and pressure p0
fields at time t0, and the boundary conditions that follow.

The velocity boundary conditions on all the walls are non-permeable and non-slip

vx = 0, vy = 0. (7)

The top and the bottom walls are adiabatic, the temperature boundary conditions
on these two walls are

∂T
∂n

= 0. (8)

The temperatures on the left and right walls have predetermined uniform values;
the temperature on the left wall is TH , considered higher than the temperature on
the right wall TC. Both temperatures are kept constant throughout the process. The
boundary condition for electric potential (Eq. 5) at the sides of the square Γ are
given by

∂ϕ

∂n
= (v×B) ·n (9)

for an insulating boundary, where n is normal to the boundary. It is assumed here
that all the walls have insulating boundaries. The electric potential boundary con-
dition is therefore

∂ϕ

∂n
= 0 (10)

as the velocities on the boundary are 0. The initial values for pressure, temperature,
velocity and predetermined magnetic field are given as p = 0, Tre f =

TH−TC
2 , vx =

0, vy = 0, Bx = 1, and By = 0.

The magnetohydrodynamic flow in a square cavity of the size L is characterized by
the following dimensionless parameters (with `=L)

Ra =
gβT (TH −TC)`

3

να
, (11)

Pr =
ν

α
, (12)
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Ha = B`
√

σ

µ
, (13)

Gr =
Ra
Pr

, (14)

and Rem (Eq. 6). Nusselt number (Nu), defined as

Nu =
L
∫
0

∂T
∂x
|x=0dy, (15)

is used to compare the results, obtained with the developed LRBFCM to the results
obtained with the published reference results [Colaço, Dulikravich and Orlande
(2009); de Vahl Davis (1983)] or those obtained with FLUENT. The stream func-
tion Ψ is calculated by integrating the velocity

Ψ(x,y) =
∫ y

0
vx(x, ỹ)dỹ. (16)

Figure 1: Scheme of the computational domain and boundary conditions of a two-
dimensional differentially heated cavity. Top and bottom walls are insulated. The
magnetic field is applied in horizontal direction.
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3 Solution procedure

The solution procedure is based on two-level explicit timestepping. It is first ex-
plained in a setting, where no reference needs to be made regarding the space dis-
cretisation, that is explained afterwards. The Fractional Step Method (FSM) of
[Chorin (1967)] is used for pressure velocity coupling. The solution procedure
begins with calculation of the initial body force term F0 = [−giyρβT (T −Tre f )+
σvyB2

x iy]0. The intermediate velocity v∗ is afterwards calculated without the pres-
sure gradient

v∗ = v0 +
∆t
ρ
[−ρ∇ · (vv)+µ∇

2v+F]0, (17)

where index 0 stands for initial conditions at time t = t0. Poisson equation is than
used to calculate the pressure

∇
2 p =

ρ

∆t
∇ ·v∗ = S. (18)

The following Neumann boundary conditions are used to solve the pressure Poisson
equation above

∂ p
∂n

= 0. (19)

The final velocity components are corrected by the pressure gradient

v = v∗− ∆t
ρ

∇p. (20)

The energy equation is calculated as

T = T0 +
∆t
ρ
[−ρ∇ · (vT )+∇ · (α ∇T )]0. (21)

The LRBFCM [Šarler and Vertnik (2006)] method is used in the present paper to
handle the partial derivatives. LRBFCM is a numerical technique for solving partial
differential equations through a local interpolation of function and its derivatives
over a set of neighbouring nodes by radial basis functions. The region is descritised
into N calculation points, of which there are NΩ domain and NΓ boundary points.
The region is devided into N overlaping subdomains, each of which consists of lM
(in general) non-equally spaced nodes lpn, where l = 1, . . . ,N stands for subdomain
and n = 1, . . . , l M.
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Approximation of function θ is represented on a local subdomain, as a linear com-
bination of Radial Basis Functions (RBF)

θ(lpn) =
M

∑
i=1

lψi(lpn)lγi, (22)

where M stands for a number of shape functions, lγi for an expansion coefficient,
lψi for shape functions, centred in points lpn. The influence domain of the node
lpn consists of the lM− 1 nodes nearest to the node lpn. A five-noded overlaping
subdomain is used in this paper (Fig. 2). By considering the collocation condition

lθ(lpn) =l θi (23)

and Eq. 22, a linear system of M equations is obtained

lψψψ lγγγ = lθθθ . (24)

The expansion coefficients lγ can only be determined by collocation when the num-
ber of domain nodes lM matches the number of the basis functions M and when the
basis functions matrix is non-singular [Hon and Schaback (2001)]. The expansion
coefficients can than be determined by inverting the matrix lψψψ

lγγγ = lψψψ
−1
l θθθ . (25)

Figure 2: Scheme of the discretisation. The Γ, Ω, lxiMAX and lyiMAX represent bound-
ary, domain and scaling parameters in x and y direction respectively. Empty dots
represent boundary points whereas black dots represent domain points.
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By considering Eq. 25, lθ(p) can be expressed as

θ(p) =
M

∑
i=1

lψi(p)
M

∑
k=1

lψ
−1
ik (p)lθk (26)

One of the most commonly used RBFs are multiquadrics (MQ) [Franke (1982)]

lψi(p) =
√

lr2
i (p)+ c2 (27)

where c stands for dimensionles shape parameter, which is, in our case, predeter-
mined and set to 32 in all the cases. ri is scaled as

lri(p) =

√(
x− xi

lximax

)2

+

(
y− yi

lyimax

)2

(28)

where lximax, and lyimaxare in general different scaling parameters in each of the
subdomains in x and y directions respectively (Fig. 2).

As a means to solve the partial differential equations of the model, the first and
the second derivatives of function θ(p) have to be calculated on the influence do-
main. The operator applied on the approximated function is expressed by [Kansa
(1990a,b)]

∂ j

∂ χ j lθ(p) =
M

∑
i=1

lγi
∂ j

∂ χ j lψi(p) (29)

where the index j is used to denote the order of derivative (1 or 2) and χ = x, y.
Eq. 17 and Eq. 21 are solved as indicated above.

For the solution of Poisson equation (Eq. 18) a sparse matrix is used. The sub-
domain points lpn coincide with the global points pi. The relation between the
indexes is considered as follows pi(l,n) =l pn. The pressure is represented on each
of the subdomains by RBFs and their coefficients

p(p) =
M

∑
n=1

ψi(l,n)(p)lγn. (30)

The expansion coefficients lγ are determined by collocation as shown in Eq. 25 and
the pressure is thus

pi(l,m) =
M

∑
n=1

lΨmn lγn; m = 1, . . .M. (31)
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The pressure can than be calculated in each of the subdomains as

p(p) =
M

∑
n=1

M

∑
m=1

lψi(l,n)(p)lΨ
−1
nm pi(l,m). (32)

The collocation in global point pk results in

N

∑
j=1

Ψl j p j = Sl , (33)

where Ψl j is the the global sparse matrix element.

Lastly, the velocity components, temperature, pressure and body force are updated
for each node and the solution is ready for the next time step. The calculation
is stopped when the following steady state conditions are achieved in each of the
Ncalculation points

|vi−vi0|< εv, |Ti−Ti0|< εT , |pi− pi0|< εp, i = 1, . . . ,N (34)

where vi0 and vi, Ti0 and Ti, pi0 and piand are the two consecutive velocity, tem-
perature and pressure values, respectively. The criteria are set to εv = 10−6,εT =
10−6,εp = 10−6. A detailed description of the solution procedure for turbulent flow
by the FSM can be found in [Vertnik and Šarler (2009)].

4 Numerical implementation

The method has been implemented in Fortran and executed on Intel Core i7 CPU,
2.8 GHz computer under 64 bit Windows 7 operating system. The heat and mass
transfer are calculated with solver coded in Fortran by the second author. The MHD
module is added to the solver by the first author. The sparse matrix, used to cal-
culate the pressure, is solved with Pardiso rutine and Intel Math Kernel Library
11. OpenMP is used for parallelization. The postprocesing is done in Octave 3.6.1
and Gnuplot 4.4. The Nusselt number (Eq. 15) is calculated from final tempera-
tures with Simpson’s 3/8 rule. The 4-th order Runge-Kutta is used for numerical
integration of the stream function (Eq. 16).

5 Numerical examples

Three different tests are performed to verify the numerical method. The first test
case (Case 1) describes the standard de Vahl Davis benchmark test [de Vahl Davis
(1983)] with the absence of magnetic field. The second test case (Case 2) describes
stable, laminar fluid flow in a square cavity under the influence of magnetic field.
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The most common reference papers for the defined problem, use Pr=0.71 [Colaço,
Dulikravich and Orlande (2009)], which is a Prandtl number typical for air. In the
third test case (Case 3) the MHD flow with Pr=0.14, (typical for steel), is used.
Each of the three cases is compared to the results obtained from commercial code
FLUENT or the results obtained from a pertained reference paper.

The node arrangement is refined near the walls in all of the cases (Fig. 3). The
non-unifomity is obtained in the following way. The uniform node arrangement in
x-direction of the square is given by

xuni f orm
i = xmin +(i−1)

xmax− xmin

N−1
, i = 1,2, . . . ,N , (35)

where xmin = 0 and xmax = L are the position of the first and the last node. It is first
normalized to the interval [0,1]

xuni f orm
i,norm =

xuni f orm
i − xmin

xmax− xmin
(36)

and than refined as

xre f ined
i,norm = 1.0− (1.0− xuni f orm

i,norm )b, (37)

with b standing for the refinement parameter. Finally, the refinement is rescaled to
the original interval

xre f ined
i = xmin + xre f ined

i,norm L. (38)

A non-uniform node arrangement is set in a similar way in y direction as well. The
refinement b =1.2 is used in all of the cases.

All the results are presented in their dimensionless form

x′ =
x
L
, y′ =

y
L
, v′ =

vL
α

, p′ =
pL2

ρα2 , Θ =
T −TC

TH −TC
, t ′ =

tα
L2 , (39)

where x′, y′, v′, p′, Θ, t ′ are dimensionless coordinates, velocities, pressure, tem-
perature, and time, respectively.

5.1 Case 1

Case 1 is the well known de Vahl Davis benchmark test [de Vahl Davis (1983)]. As
the purpose of this paper is to investigate the MHD flow, which is characterised by
small Pr numbers, de Vahl Davis benchmark test is presented here only as a basic
test of the accuracy of the method. The influence of magnetic field on the fluid flow
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Figure 3: Scheme of the node arrangement for 41x41. Dots represent domain nodes
and black diamonds represent boundary nodes.

Table 1: Overview and definition of the involved test cases.
case Pr Ra Gr Ha ∆t [s]
1 a 0.71 103 / / 10−5

1 b 0.71 104 / / 10−5

1 c 0.71 105 / / 10−5

1 d 0.71 106 / / 10−5

2 a 0.71 / 104 0 10−5

2 b 0.71 / 104 10 10−6

2 c 0.71 / 104 50 10−6

2 d 0.71 / 106 0 10−5

2 e 0.71 / 106 10 10−6

2 f 0.71 / 106 50 10−6

2 g 0.71 / 106 100 10−6

3 a 0.14 / 104 0 10−5

3 b 0.14 / 104 10 10−6

3 c 0.14 / 104 50 10−6

3 d 0.14 / 105 0 10−5

3 e 0.14 / 105 10 10−6

3 f 0.14 / 105 50 10−6

3 g 0.14 / 105 100 10−6

3 h 0.14 / 106 0 10−5

3 i 0.14 / 106 10 10−6

3 j 0.14 / 106 50 10−6

3 k 0.14 / 106 100 10−6

3 l 0.14 / 106 200 10−6
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is investigated in the successive sections. The result are calculated on 101x101
node arrangement and compared to the results from [de Vahl Davis (1983)] and
[Kosec and Šarler (2008b)] presented in Tab. 2. The results calculated with present
LRBFCM are in terms of Nu slightly larger than those obtained by [Kosec and
Šarler (2008b)] who used LRBFCM with local pressure correction and slightly
smaller than those from [de Vahl Davis (1983)]. The difference between the present
results and the results from [Kosec and Šarler (2008b)] is probably due to different
node arrangement; in the present case a non-uniform node arrangement is used,
whereas in [Kosec and Šarler (2008b)] a uniform node arrangement is employed.
The results are also compared with the results obtaind with the global RBFCM
[Šarler (2005)]. A slight difference between the present results and the results
calculated in [Šarler (2005)] is mainly due to very much different node densities.
In the present case a 101x101 node arrangement is used wheras in [Šarler (2005)]
a much coarser 30x30 node arrangement is employed. It should be noted that the
global RBFCM would fail for node arrangement 101x101 due to the ill conditioning
of the global collocation matrix.

Table 2: Case 1. A comparison of LRBFCM predictions with previous solutions
for Pr=0.71 and various Ra numbers.

Ra Nu present Nu [de Vahl Davis
(1983)]

Nu[Kosec and Šarler
(2008b)]

Nu [Šarler (2005)]

103 1.108 1.116 1.089 1.114
104 2.223 2.234 2.258 2.246
105 4.497 4.510 4.511 4.523
106 8.779 8.798 8.970 8.834

5.2 Case 2

Case 2 tackles a steady, laminar fluid flow in a square cavity. The flow is described
with a relatively high Prandtl number Pr=0.71, which is otherwise typical for air.
It is assumed here that the fluid is conductive despite atypically high Pr number.
The results of this test case are compared with the results obtained in [Colaço, Du-
likravich and Orlande (2009)] and those calculated with FLUENT. The Ha number
is varied from 0 to 100 (Ha = 0, 10, 50, 100) and the Gr number varies from 104 to
106 (104, 105, 106).

The results are summarized in Tab. 3, where the RBFCM data from [Colaço, Du-
likravich and Orlande (2009)] are compared to the results calculated with LRBFCM,
As can be seen in the Tab. 3, Nu decreases with increasing Ha. The values of
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the results obtained with LRBFCM in terms of Nu are slightly higher than the re-
sults obtained with RBF method used in [Colaço, Dulikravich, and Orlande (2009)]
and slightly smaller than the results obtained with FVM method (FLUENT). The
Nu number is further compared for three different node arrangements with 41x41,
61x61, 81x81 and 101x101 nodes as shown in Fig. 4. Nu is slightly larger for the
smallest node arrangement (41x41), but is almost the same for node arrangements
with 61, 81 and 101 nodes in each direction. As the Nu does not change signifi-
cantly for node arrangements with larger number of the nodes, the calculations are
considered reasonably independent on the node arrangement in case when 81x81
nodes are used. All of the subsequent calculations are therefore performed for
81x81 node arrangement, whereas in [Colaço, Dulikravich, and Orlande (2009)]
the calculations are done on very course 15x15 and 25x25 node arrangements. Fi-
nally, velocity and temperature profiles along the horizontal line through the center
of the cavity are presented in Fig. 5 and 6. As can be seen in Fig. 5 and 6, the
results obtained in [Colaço, Dulikravich, and Orlande (2009)] and FLUENT are
in good agreement with those calculated with LRBFCM. The node arrangement in
FLUENT and in [Colaço, Dulikravich, and Orlande (2009)] are nonuniform and
refined near the wall by b=1.2, similar as in the present node arrangement. In
[Colaço, Dulikravich, and Orlande (2009)], dimensionless velocity is calculated
as v′ = v [gβ (TH −TC)L]

−1/2 . The streamlines and isotherms were first visually
compared to [Colaço, Dulikravich, and Orlande (2009)]. The results seem to qual-
itatively agree. The quantitative comparison of the Nu results is given in Tab. 3.

Table 3: Case 2. Comparison of present predictions with previous works in terms
of Nu for Pr=0.71 and various Ha and Gr numbers. [1]: present, [2]: [Colaço,
Dulikravich, and Orlande (2009)], [3]: FLUENT.

Ha Nu [1] Nu [2] Nu [3]
Gr=104

0 2.03 2.02 2.06
10 1.71 1.70 1.84
50 1.01 1.00 1.06

Gr=106

0 8.15 9.21 7.98
10 7.99 9.04 7.88
100 3.33 3.54 4.27
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Figure 4: Case 2. Nu as a function of four different node arrangements (41x41,
61x61, 81x81 and 101x101) at Gr=104 and Pr=0.71.

Figure 5: Case 2. Comparison of dimensionless velocities v′x for Gr=104 (left) and
Gr=106 (right) along the horizontal line through the center of the cavity.

Figure 6: Case 2. Comparison of dimensionless temperatures Θ for Gr=104 (left)
and Gr=106 (right) along the horizontal line through the center of the cavity.
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5.3 Case 3

Case 3 represents a more realistic MHD flow test case. A stable, laminar fluid
flow is described in square cavity for steel typical Pr=0.14 (µ = 0.006kg/(ms),
ρ = 7200kg/m3, α = 30W/(mK)) and different Ha and Gr numbers. Due to the
lack of relevant published data, the results are compared solely with the results
calculated with FLUENT.

The results are calculated for Ha values of 0, 10, 50, 100 and 200 and for Gr values
of 104, 105 and 106. As can be seen in Fig. 7, 8, 9, 10 and 11 are the results
calculated with in-house LRBFCM and with FLUENT in a very good agreement.
The temperature profile along the horizontal line through the center of the cavity
is depicted in Fig. 7 and 8. They show that by increasing the Gr number the
profile changes; the temperature gradient at both sides of the cavity increases, and
consequently the temperature gradient in the middle of the cavity decreases, which
results in a thicker boundary layer. It can also be seen that by increasing the Ha
number the convection is quenched; the higher the Ha number is, the more the
isotherms are straightened and parallel with the vertical walls of the cavity.

Figure 7: Case 3. Comparison of dimensionless temperatures Θ for Gr=104 (left)
and Gr=105 (right) along the horizontal line through the center of the cavity.

Fig. 9, 10 and 11 show dimensionless velocities v′x and v′y along the horizontal and
the vertical line through the center of the cavity. Both velocity components are
quenched due to the externally applied magnetic field. The external magnetic field
has to be stronger for higher Gr numbers in order to annihilate the fluid flow.

Fig. 12 and 13 depict streamlines for various Gr and Ha numbers. In the presence
of weak magnetic field, the streamlines are similar to those in the case without the
magnetic field. By increasing the magnetic field, the streamlines become tilted and
elongated. For a sufficiently large Ha numbers, the retarding effect of Lorentz’s
force completely quenches convection. Fig. 14 and 15 depict isotherms for various
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Figure 8: Case 3. Comparison of dimensionless temperatures Θ for Gr=106 along
the horizontal line through the center of the cavity.

Figure 9: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical lines (right) through the center of the cavity for Gr=104 as a function of
different Ha.

Figure 10: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical lines (right) through the center of the cavity for Gr=105 as a function of
different Ha.
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Figure 11: Case 3. Comparison of v′x along the horizontal (left) and v′y along the
vertical lines (right) through the center of the cavity for Gr=106 as a function of
different Ha.

Gr and Ha numbers. The convection is suppressed and the magnetic field thus de-
creases the heat transfer rate between the hot and the cold walls. The streamlines
and isotherms were visually compared to those calculated with FLUENT. The val-
ues of dimensionless velocities are given in Tab. 4 (v′x and v′y) for Gr=106and Ha=0
and Ha=50.

Table 4: Case 3. Tabulated dimensionless velocities for Gr =106 , Ha=0 and 50.
(See also Fig. 11), obtained by LRBFCM.

x (in ac-
tual nodal
points)

v′x
Gr=106,
Ha=0

v′y
Gr=106,
Ha=0

v′x
Gr=106,
Ha=50

v′y
Gr=106,
Ha=50

0.0000 0.0000 0.0000 0.0000 0.0000
0.0513 -2118.4 3230.0 -762.79 1092.6
0.1179 -2480.2 1865.8 -861.00 841.29
0.1665 -1695.4 957.14 -717.00 615.38
0.2176 -821.50 332.76 -548.51 430.96
0.2708 -194.71 20.478 -397.38 291.58
0.3259 144.73 -102.16 -271.57 188.84
0.3825 244.16 -93.843 -168.14 112.34
0.4406 168.41 -50.000 -80.286 52.309
0.5000 -0.1860 0.0128 0.1889 0.1202
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Figure 12: Case 3. Comparison of streamlines at various Gr and Ha numbers. The
streamlines are equidistantly spaced. The maximum values of streamlines are: 2.55
(Gr =104, Ha =0), 3.3 (Gr =104, Ha=10), 0.24 (Gr =104, Ha =100), 20.2 (Gr =105,
Ha =0), 15.2 (Gr =105, Ha=10), and 2.4 (Gr=105, Ha =50).

Figure 13: Case 3. Comparison of streamlines at various Gr and Ha numbers. The
streamlines are equidistantly spaced. The maximum values of streamlines are: 0.65
(Gr =105, Ha =100), 34.0 (Gr =106, Ha =0), 29.0 (Gr=104, Ha=10), 16.0 (Gr =106,
Ha =50), 5.5 (Gr =106, Ha =100), and 1.55 (Gr =106, Ha =200).
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Figure 14: Case 3. Isotherms at various Gr and Ha numbers at Pr=0.14. The
isoterms are equidistantly spaced, the minimum is at TC (right boundary) and the
maximum TH (left boundary).

Figure 15: Case 3. Isotherms at various Gr and Ha numbers at Pr=0.14. The
isoterms are equidistantly spaced, the minimum is at TC (right boundary) and the
maximum at TH (left boundary).
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6 Conclusions

A new meshless method, based on LRBFCM and FSM, for solving MHD convec-
tion in a square cavity is proposed. The method is first verified for natural convec-
tion in the absence of magnetic field [de Vahl Davis (1983)] and then for natural
convection flow under the influence of external magnetic field [Colaço, Dulikravich
and Orlande (2009), Garandet, Alboussiere and Moreau (1992)]. Next, the results
of the deduced method are tested against the results obtained with FLUENT. All of
the obtained results are found to be in match with the previously published results
in [de Vahl Davis (1983); Colaço, Dulikravich and Orlande (2009)] and the results
from FLUENT code. Advantages of the LRBFCM method are its accuracy, sim-
plicity and straightforward implementation of the algorithm on non-uniform node
arrangements as well as for involved physics.

In the future, the problems with externally applied magnetic field with inflow and
outflow will be considered, as a next step towards the solution of the industrially
relevant continuous casting of steel with externally applied magnetic field [Šarler,
Vertnik and Mramor (2012)]. This paper represents the first step towards simulation
of a spectra of industrial fluid flow problems which include electromagnetic fields
by LRBFCM.
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