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A GL(n,R) Differential Algebraic Equation Method for
Numerical Differentiation of Noisy Signal
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Abstract: We show that the problem "real-time numerical differentiation" of
a given noisy signal in time, by supplementing a compensated controller in the
second-order robust exact differentiator, the tracking differentiator or the continu-
ous hybrid differentiator, can be viewed as a set of differential algebraic equations
(DAEs) to enhance a precise tracking of the given noisy signal. Thus, we are able
to solve the highly ill-posed problem of numerical differentiation of noisy signal by
using the Lie-group differential algebraic differentiators (LGDADs) based on the
Lie-group GL(n,R), whose accuracy and tracking performance are better than be-
fore. The "index-two" differentiators (ITDs), which do not need any parameter in
the governing equations, can efficiently depress the chattering, and also improve the
dynamical performance under noise. The tracking results obtained by the LGDADs
and the ITDs are quite promising.

Keywords: Differential algebraic equations, Lie-group differential algebraic dif-
ferentiator (LGDAD), Numerical differentiation, Robust exact differentiator, Track-
ing differentiator, Index-two differentiator (ITD)

1 Introduction

In this paper we cast the problem of numerically finding the first-order and the
second-order derivatives of a given noisy signal in time, as a set of time-dependent
differential algebraic equations (DAEs). The DAEs govern the evolution of n+m
variables xi, i = 1, . . . ,n and y j, j = 1, . . . ,m with n nonlinear ordinary differential
equations (ODEs), and m nonlinear algebraic equations (NAEs):

ẋ = f(x,y, t), x(0) = x0, t ∈ R, x ∈ Rn, y ∈ Rm, (1)

F(x,y, t) = 0, F ∈ Rm. (2)
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Usually, n is larger than m. When m = 0 the DAEs reduce to the ODEs.

The differentiation of "signals", including those with noise, is an old and well-
known problem. The problem of numerical differentiation of noisy data is seriously
ill-posed: small changes of the data may result in large errors of the derivatives
[Liu and Atluri (2009)]. In many applications, it may be necessary to calculate the
derivatives of a set of measured data in real time. The first-order and second-order
differentials of a given signal f (t) in real time can be modelled by the following
"index-three" differential algebraic equations (DAEs):

ẋ1(t) = x2(t),

ẋ2(t) = x3(t),

x1(t)− f (t) = 0. (3)

The exact solutions to the above DAEs are obviously x1(t) = f (t), x2(t) = ḟ (t),
and x3 = f̈ (t); however, we note that the differential operators are highly ill-posed,
and one usually cannot obtain the correct solutions by x2(t) = ḟ (t), and x3 = f̈ (t),
when the signal data f (t) are polluted by a random noise. Moreover, the above
DAEs have "index-three", and it is very difficult to solve this DAEs by a numerical
method.

To mimic the really measured data of f (t) we may impose a random noise on f (t)
with an intensity σ . When we require the output x1 of Eq. (3) to track indeed a
noisy signal with f̂ (ti) = f (ti)+σR(i) where ti is a sampling time and R(i) is a
white noise, we can investigate the tracking errors of displacement and velocity by

e1(t) = x1(t)− f̂ (t), e2(t) = x2(t)− ˙̂f (t).

Then we can obtain the following dynamics of tracking errors:

ė1(t) = e2(t), ė2(t) = x3(t)− ¨̂f (t).

Before the design of a suitable controller x3(t) to reduce the errors e1 and e2, we ask
if we can have a correct information about ˙̂f (t) and ¨̂f (t), which are extracted from
a measured data f̂ (t) which is itself being polluted by a random noise. In Section
5 we will seek this information by a different approach than given in Eq. (3).

We consider a second-order ordinary differential equation (ODE) for describing a
forced vibration of a linear system with time-dependent parameters c(t) and k(t):

φ̈(t)+ c(t)φ̇(t)+ k(t)φ(t) = F(t). (4)

If we attempt to recover F(t) from the measured data φ(t), then we are required
to compute φ̇(t) and φ̈(t). On the other hand, the damping coefficient c(t) is very
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difficult to be measured directly; however, if we can perform the differentials φ̇(t)
and φ̈(t) from the measured data φ(t), then we can estimate c(t).

In addition to its applications in the inverse vibration problems in engineering, nu-
merical differentiation is commonly used in control algorithms to design a con-
troller, where rapidly and accurately computing the velocity and acceleration of a
moving target is very important in the controlled system with correct and timely
performance. As a consequence, a stable and time-saving differentiator is signifi-
cant [Ramm and Smirnova (2001); Ahn, Choi and Ramm (2006)]. In the field of
control theory the approach by considering the time-differential as a tracking prob-
lem to a desired trajectory has spurred many researches, such as the high-gain based
differentiator [Dabroom and Khalil (1997)], the linear time-derivative tracker [Ib-
rir (2004)], the robust exact differentiator [Levant (1998,2003); Levant and Livne
(2012)], the finite-time convergent differentiator [Wang, Chen and Yang (2007);
Wang and Lin (2012); Wang and Shirinzadeh (2012)], the continuous hybrid dif-
ferentiator [Wang and Lin (2011)], as well as the tracking differentiator [Han and
Wang (1994); Guo, Han and Xi (2002); Tang, Wu, Wu, Hu and Shen (2009); Xue,
Huang and Yang (2010); Guo and Zhao (2011a, 2011b)]. When the differentiation
problem is tackled by a tracking problem, it requires a short rising time to track
the given signal and its differentials. In order to be a real-time numerical differen-
tiation of the tracking signal, we can insert a compensated control force into these
differentiators, which is used to stir the initial point into the desired trajectory.

Besides the robust exact differentiator (RED) [Levant (1998,2003)], the tracking
differentiator (TD) was popularly used [Han and Wang (1994), Guo, Han and Xi
(2002); Tang, Wu, Wu, Hu and Shen (2009); Su, Zheng, Mueller and Duan (2006)].
In this paper we will introduce an extra controller u(t) into the first equation of the
RED equations and solve u(t) by the Lie-group DAE (LGDAE) method. By the
same token we will modify the TD and the continuous hybrid differentiator (CHD)
by adding a compensated control force in the governing equations and solve it by
using the LGDAE.

The remaining parts of this paper are arranged as follows. In Section 2 we give a
new form of the nonlinear dynamical system, which allows us to derive an implicit
GL(n,R) Lie-group scheme in Section 3. Then together with the Newton method
we can develop a Lie-group method (LGDAE) to solve the DAEs in Section 4. The
main results by applying the LGDAE to solve the real-time numerical differenti-
ation problems of a given noisy signal in time are presented in Section 5. In this
section we introduce two new types "index-two" differentiators, and three novel
and simple modifications of the robust exact differentiator (RED), tracking differ-
entiator (TD), and continuous hybrid differentiator (CHD), which are collected as
the so-called Lie-group differential algebraic differentiators (LGDADs). Finally,
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we draw some conclusions in Section 6.

2 The GL(n,R) structure of the differential equations system

Lie-group is a differentiable manifold, which is endowed with a group structure
that is compatible with the underlying topology of the manifold. The Lie-group
solver can provide a better algorithm that retains the orbit generated from numerical
solution on the manifold which is associated with the Lie-group.

The general linear group is a Lie group, whose manifold is an open subset GL(n,R) :=
{G ∈Rn×n|detG 6= 0} of the linear space of all n×n non-singular matrices. Thus,
GL(n,R) is also an n× n-dimensional manifold. The group composition is given
by the matrix multiplication.

The general linear group GL(n,R) gives uniquely a real Lie-algebra gl(n,R). Con-
sider a one-parameter subgroup G(t), t ∈ R, of the general linear group GL(n,R),
which is a curve passing through the group identity at t = 0,

G(0) = In, (5)

and which operates from the left on the n-dimensional Euclidean space Rn, result-
ing in a congruence of curves in Rn,

X(t) = G(t)X(0) = [G(t)G−1(t0)]X(t0), t0, t ∈ R. (6)

Owing to the closure property of the Lie group, G(t)G−1(t0) also belongs to GL(n,R).
When t0 is put very close to t, G(t)G−1(t0) is very close to the identity In. More-
over,

A(t) :=
∂

∂ t
[G(t)G−1(t0)]

∣∣∣∣
t0=t

= Ġ(t)G−1(t) (7)

defines a string of tangent vectors on the tangent space at the group identity of
the group manifold, more precisely, a continuously singly parametrized series of
one-dimensional sub-algebra of the real Lie algebra gl(n,R).
Differentiating Eq. (6), setting t0 = t and then using Eq. (7) yields

Ẋ(t) = A(t)X(t). (8)

The flow generated by the vector field AX with such an A(t) ∈ gl(n,R) is the con-
gruence of curves resulting from solving the linear ODEs system (8). Essentially,
it is very important that when one wants to establish a local coordinate on a smooth
manifold on which a finite dimensional Lie-group of transformation is acting, the
solution of the differential equations system is necessary [Liu (2001,2007)].
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Here we give a new form of the dynamics in Eq. (1) from the GL(n,R) Lie-group
structure. In order to fit the form in Eq. (8), the vector field f on the right-hand side
of Eq. (1) can be written as

ẋ = Ax, (9)

where

A =
f
‖x‖
⊗ x
‖x‖

(10)

is the coefficient matrix. Here u⊗ y denotes the dyadic operation of u and y, i.e.,
(u⊗y)z = y · zu.

Because the coefficient matrix A is well-defined for ‖x‖> 0, the Lie-group element
G generated from the above dynamical system (9) with Ġ=AG satisfies det G(t) 6=
0, such that G ∈ GL(n,R).
Liu (2013a) was the first to find the essential form in Eq. (9) for nonlinear ODEs,
and developed a very effective Lie-group GL(n,R) preserving scheme to solve
ODEs by only assuming that f/‖x‖ is a constant vector. Then, Liu (2013b) de-
veloped a Lie-group GL(n,R) preserving scheme to solve ODEs by assuming that
both f/‖x‖ and x/‖x‖ are constant vectors.

3 An implicit GL(n,R) Lie-group scheme

Eq. (9) is a new starting point for the development of the Lie-group GL(n,R)
scheme. In order to develop a numerical scheme from Eqs. (9) and (10), we suppose
that the coefficient matrix A is constant with

a =
f̄
‖x̄‖

, b =
x̄
‖x̄‖

(11)

being two constant vectors, which can be obtained by taking the values of f and x at
a suitable mid-point of t̄ ∈ [t0 = 0, t], where t ≤ t0+h and h is a small time stepsize.
Thus from Eqs. (9) and (10) we have

ẋ = b ·xa. (12)

Let

w = b ·x, (13)

and Eq. (12) becomes

ẋ = wa. (14)



218 Copyright © 2013 Tech Science Press CMES, vol.92, no.2, pp.213-239, 2013

At the same time, from the above two equations we can derive the following ODE
for w:

ẇ = cw, (15)

where

c = a ·b (16)

is viewed as a constant scalar in the time interval of t ∈ [t0, t0 +h]. Thus we have

w(t) = w0 exp(ct), t ∈ [t0, t0 +h], (17)

where w0 = b ·x0.

Inserting Eq. (17) for w(t) into Eq. (14) and integrating the resultant equation we
can obtain

x(t) = [In +η(t)abT]x0, (18)

where x0 is the initial value of x at an initial time t = t0 = 0, and

η(t) =
ect −1

c
. (19)

Let G(t) be the coefficient matrix before x0 in Eq. (18),

G = In +η(t)abT, (20)

and we can prove that

detG = ect > 0, (21)

which means that G is a Lie-group element of GL(n,R). G has the following prop-
erties.
(1) If a · b 6= 0, then G has n linearly independent eigenvectors, which are com-
posed of a and n−1 arbitrarily linearly independent vectors in b⊥, where b⊥ is an
(n− 1)-dimensional subspace being orthogonal to b. If a ·b = 0, then G only has
n− 1 linearly independent eigenvectors, which are composed of n− 1 arbitrarily
linearly independent vectors in b⊥.

Proof: First we choose a set of bases ui, i = 1, . . . ,n−1 in b⊥, then one has

Gui = ui, i = 1, . . . ,n−1, (22)
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which means that ui, i = 1, . . . ,n−1 are the eigenvectors of G corresponding to the
eigenvalue λ = 1.

If a /∈ b⊥, then we have

Ga = [1+ηa ·b]a, (23)

which means that a is also the eigenvector of G with eigenvalue λ = 1+ηa ·b.

If a ∈ b⊥, then any eigenvector u of G must be u ∈ b⊥. By the assumption that u
is an eigenvector of G we have

Gu = qu. (24)

Then insert Eq. (20) for G we have

(1−q)u =−ηb ·ua. (25)

If q = 1 then b ·u = 0, i.e., u ∈ b⊥. Suppose that q 6= 1. We assume that u /∈ b⊥,
and from the above equation we know that u is collinear with a, which however,
contradicts with the premise a ∈ b⊥. Thus we must have u ∈ b⊥.

(2) The eigenvalues of G. We can take a set of orthogonal vectors u2, . . . ,un in b⊥.
Then we can construct an orthogonal matrix U by

U = (b,u2, . . . ,un) . (26)

By using

abTU = U


bTa 0 . . . 0

0 0 . . . 0

0
...

... 0
0 . . . . . . 0

 , (27)

we can obtain

GU = U

I+η


bTa 0 . . . 0

0 0 . . . 0
...

...
... 0

0 . . . . . . 0


 , (28)

that is,

UTGU =


1+ηbTa 0 . . . 0

0 1 . . . 0
...

...
... 0

0 . . . . . . 1

 . (29)
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Thus the eigenvalues and determinant of G are, respectively,

{λ (G)}= {1+ηa ·b,1, . . . ,1}, (30)

detG = 1+ηa ·b = ect > 0. (31)

Hence, we have proven Eq. (21).

Accordingly, we can develop the following implicit scheme for solving the ODEs
in Eq. (1):
(i) Give 0≤ θ ≤ 1.
(ii) Give an initial x0 at an initial time t = t0 and a time stepsize h.
(iii) For k = 0,1, . . ., we repeat the following computations to a specified terminal
time t = t f :

xk+1 = xk +hfk. (32)

With the above xk+1 generated from an Euler step as an initial guess we iteratively
solve the new xk+1 by

x̄k = (1−θ)xk +θxk+1,

ak =
f̄k

‖x̄k‖
=

f(x̄k,yk, tk +θh)
‖x̄k‖

,

bk =
x̄k

‖x̄k‖
,

ck = ak ·bk,

ηk =
exp(ckh)−1

ck
,

zk+1 = xk +ηkbk ·xkak. (33)

If zk+1 converges according to a given stopping criterion, such that,

‖zk+1−xk+1‖< ε2, (34)

then go to (iii) to the next time step; otherwise, let xk+1 = zk+1 and go to Eq. (33).
In all the computations given below we will fix θ = 1/2. In the above yk is viewed
as a constant vector within a small time step. In order to determine yk the present
Lie-group scheme is coupled with the following Newton scheme.

4 Newton iterative scheme for DAEs

Now, we turn our attention to the DAEs defined in Eqs. (1) and (2). Within a small
time step we can suppose that the variables y j, j = 1, . . . ,m are constant in that
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interval of tk < t < tk+1. We give an initial guess of y j, j = 1, . . . ,m, and insert
them into Eq. (1). Then we apply the above implicit scheme to find the next xk+1,
supposing that xk is already obtained in the previous time step. When xk+1 are
available we insert them into Eq. (2), and then apply the Newton iterative scheme
to solve yk+1 by

y`+1
k+1 = y`k+1−B−1F(xk+1,y`k+1, tk+1), (35)

until the following convergece criterion is satisfied:

‖y`+1
k+1−y`k+1‖< ε1. (36)

In the above the component Bi j of the Jacobian matrix B is given by ∂Fi/∂y j.

The numerical process as a combination of the Lie-group method based on GL(n,R)
and the Newton method to solve the DAEs in Eqs. (1) and (2) is called the Lie-group
DAE (LGDAE) method.

5 Numerical differentials

Now we are ready to apply the above LGDAE to solve the numerical problem of a
real-time numerical differentiation of a given noisy signal in time. The main idea
is modified the proposed differentiators into a set of DAEs including an unknown
control force u(t), which is then solved by the LGDAE method.

5.1 The first "index-two" differentiator

In Section 1 we have mentioned a naive and very simple approach of the first-
order and the second-order differentials of a given function f (t) by Eq. (3), which
is however only a definition of derivatives. When we apply the LGDAE to solve
Eq. (3) we find that the numerical results of differentials are poor when time is over
1 sec or when the given function is polluted by noise. In order to obtain a reasonable
result the time stepsize cannot be too small. However, Eq. (3) is a prototype of the
so-called second-order differentiator to realize the first-order differential of g(t),
which is re-formulated as

ẋ(t) = y(t),

ẏ(t) = u(t),

y(t)−g(t) = 0. (37)

Here we view the above equations as a set of DAEs, which has index two, and we
search the controller u(t) such that y(t) can track the given data ĝ(ti) where a ran-
dom noise is imposed on g(ti) with an intensity σ : ĝ(ti) = g(ti)+σR(i). Eq. (37) is
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an integral-differentiator like the PID [Su, Sun and Duan (2005)] used in the control
machine, where x(t) is the integral of the given signal g(t) and u(t) is the differen-
tial ġ(t) of the given signal g(t) when y(t) can track the signal g(t). We apply the
Lie-group DAE (LGDAE) method to solve the above equations and compare the
results with the exact solutions:∫

g(t)dt = 2+ t +5t2/2− cos t, g(t) = 1+5t + sin t, ġ(t) = 5+ cos t

in a time interval of t ∈ [0,20]. The differentiator in Eq. (37) is named as an "index-
two" differentiator (ITD), which is different from the index-three differentiator in
Eq. (3) on the third equation.

We apply the LGDAE method in Sections 3 and 4 to solve x1 := x and x2 := y
through Eq. (37), and then iteratively solve the constraint in Eq. (37) by the Newton
method. For demonstration purposes the numerical processes are given below:
(i) Give 0≤ θ ≤ 1 and an initial guess of u0.
(ii) Give an initial x0 at an initial time t = t0 and a time stepsize h.
(iii) For k = 0,1, . . ., we repeat the following computations to t = t f :

xk+1 = xk +hfk. (38)

With the above xk+1 generated from an Euler step as an initial guess we iteratively
solve the new xk+1 by

x̄k = (1−θ)xk +θxk+1,

ak =
f̄k

‖x̄k‖
=

f(x̄k, tk +θh)
‖x̄k‖

,

bk =
x̄k

‖x̄k‖
,

ck = ak ·bk,

ηk =
exp(ckh)−1

ck
,

zk+1 = xk +ηkbk ·xkak. (39)

If zk+1 converges according to a given stopping criterion, such that,

‖zk+1−xk+1‖< ε2, (40)

then go to (iv); otherwise, let xk+1 = zk+1 and go to Eq. (39).
(iv) For j = 0,1, . . ., we repeat the following computations:

u j+1 = u j−
Fj

F ′j
, (41)
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where

Fj = xk+1
2 −g(tk+1),

c′k =
bk

2
‖x̄k‖

,

dk = bk ·xk,

η
′
k =

c′k[(hck−1)exp(ckh)+1]
c2

k
,

F ′j = (xk+1
2 )′ = ak

2dkη
′
k +

dkηk

‖x̄k‖
, (42)

in which ak
2 and bk

2 are, respectively, the second components of ak and bk. If u j

converges according to

|u j+1−u j|< ε1, (43)

then go to (iii) with u j as an initial guess of u for the next time step; otherwise, let
u j = u j+1 and go to Eq. (39). In all computations given below we will fix θ = 1/2.

In the solution of Eq. (37) by using the LGDAE we fix h = 0.05, ε1 = 10−6, ε2 =
10−15, and the noise intensity is σ = 0.001. From Fig. 1 it can be seen that the
numerical solutions obtained by the first ITD are close to the exact solutions. The
maximum errors for

∫
g(t)dt, g(t) and ġ(t) are, respectively, 1.124×10−2, 9.99×

10−4, and 6.397×10−2. Although the ITD is simple, it can lead to rather accurate
numerical results. In order to obtain a higher-order differential of a given signal a
more complex differentiator is necessary, which is considered below.

5.2 A modification of RED

In the control theory, a known approach of the differential problem is choosing
a high quality controller u(t) to track the signal f (t) by x(t) with ẋ(t) = u(t)
[Golembo, Emelyanov, Utkin and Shubladze(1976)]. A well known robust exact
differentiator (RED) was first derived by Levant (1993, 1998) to form a continuous
control u(t) for retaining the equalities s = x(t)− f (t) = 0 and ṡ = u(t)− ḟ (t) = 0
in time:

ẋ(t) = y(t)−α|x(t)− f (t)|1/2sign(x(t)− f (t)), (44)

ẏ(t) =−β sign(x(t)− f (t)), (45)

where α > 0 and β > 0 are two parameters used to speed up the convergence, and
sign is a signum function.
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Figure 1: For the first-order differential computed by the first ITD, comparing the
numerical and exact solutions of (a) integral of g(t), (b) g(t) and (c) differential of
g(t).
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Levant (2003) has derived a higher-order differentiator of f (t), of which we only
write the following third-order differentiator:

ẋ(t) = y(t)−λ1|x(t)− f (t)|2/3sign(x(t)− f (t)), (46)

ẏ(t) = z(t)−λ2|y(t)− ẋ(t)|1/2sign(y(t)− ẋ(t)), (47)

ż(t) =−λ3sign(z(t)− ẏ(t)), (48)

where λi > 0, i = 1,2,3 are parameters used to speed up the convergence, and
(x(t),y(t),z(t)) provides a tracking of the signal and its differentials ( f (t), ḟ (t), f̈ (t)).

Here we modify Eqs. (44) and (45) for the first-order differential of f (t) by

ẋ(t) = y(t)−α|x(t)− f (t)|1/2sign(x(t)− f (t))+u(t), (49)

ẏ(t) =−β sign(y(t)− ẋ(t)), (50)

where the role of u(t) is used to keep the trajectory of x(t) on the dynamical sliding
line:

s(t) = x(t)− f (t) = 0. (51)

Eqs. (49)-(51) constitute a set of DAEs, and we can apply the LGDAE to solve
them. Hence, we name it a Lie-group differential algebraic differentiator (LGDAD).
When u = 0, Eqs. (49) and (50) are equivalent to Eqs. (44) and (45).

For the first example we test the differential of f (t) = 5t + sin t, and hence, ḟ (t) =
5+ cos t. In the solution of Eqs. (49)-(51) by using the LGDAE we fix h = 0.05,
ε1 = 10−5, ε2 = 10−8, α = 3 and β = 1, and the noise intensity is σ = 0.001. From
Fig. 2(a) it can be seen that the numerical solution of LGDAD is close to the exact
solution. If we do not consider the compensated control force with u = 0 and using
the Euler-integration to the above equations (44) and (45) as a differential, as shown
in Fig. 2(b) we have a larger error in the numerical differential due to the influence
of noise. While the maximum error obtained by RED is 0.19, that obtained by
LGDAD is 0.09997, which is is not better than that obtained by the first ITD as
shown in Fig. 1(c). We can observe that the chattering phenomenon appears in the
differential curve obtained by the RED.

The extra compensated control force used in the LGDAD is shown in Fig. 2(c). It
can be seen that the differential obtained by the LGDAD is rather smooth without
having a zig-zag, although a random noise is imposed on the differentiator.

Then, we modify Eqs. (46)-(48) for the second-order differential of f (t) by

ẋ(t) = y(t)−λ1|x(t)− f (t)|2/3sign(x(t)− f (t))+u(t), (52)

ẏ(t) = z(t)−λ2|y(t)− ẋ(t)|1/2sign(y(t)− ẋ(t)), (53)

ż(t) =−λ3sign(z(t)− ẏ(t)). (54)
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Figure 2: For example of first-order differential, (a) comparing the numerical and
exact solutions, (b) the numerical errors, and (c) the control force.
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Figure 3: For example of second-order differential, (a) comparing the numerical
and exact solutions, (b) the numerical errors, and (c) the control force.
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Figure 4: For example of second-order differential under a noise, (a) and (b) com-
paring the numerical and exact solutions, and (c) the control force of LGDAD.
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Eqs. (52)-(54) and (51) constitute a set of DAEs, and we can apply the LGDAE to
solve them. Here we have introduced an extra compensated control force u(t) into
the first equation of the above equations and solved u(t) by the LGDAE.

For this example we test the first and the second differentials of f (t) = 5t + sin t.
By using the LGDAE we fix h = 0.001, ε1 = 10−11, ε2 = 10−15, λ1 = 3, λ2 = 1.5,
and λ3 = 1.1 and the noise intensity is σ = 0. From Fig. 3 we can observe that the
error of ḟ (t) obtained by the LGDAD with the maximum error being 6.45×10−6

is much smaller with several orders than that without using u. For the LGDAD
the error of f̈ (t) is about 3.02× 10−3, which is also better than that obtained by
the RED with u = 0. The extra compensated control force used in the LGDAD is
shown in Fig. 3(c).

Under a noise with an intensity σ = 0.001, we fix h = 0.05, ε1 = 10−3, ε2 = 10−7,
λ1 = 1.5, λ2 = 1, and λ3 = 1. From Figs. 4(a) and 4(b) we can observe that the
numerical results are acceptable, where the extra compensated control force used
in the LGDAD is shown in Fig. 4(c). While the maximum error of ḟ (t) is 0.0464,
the maximum error of f̈ (t) is 0.235.

For the purpose of comparison we also use the LGDAE method to solve Eq. (3)
under h = 0.2, ε1 = 10−3, and ε2 = 10−10. This index-three differentiator is good in
ḟ (t) as shown in Fig. 4(a) by the dashed-dotted line; however, as shown in Fig. 4(b)
the result of f̈ (t) is slightly worse than that obtained by the LGDAD. The advantage
by using the index-three equation method is that we do not need any parameter in
the governing equations. However, when a smaller time stepsize h is adopted the
performance of index-three equation method is not so good.

5.3 A modification of TD

For the first-order differential of a given signal f (t), one feasible second-order
Tracking Differentiator (TD) can be expressed as [Han and Wang (1994); Su, Sun
and Duan (2005); Wang, Zhang and Yan (2010)]:

ẋ(t) = y(t), (55)

ẏ(t) =−αsign
(

x(t)− f (t)+
y(t)|y(t)|

2α

)
. (56)

Now we modify the above TD by the following DAE:

ẋ(t) = y(t)+u(t), (57)

ẏ(t) = u(t)−αsign
(

x(t)− f (t)+
y(t)|y(t)|

2α

)
, (58)

x(t)− f (t) = 0. (59)
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Figure 5: For example of first-order differential, (a) comparing the numerical so-
lutions obtained by LGDAD and TD with exact solution, (b) the numerical errors,
and (c) the control force for LGDAD.
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Hence, we attempt to seek a suitable controller u such that x(t) can track the signal
f (t), and at the same time y(t) + u(t) presents the first-order differential of the
signal. Note that u(t) is inserted both in Eqs. (57) and (58). We also name the above
differentiator to be a Lie-group differential algebraic differentiator (LGDAD).

For this example we test the first-order differential of f (t) = 5t + sin t. Under a
noise with intensity σ = 0.001 we obtain a noisy signal f̂ (ti) = 5ti + sin ti +σR(i),
where ti is the sampling time and R(i) is a white noise between [−1,1]. By using
the LGDAE to solve Eqs. (57)-(59) we fix h = 0.05, ε1 = 10−4 and ε2 = 10−10,
and α = 1 is used in Eq. (58). From Fig. 5(a) we can observe that the result of ḟ (t)
obtained by the LGDAD is much better than that without using u of the original TD
solved from Eqs. (55) and (56) with α = 20 and h = 0.001. It is obvious that the
TD has a time-ahead before the given differential signal. The numerical errors are
compared in Fig. 5(b), while the control force for the LGDAD is shown in Fig. 5(c).
The maximum error of LGDAD is 0.0513, while that for TD is 3.0086.

5.4 The second ITD

Instead of the original third-order Tracking Differentiator (TD) [Han and Wang
(1994)]:

ẋ(t) = y(t), (60)

ẏ(t) = z(t), (61)

ż(t) =−αsign
(

x(t)− f (t)+
y(t)|y(t)|

2α
+

z(t)|z(t)|
2α

)
, (62)

we propose a new third-order differentiator by the following index-two DAE:

ẋ(t) = y(t)+u(t), (63)

ẏ(t) = u(t), (64)

x(t)− f (t) = 0. (65)

From the first equation we can obtain the first-order differential by y(t)+u(t), while
the second-order differential is given by ẍ(t) = ẏ(t)+ u̇(t) = u(t)+ u̇(t) with the
aid of Eq. (64); hence, we further need the following equations to compute u̇(t):

ṗ(t) = q(t), (66)

q̇(t) =−β sign
(

p(t)−u(t)+
q(t)|q(t)|

2β

)
. (67)

The value q(t) gives u̇(t). The initial values of p(t) and q(t) are set to be 0.1.
Here we need to emphasize that Eqs. (63)-(65) are different from Eq. (3) on the
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first equation, and also from Eq. (37) on the first and the third equations. Table 1
compares these three type differentiators.

Table 1: The comparisons of three indexed type differentiators of this paper
Index-three differentiator The first ITD The second ITD
ẋ = y ẋ = y ẋ = y+u
ẏ = u ẏ = u ẏ = u
x− f = 0 y−g = 0 x− f = 0

Figure 6: For example of second-order differential under a noise, (a) and (b) com-
paring the numerical solutions obtained by the second ITD and TD with exact so-
lutions, and (c) the control force for ITD.
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By using the LGDAE to solve Eqs. (63)-(65) we fix σ = 0.001 for noise, h = 0.05,
ε1 = 10−4 and ε2 = 10−10, and β = 1.5 is used in Eq. (67). From Figs. 6(a) and
6(b) we can observe that the errors of ḟ (t) and f̈ (t) obtained by this index-two
differentiator (ITD) are much smaller than that without using u of the original TD
solved from Eqs. (60)-(62) with α = 20 and h = 0.001. The maximum errors
of ITD are 0.0569 for the first-order differential, and 0.293 for the second-order
differential. The control force used in this ITD is shown in Fig. 6(c).

Up to here we have developed two index-two differentiators (ITDs) as shown in
Eq. (37) and Eqs. (63)-(65), respectively. When the first ITD is used to compute
the first-order differential, the second ITD can compute the first-order differential,
which upon together with the TD as shown in Eqs. (66) and (67) can also be used
to compute the second-order differential.

Under the same noise σ = 0.001 and the same stepsize h = 0.05, the maximum
errors of the first-order differential for the first ITD, the LGDAD modifed from TD
and the second ITD are, respectively, 0.06397, 0.0513 and 0.0569. The maximum
errors for the LGDAD modified from the second-order RED and the third-order
RED are, respectively, 0.09997 and 0.0464. Among these differentiators, the one
obtained from the LGDAD modified from the third-order RED provides the most
accurate numerical solution of the first-order differential; however, it needs three
parameters to be specified. Conversely, the two ITDs are also quite accurate but
they do not need any parameter.

5.5 A modification of CHD

Recently, Wang and Lin (2012) have proposed a smooth modification of Eqs. (44)
and (45) by multiplying |x(t)− f (t)|α on the right-hand side of Eq. (45). Further-
more, Wang and Lin (2011) proposed the following continuous hybrid differentia-
tor (CHD):

ẋ(t) = y(t)− k1|x(t)− f (t)|(α+1)/2sign(x(t)− f (t))− k2(x(t)− f (t)), (68)

ẏ(t) =−k3|x(t)− f (t)|αsign(x(t)− f (t))− k4(x(t)− f (t)), (69)

where (x(t),y(t)) is used to track the signal ( f (t), ḟ (t)). As that done in Section 5.2
for the RED and in Section 5.3 for the TD we propose the following modification
of CHD:

ẋ(t) = y(t)− k1|x(t)− f (t)|(α+1)/2sign(x(t)− f (t))− k2(x(t)− f (t))+u(t), (70)

ẏ(t) =−k3|x(t)− f (t)|αsign(y(t)− ẋ(t))− k4(x(t)− f (t)), (71)

where u(t) is an extra compensated control force, which is solved by the LGDAE
to match the algebraic equation (65). This differentiator is the third LGDAD.
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We test one case of f (t) = 2sin t in a time interval of t ∈ [0,50] under a large noise
σ = 0.01 being imposed on the given data, where we fix the time sampling rate to
be h = 0.05. By using the parameters given in Wang and Lin (2011):

α = 0.2, k1 = 1, k2 = 7 if t ≤ 1, k2 = 1 otherwise,

k3 = 8, k4 = 25 if t ≤ 1, k4 = 8 otherwise,

we compare the numerical results with the exact solutions in Fig. 7. The maximum
error of f (t) is 0.1648, while the maximum error of ḟ (t) is 1.138.

Figure 7: For example of a first-order differential under a noise 0.01, (a) and (b)
comparing the numerical solutions obtained by the CHD with exact solutions.

Then we apply the LGDAE to solve the above equations under σ = 0.01 for noise,
h = 0.05, ε1 = 10−8, ε2 = 10−12, and the same values of the above parameters.
From Figs. 8(a) and 8(b) we can observe that the errors of f (t) and ḟ (t) obtained
by the third LGDAD are much smaller than that without using u of the original
CHD solved from Eqs. (68) and (69). The maximum errors of LGDAD are 0.018
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for f (t), and 0.588 for ḟ (t). When we further filter the above numerical result of
ḟ (t) by using the CHD in Eqs. (68) and (69) under the following parameters:

α = 0.2, k1 = 3, k2 = 7 if t ≤ 1, k2 = 1 otherwise, k3 = 8, k4 = 0,

the result is improved as shown in Fig. 8(c), where the maximum error is reduced
from 0.588 to 0.418. Because the noise is filtered out, the new curve of ḟ (t) is more
smooth than the original curve in Fig. 8(b).

At the last we compare the tracking effect to the function f (t) = 1+5t+sin t under
a noise σ = 0.001 by using the first index-two differentiator (ITD) in Eq. (37)
and that obtained by the CHD. The tracking errors are compared in Fig. 9. When
h = 0.05 is used in the CHD the errors are far from being comparable with that
obtained by the first ITD. So we reduce to h = 0.01 for the CHD, and keep h = 0.05
for the ITD. However, when the maximum errors for f (t) and ḟ (t) are, respectively,
9.99×10−4 and 0.06397 for the ITD, they are, respectively, 5.468×10−3 and 0.143
for the CHD. Obviously, the first index-two differentiator (ITD) is better than the
CHD.

6 Conclusions

The implicit Lie-group GL(n,R) integration algorithm is a new method to effec-
tively and accurately solve nonlinear ODEs. When it is combined with the Newton
iterative scheme we can solve the DAEs generated from the real-time numerical
differential of noisy signal by using the Lie-group DAE (LGDAE) method. The
major contributions in this paper were that we have proposed some modifications
of the robust exact differentiator, the tracking differentiator and the continuous hy-
brid differentiator by suitably adding an extra compensated control force in the
governing ODEs and resulting in three Lie-group differential algebraic differentia-
tors (LGDADs), which can eliminate the time-lag or time-ahead and the chattering
phenomena, as well as improve the stability and accuracy in the first-order and the
second-order differentials of a given noisy signal. The two index-two differentia-
tors (ITDs) as shown, respectively, in Eq. (37) and Eqs. (63)-(65) are simple and
without needing of any parameter in the governing ODEs, and when we used them
as a differentiator for the first-order differential they provided the most accurate
result of the first-order differential than other differentiators. Because the conver-
gence behaviors of the LGDAD and ITD are fast, we have time-saving differentia-
tors to perform the numerical differentials of noisy signal in real time, which can be
used in an on-line control algorithm or an on-line identification of time-dependent
parameter.
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Figure 8: For example of a first-order differential under a noise 0.01, (a) and (b)
comparing the numerical solutions obtained by the LGDAD with exact solutions,
and (c) a further filtering result.
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Figure 9: For example of a first-order differential under a noise 0.001, (a) and (b)
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