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Characterization and modeling of the multiscale pore
structures for porous materials

X.F. Guan1, X. Liu2, J.Z. Cui3

Abstract: In this paper, a stochastic geometrical modeling method for recon-
structing three dimensional multiscale pore structures of porous materials is pre-
sented. In this method, the pore structure in porous materials is represented by a
random but spatially correlated pore-network, in which the results of the Mercury
Intrusion Porosimetry (MIP) experiment are used as the basic input information.
Beside that, based on the Monte Carlo techniques, an effective computer genera-
tion algorithm is developed, and the quantities to evaluate the properties of porous
materials are defined and described. Furthermore, numerical implementations are
conducted based on experimental data afterwards. This method can be used to
generate multiscale pore structure models of a wide class of porous materials.

Keywords: Multiscale pore structure, Stochastic pore-network model, Monte
Carlo techniques, Take-and-place method.

1 Introduction

Many types of materials, including ceramics, concrete, asphalt, soils and rocks, are
categorized into porous materials with pores either artificially made for a specific
purpose or naturally formed by a physical process. Such materials tend to have very
small pores, which may be open and connected, or closed, and are often subjected
to thermal or chemical attack at the internal boundaries formed by pores as well as
the external boundaries.
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(a) (b)

Figure 1: SEM image and grey scale image of cement-based material [Liu (2006)]

Getting insight into the pore structure of porous materials is a long time effort of
researchers and engineers, as it is now widely accepted that the pore structure of
porous materials is one of the key issues which determine materials’ macroscopic
properties including permeability, diffusivity [Liu, Zeiml, Lackner, and Mang (2010)],
mechanical behavior [Dong and Atluri (2012); Yan, Zhang, Ye, and Yu (2010); Jr.,
Sladek, Sladek, Zmindak, and Medvecky (2012); Han, Cui, and Yu (2010)], or heat
transfer [Yang, Cui, Nie, and Ma (2012); Han, Cui, and Yu (2009)]. For example,
in case of high-temperature loading of concrete structures, vaporization of physi-
cally and chemically bound water results in an increase of pore pressure. The low
transport ability causes spallation of near surface concrete layers. This pressure
driven transport of water vapor is commonly described as the governing parameter
by Darcy’s law with the permeability [Zeiml (2008)]. To further understand and
model these macroscopic properties, plenty of effort has been focused on model-
ing the pore structure to adequately describe the pore geometrical and topological
properties of the real porous materials. The related attempts have been conducted
both experimentally and theoretically, in which each method shows its limitation
[Liu (2006)].

In this regard, attempts to characterize and reconstruct the pore structure via ex-
periments have been made for a long period of time. The knowledge about pore
structure of porous materials deeply depends on the development of experimental
techniques. Plenty of technical methods have been employed to measure the mi-
crostructure. Among these techniques are Mercury intrusion porosimetry (MIP),
Brunauer, Emmet and Teller isotherm (BET) / Nitrogen desorption, Scanning elec-
tron microscopy (SEM) image analysis, X-ray scattering (SAXS), Nuclear mag-
netic resonance (NMR) / Freezing point depression. As far as the pore structure
of porous materials is concerned, which consists of its geometrical and topologi-
cal properties: the shape, volume of pores and its location, the above techniques
normally give access to the pore-size distribution and the total pore volume, but
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may not identify the connection and location of the pores, thus building up differ-
ent pore arrangements with different macroscopic input parameters becomes very
important.

Based on the above experimental techniques, the reconstruction of pore structure
has been mostly performed by two different models, which are digital images anal-
ysis method and MIP data analysis method. Digital image analysis method allows
us to determine geometrical properties of the three dimensional pore network by
processing data of two dimensional random sections [Dullien (1979)] with the aid
of the principle of quantitative stereology [Underwood (1970)], and estimate topo-
logical properties of the interconnected pore structure by analyzing data of serial
sections. Algorithms of reconstruction of three dimensional pore network from data
of two dimensional pore features of serial sections [DeHoff, Aigeltinger, and Craig
(1972)] have been developed for the simultaneous determination of both topolog-
ical and geometrical properties of porous materials [Garboczi and Bentz (1996);
Sadouki and Mier (1997); Ye, Lura, and Breugel (2006)]. Moreover, Mercury Intru-
sion Porosimetry (MIP) is the fastest method of determining the capillary pressure
curves, in which information about a wide range of pore sizes is embedded. There-
fore, MIP is the most important method of analyzing the pore structure for a wide
variety of porous material. In the form of pore volume cumulative curve, many
researchers have developed some reconstruction algorithms to simulate the pore
structure, in which the pore structure is idealized as a network consisting of regular-
shaped pore bodies and pore throats [Mata, Lopes, and Dias (2001); Tsakiroglou
and Payatakes (1998)].

However, according to the pore sizes of porous materials, which normally ranges
from 1 nm to 1mm, it must be noted that the above techniques have their own
application limitations. It is difficult to generate geometric and physical samples
due to huge workload. And another significant difficulty in using the above pore-
network models in a quantitative predictive sense lies in choosing the geometric
shapes, sizes, locations, and orientations of the pore bodies and throats so that the
amount of detail in the description of the pore space geometry is sufficient to make
accurate prediction of macroscopic properties.

In the present work, we develop a multi-scale modeling method to treat a pore struc-
ture as a three-dimensional random, and use the MIP experimental results as the
basic input. The algorithm takes on the following merits: (1) Suiting to generating
random samples with larger length-scale gap due to using ε-size random distribu-
tion model. (2) The generated samples have better randomness, which means that
the shape, size, locations, and orientations of the pore bodies and throats are com-
pletely implemented. (3) To be able to generate not only the models with uniform
and norm random distributions, but also those with specified distributions obtained
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from MIP experiment.

The remainder of this paper is organized as follows: In Section 2, the multi-scale
framework of the stochastic pore structure including basic model assumptions is
discussed. The generation algorithm of pore structure is presented in Section 3.
To mimic closely the geometry of real porous materials by matching the statistical
properties of real samples, such as the effective porosity and the pore surface, the
shortest path and the clustering coefficient are performed in Section 4. Based on the
MIP experiment, the algorithm validation for the reconstruction of pore structures
is investigated in Section 5, in which the different distribution of the connection
number is taken into account.

2 Multiscale representions of the pore structure

The pore-scale configurations of porous material are highly chaotic, consisting of a
spatial network of pores in which larger pores are connected via narrower pores. In
this paper spheres in the model represent larger pores with cylinders representing
the connections (narrower pores) between them. Suppose that, in the porous mate-
rial with random distribution of a large number of pores, there exists a constant ε

satisfying the following condition: 0 < ε << L, where L characterizes the macro
scale of the investigated domain X . Thus, the porous material can be regarded as
a set of periodic unit cells Y . That is, X =

⋃
Y , as shown in Fig. 2, where it is

assumed that all unit cells Y have the same probability distribution ω of the spheres
and cylinders of the same size ε . Thus, the probability distribution model of the in-
vestigated porous material can be prescribed by the probability distribution inside
a statistic screen with ε-size, and the different values of ε have the different results
in different length scale.

(a) Macro structure X (b) Representative unit cell
Y

Figure 2: The macro structures with statistical periodic configuration and their unit
cell
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So we will mainly focus on the computer generation algorithm for a ε-statistic
screen with random distribution of a large number of spheres and cylinders. The
representation of the pore-scale network configurations for the porous material with
random distribution of a large number of spheres and cylinders can be characterized
as follows:

Firstly, the randomness of spheres is divided into two geometric ones: the shape
of sphere, namely, its diameter, and the location of sphere, namely, its central co-
ordinates. Secondly, the randomness of cylinder is represented by its shape which
includes its diameter and length, while its location is determined by the location of
its connected spheres.

Thus, the characteristic of random distribution of a plenty of pores in a ε screen
can be represented by the probability density functions of 4 random parameters
of spheres and 2 random parameters of cylinders: the shape parameters, namely,
the diameter of sphere Ds, and the location parameters, namely, the central points
(xo,yo,zo) of the sphere, the diameter of cylinder Dc, and the length of cylinder Lc.

It is self-evident that in this paper only the 3-D computer generation method will
be discussed below. Since the ε-statistics screen can be seen as a cube, we will
discuss the 3-D computer generation method only on a cubic domain.

3 Stochastic reconstruction algorithm based on Monte Carlo method

In order to produce a pore-scale network model of porous material that resembles
real porous material in the statistical sense, the random sampling principle of Monte
Carlo simulation method is used. The model construction process consists of two
main parts:

(1) An assembly of randomly distributed spheres will be arranged in the cube-
shaped domain randomly. An arrangement of spheres is shown in Fig.3(a).
The major factors to be considered are the size distribution and the spatial
distribution of the spheres. An effective generation algorithm which falls
into the category of take-and-place methods is considered below. In the take-
and-place algorithm [Bažant, Tabbara, Kazemi, and Pijaudier-Cabot (1990);
Schlangen and Mier (1992)], the generated spheres are filled into the cubic
domain with rejection in such a way that there is no overlapping with spheres
already placed. Considering the size and spatial position of the spheres, they
can be constructed with four random parameters: The size parameters, i.e.,
the diameter D, and the location parameters, i.e., the central points (x0,y0,z0)
of the sphere. Moreover, the size parameters of the generated spheres satisfy
the specified random distribution model to completely ensure the randomness
of this parameter, and the location parameters can be temporarily considered
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as a uniform random distribution.

(2) An assembly of randomly distributed cylinders which represent connections
between the spheres, the major factors to be considered are the connection
numbers, size and spatial position of the two adjacent spheres. Here, the
connection numbers denote the number of connections.

In order to construct the algorithm suitable to several stochastic parameters, the
lemma in [Gao (2003); Yu, Cui, and Han (2008)], namely, selection method lemma,
is developed below.
Theorem1. Suppose that ξ1,ξ2, · · · ,ξt ,η1,η2, · · · ,ηt are independent random vari-
ables. ξ1,ξ2, · · · ,ξt obey the uniform distributions on (a1,b1),(a2,b2), · · · ,(at ,bt),
and η1,η2, · · · ,ηt all are random variables on (0,1), respectively. Furthermore, sup-
pose that f1(x1), f2(x2), · · · , ft(xt) are the density functions on (a1,b1),(a2,b2), · · · ,
(at ,bt), and satisfy∫ b1

a1

f1(x1)dx1,
∫ b2

a2

f2(x2)dx2, · · · ,
∫ bt

at

ft(xt)dxt (1)

Then, for any positive constants α1,α2, · · · ,αt , which satisfy α1 f1(x1)≤ 1,α2 f2(x2)≤
1, ...,αt ft(xt)≤ 1 for x1 ∈ (a1,b1),x2 ∈ (a2,b2), · · · ,xt ∈ (at ,bt), one obtains

P(ξ1 ≤ d1,ξ2 ≤ d2, · · · ,ξt ≤ dt | α1 f1(ξ1)≥ η1,α2 f2(ξ2)≥ η2, ...,αt ft(ξt)≥ ηt)

=
∫ d1

a1

f1(x1)dx1

∫ d2

a2

f2(x2)dx2, · · · ,
∫ dt

at

ft(xt)dxt

(a1 ≤ d1 ≤ b1,a2 ≤ d2 ≤ b2, · · · ,at ≤ dt ≤ bt)

(2)

The stochastic parameters in our generation method is given based on Theorem 1.

3.1 Take-and-place method

The specified random distribution model is a certain given grading sphere-size dis-
tribution curve which is obtained from experiment or a known mathematical func-
tion. The random spheres are selected depending on the shape of the size distri-
bution curve. The take-process and place-process are performed concurrently in
the sense that a sphere generated by the take-process is immediately placed into
the cube. They are conducted in a sequence starting with the largest size spheres,
proceeding until the last sphere of the size range has been placed, and then repeat-
ing for successively smaller size spheres because it is generally easier to pack the
spheres into the cube in this way. Hence, it is necessary to divide the grading curve
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into segments and determine the volume of spheres and cylinders to be generated
within each grading segment Fig. 3(b).

(a) An arrangement of spheres
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(b) Distribution curves of sphere sizes obtained from MIP

Figure 3: Stochastic arrangement of spheres and their grading size-distribution

The total volume of spheres and cylinders in each grading segment is normally
given in terms of the volumetric ratio of them within per unit volume of porous
material and the volume of the individual sphere and cylinder. Assume that, the
grading curve is given by P(D) in which D is the diameter of the sphere and cylinder
and P(D) is the distribution function of volume, [Di,Di+1] is the grading segment.
The volumetric ratio of each size spheres and cylinders can be obtained by dividing
the given grading volume distribution curve. If the curve is closely represented
by a known mathematical function, sphere and cylinder sizes are also randomly
assigned according to the given distribution function by the same method. Then,
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all the sphere and cylinder sizes recorded from the experiment analysis or a known
mathematical function are numbered and ordered according to size.

The take-place-process starts with the grading segment containing the largest size
spheres. For the grading segment [Di,Di+1], the procedures are as follows:

(1) Calculating the volume of spheres and cylinders to be generated in the grad-
ing segment.

(2) Generating a random number defining the size of a sphere. Assuming that
the size D has a uniform distribution between Di and Di+1, it may be taken as
D = Di+η(Di+1−Di) in which η is a random number uniformly distributed
between 0 and 1. Calculating the volume of the each generated sphere.

(3) Generating random numbers defining the location of a sphere and place the
sphere into the cube as part of the place-process. The new sphere will be
placed in a reasonable position so that the spheres in the cube are not over-
lapped with previously placed spheres.

(a) A Cartesian X-Y-Z coordinate system is used on the cube. During the
take-process, the coordinates of the sphere generated are given in terms
of local coordinates with respect to a reference point o inside the par-
ticle. When the sphere is placed into the cube, its position are defined
by the X-Y-Z coordinates of the reference point o. Assuming a uniform
probability distribution for the location of o throughout the cube area,
the coordinates of o may be obtained as:

xo = Xmin +η1(Xmax−Xmin)

yo = Ymin +η2(Ymax−Ymin)

zo = Zmin +η3(Zmax−Zmin)

(3)

where xo,yo and zo are the coordinates of o, Xmin,Xmax,Ymin,Ymax and
Zmin,Zmax are the minimum and maximum X-, Y- and Z-coordinates of
the cube area, and η1,η2 and η3 are two independent random numbers
uniformly distributed between 0 and 1.

(b) Check of overlapping can be done by determining whether the edge of
the sphere intersects the edges of adjacent spheres.

(4) Generating cylinders using the method in the next subsection.

(5) Repeating steps (2)-(4) until the volume of the grading segment left to be
generated is less than πD3

i
6 , i.e. not enough for generating another sphere. The
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remaining area of sphere to be generated is then transferred to the generation
of next grading segment.

(6) Repeating all the above steps for the next smaller size grading segment and
then again for successively smaller size grading segments, until the last sphere
of the smallest size has been generated and placed.

3.2 Cylinders generation method

In the generation method of cylinders, the connection number is the number
of cylinders connected to one sphere, which reflects the whole spatial connectivity
of all spheres in this model. The length of cylinders is obtained from the distance
of two adjacent spheres and the size of cylinders satisfies the specified distribution.
Since the layout of cylinders is dependent entirely on the distribution of the spheres,
it need not be separately considered. The detailed progress is as follows:

(1) Generating a random integer number defining the connection number of each
generated sphere, then recording them as cn.

(2) For a sphere, searching all of its adjacent spheres whose distance is lower
than a specified value d.

(3) If this sphere and one of the adjacent sphere cn are bigger than zero, generat-
ing a cylinder and c̃n = cn−1. It is proposed that the diameter Dc of cylinder
between this two adjacent spheres is taken as µ times the smaller value of Da

and Db, where µ is a random number uniformly distributed between 0 and
1, and Da and Db are the diameter of two adjacent spheres. The length of
cylinders is the distance of the two adjacent spheres.

Dc = µmin{Da,Db} (4)

(4) Repeating all above steps for next sphere until all cylinders of the last sphere
has been generated.

4 Evaluation of the expected pore characteristics for the generated pore-
scale model

4.1 The effective porosity and pore surface

As for the porous materials with random pore-scale network stated previously, the
expected pore characteristics, such as the effective porosity P̄ and the effective pore
surface S̄, can be evaluated in the light of statistical meaning.
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Suppose that the porosity and pore surface for a sample ωs are P(ωs) and S(ωs).
The procedures of the expected characteristics for random pore-network model can
be computed as follows:

(1) Based on the statistical characteristic of the spheres and the cylinders for any
random distributions ωs, a pore-network sample is generated. Then evaluate
the porosity and pore surface for a sample ωs are P(ωs) and S(ωs) corre-
sponding to sample ωs.

(2) Generating M samples for any random distributions ωs,s = 1, · · · ,M and
from Kolmogorov strong law of large numbers, the expected pore charac-
teristics, such as the effective porosity and the effective pore surface can be
calculated in formula

P̄ = lim
M→∞

M

∑
s=1

P(ωs)

M
, S̄ = lim

M→∞

M

∑
s=1

S(ωs)

M

(5)

4.2 Shortest path and Clustering coefficient

The shortest path problem [Cherkassky, Goldberg, and Radzik (1996)] is the prob-
lem of finding a path between two vertices (or nodes) in a graph such that the sum
of the weights of its constituent edges is minimized. The shortest path problem can
be formally defined as follows: Given a weighted graph (that is, a set V of vertices,
a set E of edges, and a real-valued weight function f : E→ R), and elements v and
v′ of V , find a path P from v to a v′ of V so that ∑p∈P f (p) is minimal among all
paths connecting v to v′.

The definition of the all-pairs shortest path problem is to find shortest paths between
every pair of vertices v,v′ in the graph. If the pore structure is represented as a graph
where vertices describe pore chambers and edges describe pore throats, all-pairs
shortest path algorithms can be used to find an optimal path of permeability. In
this place, we use the Johnson’s algorithm to compute the shortest path of the pore
structure. Johnson’s algorithm [Johnson (1977)] is a way to find the shortest paths
between all pairs of vertices in a sparse directed graph.

Firstly, a definition of the reweighting function ŵ(u,v) = w(u,v)+ h(u)− h(v) is
given. By reweighting, we have a new set of edge weights ŵ which must satisfy
two important properties.

(1) For all pairs of vertice u and v, a path p is a shortest path from u to v using
weight function w if and only if p is also a shortest path from u to v using
weight function ŵ.
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(2) For all edges (u, v), the new weight ŵ(u,v) is nonnegative.

So it does not change shortest paths, but reweight to a nonnegative value. Then, the
algorithm consists of the following steps:

(1) Adds a new node with zero weight edge from it to all other nodes.

(2) For each node, we run the Bellman-Ford algorithm [Bellman (1958)] once.

(3) Reweight every edge to have all positive weight edges to use Dijkstra’s algo-
rithm [Dijkstra (1959)].

(4) Runs Dijkstra’s algorithm on each node using reweighting function to find
the shortest paths in the reweighted graph.

C = 1 C = 1/3 C = 0

Figure 4: The clustering coefficient

The definition of the clustering coefficient (Cv) [Watts and Strogatz (1998)] is as
follows: Suppose that a vertex v has kv neighbors, then at most kv(kv−1)/2 edges
can exist between them (this occurs when every neighbor of v is connected to every
other neighbor of v). The clustering coefficient Cv of a vertex v measures what
fraction of this set is actually connected Fig.4. For a large, completely random
graph, Cv is < k > /N, while for a completely connected graph Cv is 1. The average
of the local clustering coefficients of all the vertices n is defined as

C̄ =
1
n

n

∑
i=1

Ci, (6)

Together with the shortest path, the clustering coefficient is implemented by Watts
and Strogatz [Watts and Strogatz (1998)] as a measure of the "small world" prop-
erty, and we have measured the unidirectional clustering coefficients.

To verify the above algorithm, several simulation results for 3-D domains are given
in next section.
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5 Numerical results and discussion

Since it is difficult to look inside the porous material to observe and experimentally
determine the actual microscopic pore structure, effective reconstruction methods
allow generation of realistic structures, and subsequent analysis can be performed
to compute macroscopic properties. The above algorithm will be employed to gen-
erate several pore structure model based on some random distribution functions and
MIP experiment. Then the algorithm will be applied to cubic section of the actual
concrete, the key statistical characteristics of microscopic pore structure model will
be compared with the results of Mercury injection experiment.

5.1 Reconstruction of pore structure based on random distribution functions

As described in the above model, the pore connection number is defined as the
number of throats which attach to the different pore. This variable is stochastic
and not easy to get direct measured so far. In the developed model, the mean pore
connection number is taken as the stochastic variable obeyed some kind of distri-
bution mathematically. In the following, two kinds of normally used distribution
are employed to illustrate the developed method.
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Figure 5: (a) Pore structure; (b) Pore connection number

Test the algorithm on the ε-statistic screen which is a 1×1×1 cubic domain, and
different scale pore-scale network can be obtain from the different ε . The generated
pore-network model is illustrated in Fig.5(a), the required total pore-network vol-
ume fraction is 20% and the central points (xo,yo,zo) of spheres obey the uniform
distribution in [0,1]× [0,1]× [0,1]. Then two different distribution of the connec-
tion number can be applied. One is that the connection number is controlled to
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obey uniform distribution, where the mean connection number vary between 2 and
10. Another is that the connection number used for our test is controlled to obey
norm distribution with the density function

f (x) =
1√

2πσ
e
−(x−µ)2

2σ2 (7)

where is the mean and σ is the standard deviation of the mean. Fig.5(b) shows
the computational results of the connection number, where the mean connection
number is 4 and obeys the uniform and norm distribution.

After defining the distribution of mean connection number, the pore structure can
thus be reconstructed. A unit cell with ε=1.0E-5 m is set to reconstruct the pore
structure. Following the above methodology, a three dimensions pore structure of
is illustrated. The minimum and maximum diameters of the spheres are 6.0E-3 µm
and 2.67E-1 µm, where the diameters of the spheres and cylinders vary uniformly
or obey the norm distribution (7). Fig.6 compares the number of the spheres and
cylinders, where their diameter obey the different size distributions.
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Figure 6: (a) Number of spheres; (b) Number of cylinders for the different size
distributions

5.2 Reconstruction of pore structure based on MIP experiment

As mentioned in Section 1, although many techniques are available to study the mi-
crostructure of porous materials, mercury intrusion porosimetry (MIP) is one of the
most commonly-used techniques. It provides a fast method to obtain information
about porosity and pore size distribution.

In this study, a typical cement paste is employed to get the pore information. The
specimen is cured in 28 days after standard casting procedure and rotation [Ye
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(2003)]. At the end of each curing period, the sample is removed and split into small
pieces of about 1 cm3. Then, the samples are placed into an oven at 105 (◦C). Water
loss is monitored and recorded for 24 hours until weight stability is reached. The
MIP measurement is performed with a PMI automated porosimeter. The maximum
pressure of PMI automated porosimeter is 420 MPa. In order to avoid the influence
of higher pressures damaging the CSH gel structure, the highest pressure used in
this experiment is 212 MPa. According to Washburn’s Equation[Washburn (1921)],
this pressure can access the minimum pore diameter of 0.0069 µm.

5.2.1 Pore volume distribution

Pore structures based on experimental data are reconstructed and compared with
the corresponding one of the experimental curves Fig.3(b). The normalized unity
pore size distributions (PSD) in the form dV/dlogD = f(r) obtained from the exper-
imental method, as well as the corresponding theoretical distribution dV/dlogD =
f(r) obtained using the model, are shown in Fig.7. it should be emphasized that the
different runnings of the Monte Carlo simulation produce similar but not quite iden-
tical dV/dlogD profiles. Those different fittings are practically identical at small D
values but tend to differentiate from each other at larger values. Nevertheless they
exhibit the same fine structure in the detailed distribution.

As is shown in the above sections, the criterion for the fitting of the developed pore
network with the experimental observation is accurate and efficient. This is shown
in Fig.7 where a very good fitting is indeed observed between the experimental
data and the fitting line calculated from the model. We draw attention to the fact
that this fitting of the model is a little abnormal in the bigger pores region for the
moment. This mis-fitting is due to the fact that the simulation of most pores used
discrete method whereas only a small percent of bigger pore region used the MIP
methodology determined by the continuous plots, in other words, the model didn’t
accurately cover the bigger pore region. This is one of the weaknesses of the model.

5.2.2 The effective pore surface

From Fig.8, it is shown that the effective pore surface inside the test specimens
decreases with the mean connection number, and the effective pore surface exhibits
a slight increase in the end stage. Nevertheless, the effective pore surface vary from
31.6 to 33.4, it is obvious that this is only about 5%. This observation indicates
that the change of the effective pore surface caused by different mean connection
number is insignificant. It seems that more work should be done to trace this trend
and estimation needs further efforts probably for the general application.
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(a) Uniform distribution (b) Norm distribution

(c) Uniform distribution (d) Norm distribution

(e) Uniform distribution (f) Norm distribution

(g) Uniform distribution (h) Norm distribution

Figure 7: The eight different theoretical runnings of the Monte Carlo simulation:
The normalized unity pore volume distribution (dV/dlogD)=f(r) obtained via the
MIP method and the simulation are shown with the blue and the red solids.
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Figure 8: Influence of pore connection number on effective pore surface

(a)

(b)

Figure 9: Influence of pore connection number on the shortest path and clustering
coefficient
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5.2.3 The shortest path and the clustering coefficient

Meanwhile, the shortest path and the mean local clustering coefficient was com-
puted and the estimated values are in Fig.9. We observe that the shortest path de-
creases gradually with the increase of the mean connection numbers from 2 to 10 by
two statistical distribution. The mean local clustering coefficient calculated using
the Johnson’s algorithm also keeps inalterability with the change of the mean con-
nection numbers, in which a very good fitting is indeed observed that the present
method can obtain corresponding connectivity with experiment. Nevertheless it
seems that a more detailed discussion and explanation is needed for the moment,
the more understanding and estimation needs further efforts probably from a much
larger set of data. But the general trends traced in the present work should applied
in general.

6 Conclusions

An effective computer generation algorithm for modeling the multiscale pore
structures for porous materials is proposed in this paper. The model construction
process consists of two main parts: the assemblies of randomly distributed spheres
and cylinders. The spheres are generated with shapes following certain given grad-
ing size distribution curve which obtained from MIP experiment or a known mathe-
matical function. The generation algorithm of the location parameters incorporates
a take-and-place method and a selection algorithm. Especially for the selection al-
gorithm, it can simulate not only the model with a uniformly random distribution,
but also those with a special random distribution, and it can also be extended to
simulate the mixed model of several random distributions.

In accordance with the connection numbers of each sphere, the cylinders are gener-
ated by diameters being the random numbers between 0 and the diameter of smaller
sphere, and length can be determined by the distance of two adjacent spheres. Con-
nection numbers are used for the study because they are a key step to provide a
good connected pore structure. Future work will focus on using this pore structure
to predict flow properties, such as relative permeability or diffusivity. The effec-
tiveness of algorithm will be verified after these jobs.
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