
Copyright © 2013 Tech Science Press CMES, vol.92, no.3, pp.241-269, 2013

An Optimal Preconditioner with an Alternate Relaxation
Parameter Used to Solve Ill-Posed Linear Problems
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Abstract: In order to solve an ill-posed linear problem, we propose an innovative
Jacobian type iterative method by presetting a conditioner before the steepest de-
scent direction. The preconditioner is derived from an invariant manifold approach,
which includes two parameters α and γ to be determined. When the weighting pa-
rameter α is optimized by minimizing a properly defined objective function, the
relaxation parameter γ can be derived to accelerate the convergence speed under a
switching criterion. When the switch is turned-on, by using the derived value of γ it
can pull back the iterative orbit to the fast manifold. It is the first time that we have
a formula for the relaxation parameter, by recognizing that γ is specified case by
case, previously. The presently developed optimal and generalized steepest descent
method with an alternate value of the relaxation parameter is able to overcome the
ill-posedness of linear inverse problem, and provides a rather accurate numerical
solution.
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1 Introduction

In this paper we propose two innovative methods to solve the linear inverse prob-
lem, which might be recast to the following linear equations system:

Vx = b1, (1)

where det(V) 6= 0 and V ∈ Rn×n is an ill-conditioned, and generally unsymmet-
ric matrix. Finding a stable solution of such an ill-posed linear system has many
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important applications to linear inverse problems. In a practical situation of lin-
ear inverse problems which arise in engineering and scientific fields, the data b1
are rarely given exactly; instead of, the noises in b1 are unavoidable due to the
measurement error. Therefore, we may encounter the problem that the numerical
solution of an ill-posed linear problem may deviate from the exact one to a great
extent, when V is severely ill-conditioned and b1 is perturbed by random noise.

The approaches to solve the ill-posed linear problems can be categorized into three
main classes: (a) regularizations of Eq. (1), (b) regularized algorithms to solve
Eq. (1), and (c) a better preconditioning and/or postconditioning to Eq. (1). The
matrix preconditioning technique is based on an approximation of the inverse of
the coefficient matrix. In the splitting method we assume that V = M−N and
associate it with an iterative method:

xk+1 = xk +M−1(b1−Vxk). (2)

Here M−1 plays the role of a preconditioner. The more M resembles V, the faster
the iterative method will converge. One of the natural and simplest ways for the
choice of the preconditioner is a diagonal of the coefficient matrix, like as the Ja-
cobi method. However, it usually has no remarkable reduction of the iteration
number. To improve the convergence speed of iterative methods, an appropriate
preconditioner can be incorporated. Based on the survey by Benzi (2002), a good
preconditioner should meet the following requirements: (1) the preconditioned sys-
tem should be easy to solve, and (2) the preconditioner should be cheap to construct
and apply. In this paper we will propose a simple Jacobi type iterative method with
its preconditioner being able to meet the above two requirements.

In the last few years, the author and his coworkers have developed several meth-
ods to solve the ill-posed linear problems: using the fictitious time integration
method as a filter for ill-posed linear system [Liu and Atluri (2009a)], a modified
polynomial expansion method [Liu and Atluri (2009b)], the non-standard group-
preserving scheme [Liu and Chang (2009)], a vector regularization method [Liu,
Hong and Atluri (2010)], the preconditioners and postconditioners generated from
a transformation matrix, obtained by Liu, Yeih and Atluri (2009) for solving the
Laplace equation with a multiple-scale Trefftz basis functions, the relaxed steep-
est descent method [Liu (2011a, 2012a)], the optimal iterative algorithm [Liu and
Atluri (2011a)], an optimally scaled vector regularization method [Liu (2012b)],
an adaptive Tikhonov regularization method [Liu (2012)], the best vector itera-
tive method [Liu (2012d)], a globally optimal iterative method [Liu (2012e)], the
generalized Tikhonov regularization methods [Liu (2012f)], as well as an optimal
tri-vector iterative methods [Liu (2012g)].

The remainder of this paper is organized as follows. In Section 2, we first use a
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preset conditioner for solving an ill-posed linear system by a generalized relaxed
steepest descent method (GRSDM). In Section 3 we search for an optimality of
the preconditioner, where the preconditioned matrix is optimized based on the con-
cepts of invariant manifold and the maximization of convergence rate derived from
a properly defined objective function. In Section 4 we derive a formula to compute
the relaxation parameter introduced in the preconditioner; hence, we can design a
new strategy by enlarging the stepsize when a situation for a faster convergence
is detected. In Section 5 we give numerical examples of backward heat conduc-
tion problem, heat source identification problem, and inverse Cauchy problems to
demonstrate the efficiency and accuracy of the novel iterative algorithms. Finally,
the conclusions are drawn in Section 6.

2 A generalized relaxed steepest descent method

Considering the following preconditioner:

P := VT−E−1V−1, (3)

and applying it to Eq. (1) we can derive

(VTV−E−1)x = b−E−1x, (4)

where E is a positive definite matrix. The term E−1x in the right-hand side is
obtained from E−1V−1b1 = E−1x by using Eq. (1) again.

Hence, we have an iterative scheme to find the solution of x by

(VTV−E−1)xk = b−E−1xk+1, (5)

which is obtained from Eq. (4) by letting x = xk in the left-hand side, and simulta-
neously letting x = xk+1 in the right-hand side. Thus we can derive

xk+1 = xk +Erk, (6)

where

rk = b−Cxk (7)

is a residual vector (usually named the steepest descent direction) for the normal
equation:

Cx = b, (8)
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in which

C := VTV, (9)

b := VTb1. (10)

In the next section we will search E as an optimal preconditioner, such that the iter-
ative algorithm (6) can converge faster through the left-action of the preconditioned
matrix E on rk. Hereby, upon taking

E = (1− γ)
rT

k Grk

rT
k GCGrk

G (11)

in Eq. (6), we can derive the following algorithm:
(i) Select a suitable value of 0≤ γ < 1, and assume an initial value of x0.
(ii) For k = 0,1,2 . . . we repeat the following iterations:

rk = b−Cxk, (12)

xk+1 = xk +(1− γ)
rT

k Grk

rT
k GCGrk

Grk. (13)

If xk+1 converges by satisfying a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii).

In Eq. (13), γ is a relaxation parameter in the range of 0 ≤ γ < 1, and if we take
G = In, then the above algorithm reduces to the relaxed steepest descent method
(RSDM) developed by Liu (2011a, 2012a). If we take G = VTV, G = VVT, or
else, we can obtain different algorithms. Consequently, the present algorithm can
be viewed as a generalized relaxed steepest descent method (GRSDM), with G be-
ing positive-definite. In the next section we will search an optimal G = In +αD
with the weighting parameter α being optimized, where D is a positive definite
matrix specified by the user. When α = 0, we recover to the RSDM. In Eq. (13),
we can view the preset matrix (1− γ)rT

k Grk/(rT
k GCGrk)G before the steepest de-

scent direction rk as being a preconditioner. In our previous studies, the relaxation
parameter γ was specified case by case. Its value is dependent on the problem we
solve, and is chosen by the user. In Section 4, we will derive a formula to compute
the relaxation parameter γ under a switching criterion, such that γ is either using
the specified value or using a value computed from the derived formula. In our
experience, the value of γ has a prominent influence on the convergence speed.
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3 An invariant manifold approach

In this section we revise the iterative algorithm in Section 2, and search an opti-
mization of the preconditioner G. By Eq. (1):

F(x) = b1−Vx, (14)

we start from a continuous manifold:

h(x, t) :=
1
2

Q(t)‖F(x)‖2 =C, (15)

where C is a positive constant, and the function Q(t) ∈ C1 satisfies Q(0) = 1 and
Q̇(t)> 0. For the requirement of "consistency condition", i.e., x(t) is always on the
manifold in time, we have

1
2

Q̇(t)‖F(x)‖2−Q(t)r · ẋ = 0, (16)

where r := VTF is the steepest descent vector.

We suppose that x is governed by

ẋ = λG
∂h
∂x

= λQ(t)Gr, (17)

where λ is to be determined, and G is a positive definite matrix. Inserting Eq. (17)
into Eq. (16) we can solve

λ =
Q̇(t)‖F‖2

2Q2(t)rTGr
. (18)

Thus by inserting the above λ into Eq. (17) we have a nonlinear ODEs system for
x:

ẋ = q(t)
‖F‖2

rTGr
Gr, (19)

where

q(t) :=
Q̇(t)
2Q(t)

. (20)

In order to keep x on the manifold we can consider the evolution of F along the
path x(t) by

Ḟ =−Vẋ =−q(t)
‖F‖2

rTGr
VGr, (21)
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and by applying the Euler method we have

F(t +∆t) = F(t)−q(t)∆t
‖F(t)‖2

rT(t)Gr(t)
VGr(t). (22)

Then, by Eq. (15) we can derive

a(∆t)2−b∆t +1− Q(t)
Q(t +∆t)

= 0, (23)

where

a := q2(t)
‖F‖2rTGCGr

(rTGr)2 , (24)

b := 2q(t). (25)

Inserting Eqs. (24) and (25) into Eq. (23) we can derive a scalar equation to solve
the stepsize η :

a0η
2−2η +1− s = 0, (26)

where

η := q(t)∆t, (27)

s :=
Q(t)

Q(t +∆t)
=
‖F(t +∆t)‖2

‖F(t)‖2 , (28)

a0 :=
‖F‖2rTGCGr

(rTGr)2 . (29)

By using Eq. (9) and r = VTF, a0 can be written as

a0 =
‖F‖2‖VGVTF‖2

[F · (VGVTF)]2
≥ 1, (30)

of which the inequality follows from the Cauchy-Schwarz inequality.

From Eq. (26) we have a preferred solution of η to be

η =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (31)

Let

1− (1− s)a0 = γ
2 ≥ 0; (32)
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such that the condition 1−(1−s)a0≥ 0 in Eq. (31) is automatically satisfied. From
Eqs. (32) and (31) it follows that

s = 1− 1− γ2

a0
, (33)

η =
1− γ

a0
, (34)

where γ satisfying

0≤ γ < 1 (35)

is a relaxation parameter.

Then, by applying the Euler method to integrate Eq. (19) and using Eq. (34) for
η = q(t)∆t we can obtain

x(t +∆t) = x(t)+(1− γ)
rTGr

rTGCGr
Gr, (36)

which was already shown in Eq. (13) as an iterative algorithm.

The reader can refer [Liu (2011a, 2012a); Liu and Atluri (2011a, 2011b, 2011c);
Liu and Kuo (2011); Liu, Dai and Atluri (2011a, 2011b); Liu, Yeih, Kuo and Atluri
(2009)] for other iterative algorithms based on the concept of invariant manifold.

Under conditions (30) and (35), from Eqs. (28) and (33) it follows that

‖F(t +∆t)‖
‖F(t)‖

=
√

s < 1, (37)

which means that the residual error is absolutely decreased. In other words, the
convergence rate of present iterative algorithm satisfies

Convergence Rate (CR) :=
‖F(t)‖
‖F(t +∆t)‖

=
1√
s
> 1. (38)

The property in Eq. (38) is very important, since it guarantees that the new algo-
rithm is absolutely convergent to the true solution. A smaller s will lead to a faster
convergence.

Now, we let

G = In +αD, (39)

where α is a weighting parameter to be optimized, and D is a positive definite
matrix. From Eq. (39) it follows that

(rTGr)2 = (‖r‖2 +α‖r‖2
D)

2, (40)
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where

‖r‖2
D := rTDr (41)

is the squared D-norm of r, and also that

rTGCGr = ‖VGr‖2 = ‖v1 +αv2‖2, (42)

where

v1 := Vr, v2 := VDr. (43)

Inserting Eqs. (40) and (42) into Eq. (29) we can derive

a0 =
‖F‖2(‖v1‖2 +2αv1 ·v2 +α2‖v2‖2)

(‖r‖2 +α‖r‖2
D)

2 . (44)

Thus by Eqs. (38) and (33) we can choose the optimal value of α by letting ∂ s/∂α =
0, i.e., ∂a0/∂α = 0. Through some elementary operations on Eq. (44) we can de-
rive

α =
‖r‖2v1 ·v2−‖r‖2

D‖v1‖2

‖r‖2
Dv1 ·v2−‖r‖2‖v2‖2 . (45)

Under the above weighting parameter of α in the preconditioned matrix G = In +
αD, s can be minimized; hence, the convergence rate 1/

√
s will be maximized.

4 An alternate value of relaxation parameter

In the above the relaxation parameter γ is not yet specified. Here we can derive a
formula about γ .

By using the Euler method we have

Q̇(t)∆t = Q(t +∆t)−Q(t). (46)

From Eqs. (27), (20), (28) and (46) we have

η = q(t)∆t =
Q̇(t)∆t
2Q(t)

=
1
2s
− 1

2
. (47)

Then by Eqs. (34) and (47) we can obtain

s =
1

2η +1
=

a0

a0 +2−2γ
. (48)
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On the other hand, Eq. (33) renders

s =
a0−1+ γ2

a0
. (49)

By equating the two s in the above two equations, we can derive a third-order scalar
equation for γ:

2γ
3− (a0 +2)γ2 +2(a0−1)γ−a0 +2 = 0. (50)

Fortunately, we can decompose the above equation into

2(γ−1)2
(

γ− a0

2
+1
)
= 0, (51)

where γ = 1 is a double roots, which is not the desired one in view of Eq. (35), and
another is

γ =
a0

2
−1, if 2≤ a0 < 4, (52)

where, in order to satisfy Eq. (35), we impose the condition of 2≤ a0 < 4.

Liu (2012h) has derived another form of s. From Eqs. (20), (27) and (46) it follows
that

η =
1
2
(R−1), (53)

where the ratio R is defined by

R :=
Q(t +∆t)

Q(t)
=

1
s
. (54)

Inserting Eqs. (53) and (54) into Eq. (26) we can derive

a0R3−2(a0 +2)R2 +(a0 +8)R−4 = 0. (55)

It is interesting that the above equation can be written as

(R−1)2(a0R−4) = 0. (56)

To satisfy the requirement of Q̇(t)> 0, we need R > 1. Because R = 1 is a double
roots and it is not the desired one, we can take

R =
4
a0

. (57)
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Thus, besides Eqs. (48) and (49), by Eqs. (54) and (57) we have obtained the third
representation of s:

s =
a0

4
. (58)

By equating Eqs. (58) and (48) we obtain the same solution for γ as that in Eq. (52).
However, if we let the two s in Eqs. (58) and (49) be equal, we can solve

γ
2 =

(a0

2
−1
)2

. (59)

In summary, we can set

γ =
∣∣∣a0

2
−1
∣∣∣ , if a0 < 4, (60)

where we restrict a0 < 4 in order to satisfy Eq. (35).

Hence, we have developed an optimal GRSDM with an alternate value of γ (OGRSDM-
γ):
(i) Select a suitable value of 0 ≤ γ0 < 1, a positive-definite matrix D, and assume
an initial value of x0.
(ii) For k = 0,1,2 . . . we repeat the following computations:

Fk = b1−Vxk,

rk = b−Cxk,

‖rk‖2
D = rk · (Drk),

vk
1 = Vrk,

vk
2 = VDrk,

αk =
‖rk‖2vk

1 ·vk
2−‖rk‖2

D‖vk
1‖2

‖rk‖2
Dvk

1 ·vk
2−‖rk‖2‖vk

2‖2
,

Gk = In +αkD,

ak
0 =
‖Fk‖2(Gkrk) · (CGkrk)

[rk · (Gkrk)]2
,

γ =

{ ∣∣∣ak
0

2 −1
∣∣∣ , if ak

0 < 4,

γ0, otherwise,
(61)

xk+1 = xk +(1− γ)
rk · (Gkrk)

(Gkrk) · (CGkrk)
Gkrk. (62)

If xk+1 converges by satisfying a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). If γ is fixed to be the selected value γ0, then the resultant
algorithm is an optimal GRSDM (OGRSDM).
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Previously, the value of relaxation parameter γ is specified by the user case by case.
Here we have derived a formula to compute γ by γ = |a0/2−1| under a switching
criterion a0 < 4 in Eq. (61), such that γ is either using the specified value γ0 or using
a value computed from γ = |a0/2− 1|, depending on the value of a0. Numerical
examples given below will explore the efficiency by designing a switching formula
for the relaxation parameter γ .

Remark: Another choice of the switching criterion in Eq. (61) might be

2(1− γ0)< a0 < 2(1+ γ0). (63)

In order to derive the above switching criterion, let us denote the value of s by s0:

s0 = 1−
1− γ2

0
a0

, (64)

when one inserts γ0 into Eq. (33). Correspondingly, when we insert Eq. (60) for γ

into Eq. (33) we can derive

s =
a0

4
(65)

as shown in Eq. (58). Thus for a smaller value of s than s0 (i.e., for a faster conver-
gence gained by using s) we can derive

a0

4
< 1−

1− γ2
0

a0
, (66)

which can be recast to

(a0−2)2 < 4γ
2
0 . (67)

Taking the square roots of both sides we can derive Eq. (63). However, the width of
the range for a0 in Eq. (63) is only 4γ0. When γ0 is a small value, say γ0 = 0.05, the
width of the range is 0.2. In practice, the switching criterion in Eq. (63) maybe not
have a chance to work because the probability that a0 locates in such a small range
is very small. So, in this study the OGRSDM-γ did not use the switching criterion
in Eq. (63); instead of we use a0 < 4 in Eq. (61).

5 Numerical examples

Below, we use some well-known ill-posed linear problems and linear inverse prob-
lems to validate the performance of OGRSDM and OGRSDM-γ in solving ill-
posed linear problems.



252 Copyright © 2013 Tech Science Press CMES, vol.92, no.3, pp.241-269, 2013

5.1 Hilbert linear problem

Finding an n-order polynomial function p(x) = a0 +a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (68)

leads to a problem governed by Eq. (1), where V is the (n+ 1)× (n+ 1) Hilbert
matrix, defined by

Vi j =
1

i+ j−1
, (69)

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (70)

is uniquely determined by the function f (x).

The Hilbert matrix is a famous example of highly ill-conditioned matrices. Eq. (1)
with the coefficient matrix V having a large condition number usually displays
that an arbitrarily small perturbation of data on the right-hand side may lead to an
arbitrarily large perturbation to the solution on the left-hand side.

Let us consider a highly ill-posed case of this problem with n = 50. For this prob-
lem the condition number is about 1.1748× 1019. We consider a constant solu-
tion x1 = x2 = . . . = x50 = 1. The noise σ is fixed to be 10−5, while the conver-
gence criterion is fixed to be ε = 10−4. Starting from the initial conditions with
xi = 0.5, i = 1, . . . ,50, the OGRSDM with γ0 = 0.9 and with D = VTV converges
with 15868 iterations, but the OGRSDM-γ with γ0 = 0.9 and with D = VTV con-
verges with 4861 iterations as shown in Fig. 1(a) for the residual errors. The values
of γ for the OGRSDM-γ is shown in Fig. 1(b), and the values of a0 for OGRSDM
and OGRSDM-γ are compared in Fig. 1(c). We can appreciate that the switching
criterion designed for the OGRSDM-γ can enhance the convergence speed. When
the switch is turned-on, by using the derived value of γ = |a0/2−1| it can pull back
the iterative orbit to the fast manifold as shown in Fig. 1(a) for the large reductions
of residual error at these spikes of γ in Fig. 1(b). Both the numerical errors of
OGRSDM and OGRSDM-γ are smaller than 0.024.
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Figure 1: For a Hilbert linear problem with n=50, (a) comparing the residual errors, 

(b) the value of γ for OGRSDM-γ, and (c) comparing a 0. 

 

 

Figure 1: For a Hilbert linear problem with n = 50, (a) comparing the residual
errors, (b) the value of γ for OGRSDM- γ , and (c) comparing a0.

In order to investigate the influence of γ0 on the number of iterations for OGRSDM
and OGRSDM-γ , we plot them in Fig. 2(a) with respect to γ0. It can be seen that the
OGRSDM-γ is convergent faster than the OGRSDM when γ0 is greater than 0.6.
Moreover, as shown in Fig. 2(b) the maximum errors obtained by the OGRSDM-γ
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are smaller than that obtained by the OGRSDM.
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Figure 2: For a Hilbert linear problem, (a) comparing the number of iterations, and (b) 

the maximum errors of OGRSDM and OGRSDM-γwith respect to γ0. 

 

 

Figure 2: For a Hilbert linear problem, (a) comparing the number of iterations, and
(b) the maximum errors of OGRSDM and OGRSDM-γ with respect to γ0.

5.2 Backward heat conduction problem

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = κuxx(x, t), 0 < t < T, 0 < x < `, (71)

u(0, t) = u0(t), u(`, t) = u`(t), (72)

we solve u under a final time condition:

u(x,T ) = uT (x). (73)
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The fundamental solution of Eq. (71) is given as follows:

K(x, t) =
H(t)

2
√

κπt
exp
(
−x2

4κt

)
, (74)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad applications in engineer-
ing computation. However, the MFS has a serious drawback that the resulting lin-
ear equations system is always highly ill-conditioned, when the number of source
points is increased [Golberg and Chen (1996)], or when the distances of source
points are increased [Chen, Cho and Golberg (2006)].

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (75)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have the basis functions

U(z,s j) = K(x−η j, t− τ j). (76)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to
the t-axis not over the final time, which was adopted by Hon and Li (2009) and
Liu (2011b), showing a large improvement than the line location of source points
below the initial time. After imposing the boundary conditions and the final time
condition to Eq. (75) we can obtain a linear equations system:

Vx = b1, (77)

where

Vi j =U(zi,s j), x = (c1, · · · ,cn)
T,

b1 = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T, (78)

and n = 2m1 +m2.

Example 1: Since the BHCP is highly ill-posed, the ill-condition of the coefficient
matrix V in Eq. (77) is serious. To overcome the ill-posedness of Eq. (77) we
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can use the new methods to solve this problem. Here we compare the numerical
solution with an exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which
is much smaller than the value of the initial temperature u0(x) = cos(πx) to be
retrieved, which is O(1). By adding a relative random noise with an intensity σ =
10% on the final time data, we compute the initial time data by the GRSDM [Liu
(2012f)] with G = In, and the OGRSDM and the OGRSDM-γ with D = C = VTV.
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Figure 3: For example 1, (a) comparing the residual errors, (b) and (c) the value of
a0 and the relaxation parameters of OGRSDM (red) and OGRSDM-γ (black).

When the GRSDM with γ = 0.05 spends 20050 iterations to satisfy the convergence
criterion ε = 10−7, the OGRSDM spends 7025 iterations and the OGRSDM-γ is
the fastest one with 6164 iterations. The residual errors of the above three methods
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Figure 4: For example 1 comparing the numerical errors of GRSDM, OGRSDM and 

OGRSDM-γ. 

 

 

 

 

 

Figure 4: For example 1 comparing the numerical errors of GRSDM, OGRSDM
and OGRSDM-γ .

are compared in Fig. 3(a). The values of a0 and γ for the OGRSDM and OGRSDM-
γ are compared, respectively, in Figs. 3(b) and 3(c). From Fig. 3(c) it can be seen
that the OGRSDM-γ has eight times by using the larger values of γ , such that the
OGRSDM-γ can converge faster than the OGRSDM, which used a constant value
of γ0 = 0.05, . For the above three methods the numerical errors as shown in Fig. 4
are all smaller than 0.015. This example indicates that the present iterative algo-
rithms are robust against noise, and can provide quite accurate numerical results.

In order to investigate the influence of γ0 on the number of iterations of OGRSDM
and OGRSDM-γ , we plot them in Fig. 5 with respect to γ0. It can be seen that the
OGRSDM-γ is convergent faster than the OGRSDM when γ0 is greater than 0.5.

5.3 Heat source identification problem

In this section we apply the OGRSDM and OGRSDM-γ to identify an unknown
space-dependent heat source function H(x) for a one-dimensional heat conduction
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OGRSDM-γ, and (b) showing the number of switching for OGRSDM-γ. 

 

 

 

Figure 5: For example 1, (a) comparing the number of iterations of OGRSDM and
OGRSDM-γ , and (b) showing the number of switching for OGRSDM-γ .

equation:

ut(x, t) = uxx(x, t)+H(x), 0 < x < `, 0 < t < t f , (79)

u(0, t) = u0(t), u(`, t) = u`(t), (80)

u(x,0) = f (x). (81)

In order to identify H(x) we can impose an extra condition:

ux(0, t) = q(t). (82)

We propose a numerical differential method by letting v = ut . Taking the differ-
entials of Eqs. (79) and (80) and (82) with respect to t, and letting v = ut we can
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derive

vt(x, t) = vxx(x, t), 0 < x < `, 0 < t < t f , (83)

v(0, t) = u̇0(t), (84)

v(`, t) = u̇`(t), (85)

vx(0, t) = q̇(t). (86)

This is an inverse heat conduction problem (IHCP) for v(x, t) without using the
initial condition.

Therefore as being a numerical method, we can first solve the above IHCP for
v(x, t) by using the MFS in Section 5.2 to obtain a linear equations system and then
the method introduced in Section 4 is used to solve the resultant linear equations
system; hence, we can construct u(x, t) by

u(x, t) =
∫ t

0
v(x,ξ )dξ + f (x), (87)

which automatically satisfies the initial condition in Eq. (81).

From Eq. (87) it follows that

uxx(x, t) =
∫ t

0
vxx(x,ξ )dξ + f ′′(x), (88)

which together with ut = v as being inserted into Eq. (79), leads to

v(x, t) =
∫ t

0
vxx(x,ξ )dξ + f ′′(x)+H(x). (89)

Inserting Eq. (83) for vxx = vt into the above equation and integrating it we can
derive the following equation to recover H(x):

H(x) = v(x,0)− f ′′(x). (90)

Example 2: For the purpose of comparison we consider the following exact solu-
tions:

u(x, t) = x2 +2xt + sin(2πx),

H(x) = 2x−2+4π
2 sin(2πx). (91)

In Eq. (90) we tentatively disregard the ill-posedness of f ′′(x), and suppose that
the data f ′′(x) are given exactly. We solve this problem by the OGRSDM and
OGRSDM-γ both with γ0 = 0.1 and the convergence criterion is ε = 0.01. A
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Figure 6: For example 2, (a) comparing the residual errors, (b) comparing the 

numerical solutions with exact solution, and (c) showing the numerical errors. 
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merical solutions with exact solution, and (c) showing the numerical errors.

random noise with an intensity σ = 0.05 is added on the data q̇(t). When the
OGRSDM is through 33 iterations to find a solution, the OGRSDM-γ only spends
24 iterations, of which the residual errors are shown in Fig. 6(a).

We compare the heat sources recovered by the OGRSDM and OGRSDM-γ with the
exact one in Fig. 6(b). As shown in Fig. 6(c), the numerical error of OGRSDM is
smaller than 0.0271, and that of OGRSDM-γ is smaller than 0.0205. The iterative
algorithms OGRSDM and OGRSDM-γ have provided rather accurate numerical
results, even a 5% noise is added on the measured data q̇(t). In Fig. 7(a) we com-
pare the values of a0 for the OGRSDM and OGRSDM-γ and the value of γ for
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Figure 7: For example 2, (a) comparing the values of a0 for OGRSDM (black) and
OGRSDM-γ (blue), and showing the relaxation parameter of OGRSDM-γ , and (b)
comparing the values of stepsize and convergence rate (CR) for OGRSDM (black)
and OGRSDM-γ (blue).

OGRSDM-γ . One can appreciate that the alternative use of γ in the OGRSDM-γ
can reduce the value of a0 and accelerate the convergence. From Fig. 7(b) we can
observe that the stepsize and the convergence rate (CR) of OGRSDM-γ are larger
than that of the OGRSDM besides at the first step. Indeed, in the OGRSDM-γ a
new strategy is that under a favorable situation with a smaller a0, the OGRSDM-γ
uses a suitable stepsize η = (1− γ)/a0 with γ = |a0/2−1|, instead of the conser-
vative one η = (1− γ0)/a0, which is used in the OGRSDM.
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5.4 Inverse Cauchy problems

Let us consider the inverse Cauchy problem for the Laplace equation:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, (92)

u(ρ,θ) = h(θ), 0≤ θ ≤ β0π, (93)

un(ρ,θ) = g(θ), 0≤ θ ≤ β0π, (94)

where h(θ) and g(θ) are given functions and β0 ≤ 1. The inverse Cauchy problem
is given as follows:
To seek an unknown boundary function f (θ) on the part Γ2 := {(r,θ)|r = ρ(θ), β0π <
θ < 2π} of the boundary under Eqs. (92)-(94) with the overspecified data on
Γ1 := {(r,θ)|r = ρ(θ), 0≤ θ ≤ β0π}.
It is well known that the method of fundamental solutions (MFS) can be used to
solve the Laplace equation when a fundamental solution is known [Kupradze and
Aleksidze (1964)]. In the MFS the solution of u at the field point z=(r cosθ ,r sinθ)
can be expressed as a linear combination of fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c. (95)

For the Laplace equation (92) we have the fundamental solutions:

U(z,s j) = lnr j, r j = ‖z− s j‖. (96)

Previously, Liu (2008a) has proposed a new preconditioner to reduce the ill-condition
of the MFS. In the practical application of MFS, by imposing the boundary condi-
tions (93) and (94) on Eq. (95) we can obtain a linear equations system:

Vx = b1, (97)

where

zi = (z1
i ,z

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (R(θ j)cosθ j,R(θ j)sinθ j),

Vi j = ln‖zi− s j‖, if i is odd,

Vi j =
η(θi)

‖zi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi−

ρ ′(θi)

ρ(θi)
[s1

j sinθi− s2
j cosθi]

)
, if i is even,

x = (c1, . . . ,cn)
T, b1 = (h(θ1),g(θ1), . . . ,h(θm),g(θm))

T, (98)
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in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (99)

The above R(θ) = R with a constant R, or R(θ) = ρ(θ)+D with a constant offset
D can be used to locate the source points along a contour with a radius R(θ).

Example 3: For the purpose of comparison we consider the following exact solu-
tion:

u(x,y) = cosxcoshy+ sinxsinhy, (100)

defined in a domain with a complex amoeba-like irregular shape as a boundary:

ρ(θ) = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (101)

Here we fix β0 = 1. After imposing the boundary conditions (93) and (94) at m
points on Eq. (95) we can obtain a linear equations system. Here we fix n= 2m= 40
and take D = 1.5 to distribute the source points. The noise being imposed on the
measured data h and g is σ = 0.01.

We solve this problem by the OGRSDM and OGRSDM-γ both with γ0 = 0.01 and
the convergence criterion is ε = 0.01. When the OGRSDM finds a solution through
316 iterations, the OGRSDM-γ spends 249 iterations, of which the residual errors
are shown in Fig. 8(a).

We compare the recovered boundary conditions of f (θ) computed by the OGRSDM
and OGRSDM-γ with the exact one in Fig. 8(b). As shown in Fig. 8(c), the numer-
ical error of OGRSDM is smaller than 0.0883, and that of OGRSDM-γ is smaller
than 0.0824. It can be seen that both the OGRSDM and OGRSDM-γ can accu-
rately recover the unknown boundary condition. The result is better than that of
Liu (2012g) by using the optimal tri-vector iterative algorithm (OTVIA), which
leads to the maximum error being 0.22.

In Fig. 9 we compare the values of a0 for the OGRSDM and OGRSDM-γ and the
value of γ for the OGRSDM-γ . One can appreciate that the alternative use of γ in
the OGRSDM-γ indeed can reduce the value of a0 and accelerate the convergence.

Example 4: For the purpose of comparison we consider another exact solution:

u(r,θ) = r2 cos(2θ), (102)

defined in a domain with a boundary shape given by

ρ(θ) =
√

10−6cos(2θ). (103)
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Figure 8: For example 3, (a) comparing the residual errors, (b) comparing the 

numerical solutions with exact solution, and (c) showing the numerical errors. 

 

 

Figure 8: For example 3, (a) comparing the residual errors, (b) comparing the nu-
merical solutions with exact solution, and (c) showing the numerical errors.

We add a random noise with an intensity σ = 1% on the boundary data, and the
numerical solution on the boundary β0π < θ < 2π with β0 = 0.4 is computed by
the OGRSDM-γ with D = C2 and γ0 = 0.25. Under a small convergence criterion
ε = 10−5, the OGRSDM-γ converges with 3376 iterations. We take R = 60 and
n = 40 used in the MFS. The residual error is shown in Fig. 10(a), while the values
of a0 and γ are shown in Fig. 10(b).The numerical solution is compared with the
exact one in Fig. 10(c), where the maximum error is smaller than 0.145. It indi-
cates that the present OGRSDM-γ is robust against noise, and the required data are
parsimonious with β0 = 0.4 and under a noise. To our best knowledge, there exist
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OGRSDM-γ(blue), and showing the relaxation parameter of OGRSDM-γ. 

 

 

 

 

 

 

 

 

 

 

Figure 9: For example 3 comparing the values of a0 for OGRSDM (black) and
OGRSDM-γ (blue), and showing the relaxation parameter of OGRSDM-γ .

no other numerical methods which can treat this type inverse Cauchy problem with
β0 = 0.4. Previously, Liu (2008b) has used the modified Trefftz method to solve a
Cauchy problem with β0 = 0.5 on a circular domain.

6 Conclusion

The present paper has introduced an optimal generalization of the steepest descent
method in solving ill-posed linear problems. The new method used the optimally
preconditioning matrix as a preset before the steepest descent direction. The pre-
conditioner includes two parameters α and γ , where α was optimized by max-
imizing the convergence speed, while the relaxation parameter γ was computed
by γ = |a0/2−1| under a switching criterion a0 < 4, such that γ is either using the
specified value γ0 or using a value computed from the above formula, depending on
the value of a0. In doing so, we have developed a new strategy in the OGRSDM-γ
that under a favorable situation with a smaller a0, the OGRSDM-γ used a bet-
ter stepsize η = (1− γ)/a0 with γ = |a0/2− 1|, instead of the original stepsize
η = (1−γ0)/a0. It is clever that when the switch is turned-on, by using the derived
formula of γ = |a0/2− 1| it can pull back the iterative orbit to the fast manifold.
Several numerical examples explored the efficiency by designing such a switching
formula for the computation of the relaxation parameter. The present OGRSDM
and OGRSDM-γ have a better computational efficiency and accuracy, which was
verified by solving three well-known ill-posed linear inverse problems.
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Figure 10: For example 4, (a) showing the residual error, (b) the values of a0 (black)
and γ (red) for OGRSDM-γ , and (c) comparing the numerical solution with the
exact solution
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