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Inverse Nodal Problem for the Differential Operator with
a Singularity at Zero

Emrah Yilmaz1, Hikmet Koyunbakan2, Unal Ic3

Abstract: In this study, some results are given about Sturm-Liouville operator
having a singularity at zero. For this problem, asymptotic form of nodal data and a
reconstruction formula for the potential function are given. In addition, a numerical
example is established and illustrated the results in some tables and graphics.
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1 Introduction

Inverse problems are studied for certain special classes of ordinary differential op-
erators. Typically, in eigenvalue problems, one measures the frequences of a vi-
brating system and tries to infer some physical properties of the system. An early
important result in this direction, which gave vital impetus for the further devel-
opment of inverse problem theory, was obtained in 1929 [Ambartsumyan (1929)].
Inverse problems of Sturm-Liouville operator have been studied for a long time and
found some important applications such as in quantum scattering theory, vibration
of a string and other branches of sciences. This problem can be solved by several
methods as transformation operator, Weyl Titchmarch function, and nodal points
(zeros of eigenfunctions) [Borg (1946); Gasymov and Levitan (1968); Gelfand and
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Levitan (1951); Hochstadt (1973); Levinson (1949); Marchenko (1950); Panakhov
and Yılmazer (2012)].

In later years, Hald [Hald (1984)], Pöschel and Trubowitz [Pöschel and Trubowitz
(1987)], Rundell and Sack [Rundell and Sack (2001)] and Isaacson and Trubowitz
[Isaacson and Trubowitz (1983)] solved inverse Sturm-Liouville problems by using
some new methods.

In some interesting works, Hald and McLaughlin [Hald and McLaughlin (1989)],
and Browne and Sleeman [Browne and Sleeman (1996)] have taken a new approach
to inverse spectral theory for the Sturm-Liouville problem. In this theory, nodal
points are used as spectral data. In later years, inverse nodal problems were studied
by many authors [Cheng and Law (2006); Koyunbakan (2006); Koyunbakan and
Panakhov (2006), (2007); Law, Shen and Yang (1999); McLaughlin (1988); Shieh
and Yurko (2008); Yang and X. F. Yang (2010); Yang (2010)].

The inverse spectral theory for Sturm-Liouville problems is most throughly de-
veloped for potentials that are real valued and square integrable [Pöschel and
Trubowitz (1987); Ralston and Trubowitz (1988)]. Previous extensions of the the-
ory of Trubowitz and his coworkers have included several types of singular Sturm-
Liouville problems. Carlson [Carlson (1994)] extended the inverse spectral theory
to a new class of problems having the form

−y′′+[q(x)+V (x)]y = λy, (1.1)

with boundary conditions

y(0) = y(1) = 0. (1.2)

where q(x) ∈ L2[0,1] and V (x) is a fixed function, locally integrable on (0,1) and
satisfying the estimate [Carlson (1994)]

|V (x)| ≤ Kx−r,

for some K ≥ 0 and 0 ≤ r < 3
2 . In particular, the case of a Coulomb singularity

(r = 1) at the origin is included [Topsakal and Amirov (2010)]. Now, we will
establish some estimates for the solutions of (1.1) with 0≤ r < 2 [Carlson (1994)].
By using variation of parameters, every solution Y (x,λ ) of equation (1.1) can be
written as a solution of integral equation
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Y (x,λ ) =Acos(ω[1− x])−B
sin(ω[1− x])

ω
+

1∫
x

sin(ω[t− x])
ω

[V (t)+q(t)]Y (t,λ )dt +o
(

1
ω3

)
.

(1.3)

where ω =
√

λ . If 0 ≤ r < 2, then Y (x,λ ) is an entire function of λ for each
x ∈ [0,1] [Carlson (1994)].

Lemma 1.1. [Carlson (1994)] For 0≤ r < 2, equation (1.1) has a unique solution
Y1(x,λ ) (or Y2(x,λ )) whose derivative extends continously to x = 0 and satisfies

Y1(0,λ ) = 0, Y ′1(0,λ ) = 1, (1.4)

Y2(0,λ ) = 1, Y ′2(0,λ ) = 0. (1.5)

Equation (1.1) has following solutions with the initial conditions (1.4) and (1.5),
respectively

Y1(x,λ ) =
sin(ωx)

ω
+

x∫
0

sin(ω[x− t])
ω

[V (t)+q(t)]Y1(t,λ )dt +o
(

1
ω3

)
, (1.6)

Y2(x,λ ) = cos(ωx)+
x∫

0

sin(ω[x− t])
ω

[V (t)+q(t)]Y2(t,λ )dt +o
(

1
ω3

)
. (1.7)

Let λ0 < λ1 < ...→ ∞ be the eigenvalues of the problem (1.1), (1.5) and 0 < xn
1 <

... < xn
j < 1, j = 1,2, ...,n− 1, nodal points of the n−th eigenfunction. Let λn be

the n−th eigenvalue and xn
j be j−th nodal point of the n−th eigenfunction Yn. Also

let In
j =

[
xn

j , xn
j+1

]
be the j−th nodal domain of the n−th eigenfunction and let

ln
j =

∣∣∣In
j

∣∣∣ = xn
j+1− xn

j be the associated nodal length. jn(x) be the largest index j

such that 0≤ x(n)j < x.

Lemma 1.2. [Law, Shen and Yang (1999)] Suppose that f ∈ L1 [0,1] . Then for
almost every x ∈ [0,1] , with j = jn(x),

lim
n→∞

ωn

π

xn
j+1∫
xn

j

f (t)dt = f (x).
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2 Main Results

In this section, our purpose is to develop asymptotic expressions for the points xn
j

and ln
j ( j = 1,2, ...,n− 1, n = 1,2, ...) at which Y2(x,λ ), the eigenfunction corre-

sponding to the eigenvalue ωn of the problem (1.1), (1.5), vanishes and to give a
reconstruction formula for the potential function q(x) of the problem (1.1), (1.5).

Theorem 2.1. We consider the equation

−Y ′′+[q(x)+V (x)]Y = λY, (2.1)

with the initial conditions

Y (0,λ ) = 1, Y ′(0,λ ) = 0. (2.2)

Then, the nodal points of the problem (2.1)-(2.2) are

xn
j =

(
j− 1

2

)
π

ωn
+

1
ω2

n

xn
j∫

0

cos(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
, (2.3)

and the nodal length is

ln
j =

π

ωn
+

1
ω2

n

xn
j+1∫

xn
j

cos(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
. (2.4)

Proof: We will use the solution (1.7) to get asymptotic formulas for nodal data.
From (1.7), we obtain

Y (x,λ ) = cos(ωx)+
x∫

0

sin(ω[x− t])
ω

[V (t)+q(t)]Y (t,λ )dt +o
(

1
ω3

)
,

Y (x,λ ) = cos(ωx)+
sin(ωx)

ω

x∫
0

cos(ωt) [V (t)+q(t)]Y (t,λ )dt

− cos(ωx)
ω

x∫
0

sin(ωt) [V (t)+q(t)]Y (t,λ )dt +o
(

1
ω3

)
.
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If Y (x,λ ) = 0, then as long as sin(ωx) is not close to zero, we get

cot(ωx)+
1
ω

x∫
0

cos(ωt) [V (t)+q(t)]Y (t,λ )dt

− cot(ωx)
ω

x∫
0

sin(ωt) [V (t)+q(t)]Y (t,λ )dt +o
(

1
ω3

)
= 0.

Now, we take ω = ωn and x = xn
j . Since the Taylor’s expansion for the arccotangent

function is given by

arccotx =
(

j− 1
2

)
π−

∞

∑
k=0

(−1)2kx2k+1

2k+1
, for some integers j,

then

xn
j =

(
j− 1

2

)
π

ωn
+

1
ω2

n

xn
j∫

0

cos(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
.

The nodal length is

ln
j = xn

j+1− xn
j =

π

ωn
+

1
ω2

n

xn
j+1∫

xn
j

cos(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
.

Theorem 2.2. We consider the equation

−Y ′′+[q(x)+V (x)]Y = λY, (2.5)

with the initial conditions

Y (0,λ ) = 0, Y ′(0,λ ) = 1. (2.6)

Then, the nodal points of the problem (2.5)-(2.6) are

xn
j =

jπ
ωn

+

xn
j∫

0

sin(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
,
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and the nodal length is

ln
j =

π

ωn
+

xn
j+1∫

xn
j

sin(ωnt) [q(t)+V (t)]Y (t,ω2
n )dt +o

(
1

ω3
n

)
.

Proof: Proof is similar to Theorem 2.1.

Theorem 2.3. Assume that q ∈ L1[0,1], then

q(x) = lim
n→∞

[
2w2

n

(wnln
j

π
−1
)
−V (x)

]
.

for almost everywhere x ∈ (0,1) with j = jn(x).

Proof: From (2.4), we obtain that

ln
j =

π

ωn
+

1
ω2

n

xn
j+1∫

xn
j

cos2(ωnt) [q(t)+V (t)]dt +o
(

1
ω3

n

)
,

and

2w2
n

(wnln
j

π
−1
)
=

wn

π

xn
j+1∫

xn
j

[q(t)+V (t)]dt+
wn

π

xn
j+1∫

xn
j

cos2(ωnt) [q(t)+V (t)]dt+o
(

1
ωn

)
.

By virtue of Lemma 1.2., this yields

lim
n→∞

ωn

π

xn
j+1∫

xn
j

[q(t)+V (t)]dt = q(x)+V (x), for almost every x ∈ (0,1).

Then

lim
n→∞

2w2
n

(wnln
j

π
−1
)
= q(x)+V (x)+

wn

π

xn
j+1∫

xn
j

cos2(ωnt)q(t)dt

+
wn

π

xn
j+1∫

xn
j

cos2(ωnt)V (t)dt +o
(

1
ωn

)
.
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It remains to show that for almost every x ∈ (0,1),

Hn(x) = wn
π

xn
j+1∫

xn
j

cos2(ωnt)q(t)dt, Kn(x) = wn
π

xn
j+1∫

xn
j

cos2(ωnt)V (t)dt,

tend to zero as n→ ∞. The rest of proof is the same as Law’s method [Law, Shen
and Yang (1999)].

Now, we will give a uniqueness theorem. It says that the potential function q(x)
for a Sturm-Liouville operator with singularity at zero is uniquely determined by a
dense set of nodal points.

Theorem 2.4. Suppose that q is integrable. Then, q−
1∫

0

q is uniquely determined

by any dense set of nodal points.

Proof: Assume that we have two problems of the type (1.1),(1.5) with potential
functions q, q̃. Let the nodal points xn

j , x̃
n
j satisfying xn

j = x̃n
j form a dense set in

[0,1]. We take solutions (1.1),(1.5) as Yn for q and Ỹn for q̃. It follows from (2.1)
that(

Y
′
nỸn−YnỸ

′
n

)′
=
[
q− q̃+(λ̃ −λ )

]
YnỸn. (2.7)

Let xn
j = x̃n

j . To show that q = q̃ , we integrate both sides of (2.7) from 0 to xn
j and

using initial conditions (1.5). Then we obtain

(
Y
′
nỸn−YnỸ

′
n

) xn
j

|
0
=

xn
j∫

0

[
q− q̃+(λ̃ −λ )

]
YnỸndx,

and

0 =

xn
j∫

0

[
q− q̃+(λ̃ −λ )

]
YnỸndx.

We take a sequence xn
j accumulating at an arbitrary x ∈ [0,1]. Hence,

0 =

x∫
0

q− q̃−
1∫

0

(q− q̃)ds

YnỸndx,
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and this holds for all x. We can therefore conclude that q−
1∫

0

q is uniquely deter-

mined by a dense set of nodes.

3 Numerical Example

In this section, we shall give a numerical example about exact eigenfunction, nodal
parameters and reconstruction of potential function for following Sturm-Liouville
problem by using computer algebra system-Mathematica.

Example 3.1. Let consider following initial value problem for the special case of

q(x) = x and V (x) =
1√
x

−Y ′′(x,λ )+(x+
1√
x
)Y (x,λ ) = λY (x,λ ), Y (0,λ ) = 1,Y ′(0,λ ) = 0. (3.1)

We can obtain the eigenfunction of this problem as

Y (x,λ ) = cos(ωnx)− cos(ωnx)
ωn

x∫
0

sin2(ωnt)
[

t +
1√
t

]
dt +o

(
1

ω3
n

)
,

or

Y (x,10) = cos(10πx)+
cos(10πx)

8000π3

(
−1−200π

2(4
√

x+ x2)+ cos(20πx)

+20π

(
2.
√

10πFresnelC(2.
√

10x
)
+ xsin(20πx)

)

where n = 10, FresnelC(z) =
z∫

0

cos
(1

2 πx2
)

dx, z = 2
√

10x. And nodal datas are as

following

xn
j =

(
j− 1

2

)
π

ωn
+

1
ω2

n

xn
j∫

0

cos2(ωnt)
[

t +
1√
t

]
dt +o

(
1

ω3
n

)
.

ln
j =

π

ωn
+

1
ω2

n

xn
j+1∫

xn
j

cos2(ωnt)
[

t +
1√
t

]
dt +o

(
1

ω3
n

)
.
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Figure 1: The graph of eigenfunction Y (x,λn) for the problem (3.1) where n=10.

In Fig. 1., we illustrate the graph of eigenfunction Y (x,λn) for the problem (3.1)
where n = 10 and 0≤ x≤ 1.

The detailed results for nodal points and nodal lengths are shown in Tab. 1. and
Tab. 2. Especially, Tab. 1. shows that these results are accurate and explicit. We
can see that the conditions of oscillation theorem are provided. In Tab. 1., it can be
seen that nodal points make an oscillation between 0 and 1.

Table 1: Nodal points of the problem (3.1) for j = 1,10 and n = 1,10

xn
j n=1 n=2 n=3 n=4 n =5 n =6 n =7 n =8 n =9 n =10

j =1 0.602 0.267 0.173 0.128 0.101 0.084 0.072 0.063 0.055 0.050

j =2 0.779 0.510 0.379 0.302 0.251 0.215 0.188 0.167 0.150

j =3 0.847 0.631 0.503 0.418 0.358 0.313 0.278 0.250

j =4 0.882 0.704 0.586 0.501 0.438 0.389 0.350

j =5 0.905 0.753 0.644 0.563 0.501 0.450

j =6 0.920 0.788 0.689 0.612 0.550

j =7 0.931 0.814 0.723 0.651

j =8 0.939 0.834 0.751

j =9 0.946 0.851

j =10 0.951
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Table 2: Nodal lengths of the problem (3.1) for j = 1,10 and n = 1,10

ln
j n =1 n =2 n =3 n =4 n =5 n =6 n =7 n =8 n =9 n=10

j =1 1.1019 0.5122 0.3372 0.2518 0.2009 0.1672 0.1432 0.1252 0.1113 0.1001

j =2 1.1372 0.5126 0.3368 0.2515 0.2008 0.1671 0.1431 0.1252 0.1112 0.1001

j =3 1.1812 0.5146 0.3370 0.2515 0.2007 0.1671 0.1431 0.1251 0.1112 0.1001

j =4 1.2279 0.5171 0.3374 0.2515 0.2007 0.1671 0.1431 0.1251 0.1112 0.1001

j =5 1.2759 0.5198 0.3379 0.2516 0.2008 0.1671 0.1431 0.1251 0.1112 0.1000

j =6 1.3246 0.5226 0.3384 0.2518 0.2008 0.1671 0.1431 0.1251 0.1112 0.1000

j =7 1.3737 0.5255 0.3389 0.2519 0.2009 0.1671 0.1431 0.1251 0.1112 0.1000

j =8 1.4232 0.5284 0.3394 0.2521 0.2009 0.1671 0.1431 0.1251 0.1112 0.1000

j =9 1.4728 0.5314 0.3400 0.2523 0.2010 0.1672 0.1431 0.1252 0.1112 0.1000

j =10 1.5226 0.5344 0.3406 0.2524 0.2010 0.1672 0.1431 0.1252 0.1112 0.1001

Conversely, if we consider V (x) =
1√
x
, and use asymptotic formula of ln

j as in

example 3.1., we get

lim
n→∞

[
2w2

n

(wnln
j

π
−1
)
−V (x)

]

= lim
n→∞

2w2
n

wn

π

 π

ωn
+

1
ω2

n

xn
j+1∫

xn
j

cos2(ωnt)
[

t +
1√
t

]
dt

−1

−V (x)


= x

= q(x)

Thus, we have reconstructed the potential function q(x) by using nodal data in
example 3.1.

4 Conclusion

In this work, we have estimated nodal points and nodal lengths for the Sturm-
Liouville operator with singularity at zero. We give a reconstruction formula for
the potential function q from the nodal data. Furthermore, by using these new
parameters, we have shown that potential function of the Sturm-liouville operator
with singularity at zero can be established uniquely. And finally, we give a numer-
ical example for nodal parameters and reconstruction formula for q.
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