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On the Solution of Burgers-Huxley and Huxley Equation
Using Wavelet Collocation Method

S. Saha Ray1 and A. K. Gupta1

Abstract: In this paper, Haar wavelet method is applied to compute the numer-
ical solutions of non-linear partial differential equations like Huxley and Burgers-
Huxley equation. The approximate solutions of the Huxley and Burgers-Huxley
equations are compared with the exact solutions. The present scheme is very sim-
ple, effective and convenient with small computational overhead.
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1 Introduction

Numerical solutions of nonlinear differential equations are of great importance in
physical problems since so far there exists no general technique for finding analyt-
ical solutions of nonlinear differential equations.

Generalized Burgers-Huxley equation[Ismail, Raslan, and Rabboh (2004); Javidi
(2006); Wazwaz (2008)] is a nonlinear partial differential equation of the form

ut +αuδ ux−uxx = βu(1−uδ )(uδ − γ), 0≤ x≤ 1, t ≥ 0 (1)

where α , β , γ and δ are parameters, β ≥ 0, γ , δ > 0. When α = 0, δ = 1, Eq. (1)
reduces to the Huxley equation. The Huxley equation [Wazwaz (2008); Hashemi,
Daniali, and Ganji (2007); Zhou (2008)] is a nonlinear partial differential equation
of second order of the form

ut = uxx +u(k−u)(u−1),k 6= 0 (2)

This equation is an evolution equation that describes nerve pulse propagation in bi-
ology from which molecular CB properties can be calculated. Generalized Burgers-
Huxley equation is of high importance for describing the interaction between reac-
tion mechanisms, convection effects, and diffusion transport.
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Various powerful mathematical methods such as Adomian decomposition method
[Ismail, Raslan, and Rabboh (2004); Hashim, Noorani, and Batiha (2006)], spectral
collocation method [Javidi (2006)], the tanh-coth method [Wazwaz (2008)], ho-
motopy perturbation method [Hashemi, Daniali, and Ganji (2007)], Exp-Function
method [Zhou (2008)], variational iteration method [Batiha, Noorani, and Hashim
(2007)] and Differential Quadrature method [Sari and Güraslan (2009)] have been
used in attempting to solve the Burgers-Huxley and the Huxley equations. Most
of the solitary wave solutions of the generalized Burgers-Huxley equation have
been studied by the learned researchers [Wang, Zhu, and Lu (1990)] and [El-Danaf
(2007)].

Yi and Chen (2012) proposed Haar wavelet operational matrix method to solve
a class of fractional partial differential equations. They derive the Haar wavelet
operational matrix of fractional order integration and also fractional order differen-
tiation. Using operational matrix of fractional order differentiation, the fractional
partial differential equations have been reduced to Sylvester equation.

Wei, Chen, Li, and Yi (2012) present a computational method for solving a class
of space-time fractional convection-diffusion equations with variable coefficients
which is based on the Haar wavelets operational matrix of fractional order differ-
entiation. They also exhibit error analysis in order to show the efficiency of the
method.

Zhi-Zhong, Yue-Sheng, and Zhang (2008) develop a numerical method based on
wavelet theory for calculating band structures of 2D phononic crystals consisting
of general anisotropic materials. They selected two types of wavelets, the Haar
wavelet and biorthogonal wavelet. The method, combined with supercell tech-
nique, developed by the learned authors applied to compute the band structures of
phononic crystals with point or line defects.

Zhou, Wang, Wang, and Liu (2011) present an efficient wavelet-based algorithm
for solving a class of fractional vibration, diffusion and wave equations with strong
nonlinearities. For that purpose they first suggest a wavelet approximation for a
function defined on a bounded interval, in which expansion coefficients are just
the function sampling at each nodal point. They use Laplace transform to con-
vert fractional differential equations containing strong nonlinear terms and singular
integral kernels into the second type Voltera integral equations with non-singular
kernels. They use certain property of the integral kernel and the ability of ex-
plicit wavelet approximation to the nonlinear terms of the unknown function in the
equation which enables to numerically decouple spatial and temporal dependencies
during solution of those equations. They proposed an efficient numerical method
without involving any matrix inversions for numerically solving the nonlinear frac-
tional vibration, diffusion and wave differential equations.
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In this present paper, Wavelet collocation method for solving generalized Burger-
Huxley and Huxley equations is analysed. This method consists of reducing the
problem to a set of algebraic equation by expanding the term, which has maximum
derivative, given in the equation as Haar functions with unknown coefficients. The
operational matrix of integration and product operational matrix are utilized to eval-
uate the coefficients of Haar functions. This method gives us the implicit form of
the approximate solutions of the problems.

This paper is systematized as follows: in Section 1, introduction to Burgers-Huxley
and Huxley equation is described. In Section 2, the mathematical preliminaries of
Haar wavelet is presented. Section 3 and 5 define the mathematical models of
Huxley and Burgers-Huxley equation respectively. We applied the Haar wavelet
method to Huxley and Burgers-Huxley equation in Section 4 and 6 respectively.
The numerical results and discussions are discussed in Section 7 and Section 8
concludes the paper.

2 Haar wavelets and the operational matrices

The Haar wavelet family for x ∈ [0,1) is defined as follows [Lepik (2007); Debnath
(2002)]

hi(x) =


1 x ∈ [ξ1,ξ2)
−1 x ∈ [ξ2,ξ3)
0 elsewhere

(3)

where

ξ1 =
k
m
,ξ2 =

k+0.5
m

,ξ3 =
k+1

m
.

In these formulae integer m = 2 j, j = 0,1,2, . . . ,J indicates the level of the wavelet;
k = 0,1,2, . . . ,m− 1 is the translation parameter. Maximum level of resolution is
J. The index i is calculated from the formula i = m+ k+1; in the case of minimal
values m = 1, k = 0 we have i = 2. The maximal value of i = 2M = 2J+1. It is
assumed that the value i = 1 corresponds to the scaling function for which

hi(x) =
{

1 for x ∈ [0,1)
0 elsewhere

(4)

In the following analysis, integrals of the wavelets are defined as

pi(x) =
x∫

0

hi(x)dx, qi(x) =
x∫

0

pi(x)dx
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This can be done with the aid of 3

pi(x) =


x−ξ1 for x ∈ [ξ1,ξ2)
ξ3− x for x ∈ [ξ2,ξ3)
0 elsewhere

(5)

qi(x) =


0 for x ∈ [0,ξ1)
1
2(x−ξ1)

2 for x ∈ [ξ1,ξ2)
1

4m2 − 1
2(ξ3− x)2 for x ∈ [ξ2,ξ3)

1
4m2 for x ∈ [ξ3,1]

(6)

The collocation points are defined as

xl =
l−0.5

2M
, l = 1,2, . . . ,2M

It is expedient to introduce the 2M × 2M matrices H, P, Q with the elements
H(i, l) = hi(xl), P(i, l) = pi(xl), Q(i, l) = qi(xl).

3 Huxley Equation

Huxley equation is a nonlinear partial differential equation of second order of the
form

ut = uxx +u(k−u)(u−1) (7)

with initial condition

u(x,0) =
1
2

[
1+ tanh

(
x

2
√

2

)]
(8)

The exact solution of Eq. (7) is given by [Zhou (2008)]

u(x, t) =
1
2

[
1+ tanh

{
1

2
√

2

(
x− 2k−1√

2
t
)}]

,k 6= 0 (9)

Taking k = 1, the boundary conditions are

u(0, t) =
1
2

[
1− tanh

( t
4

)]
u(1, t) =

1
2

[
1+ tanh

{
1

2
√

2

(
1− t√

2

)}]
(10)
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4 Application of Haar wavelet method for solving Huxley equation

It is assumed that u̇
′′
(x, t) can be expanded in terms of Haar wavelets as

u̇
′′
(x, t) =

2M

∑
i=1

as(i)hi(x) for t ∈ [ts, ts+1] (11)

where “·” and “′” stands for differentiation with respect to t and x respectively.

Now, integrating Eq. (11) with respect to t from ts to t and twice with respect to x
from 0 to x the following equations are obtained

u
′′
(x, t) = (t− ts)

2M

∑
i=1

as(i)hi(x)+u
′′
(x, ts)

u
′
(x, t) = (t− ts)

2M

∑
i=1

as(i)pi(x)+u
′
(x, ts)−u

′
(0, ts)+u

′
(0, t) (12)

u(x, t) = (t− ts)
2M

∑
i=1

as(i)qi(x)+u(x, ts)−u(0, ts)+ x[u
′
(0, t)−u

′
(0, ts)]+u(0, t)

u̇(x, t) =
2M

∑
i=1

as(i)qi(x)+ xu̇
′
(0, t)+ u̇(0, t)

By using the boundary conditions, at x = 1, we have

u̇
′
(0, t) =−

2M

∑
i=1

as(i)qi(1)+ u̇(1, t)− u̇(0, t) (13)

From Eq. (6), it is obtained that,

qi(1) =
{

0.5 if i = 1
1

4m2 if i > 1
(14)

Discretising the results by assuming x→ xl , t→ ts+1, we obtain

u
′′
(xl, ts+1) = (ts+1− ts)

2M

∑
i=1

as(i)hi(xl)+u
′′
(xl, ts)

u
′
(xl, ts+1) = (ts+1− ts)

2M

∑
i=1

as(i)pi(xl)+u
′
(xl, ts)−u

′
(0, ts)+u

′
(0, ts+1)

u(xl, ts+1) = (ts+1− ts)
2M

∑
i=1

as(i)qi(xl)+u(xl, ts)−u(0, ts)

+ xl[u
′
(0, ts+1−u

′
(0, ts)]+u(0, ts+1)

u̇(xl, ts+1) =
2M

∑
i=1

as(i)qi(xl)+ xl u̇
′
(0, ts+1)+ u̇(0, ts+1) (15)
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Substituting Eqs. (13), (14) and (15) in Eq. (7), we have
2M

∑
i=1

as(i)[qi(xl)− xlqi(1)] =u
′′
(xl, ts)−u(xl, ts)[1−u(xl, ts)]2−

u̇(0, ts+1)− xl[u̇(1, ts+1)− u̇(0, ts+1)] (16)

From Eq. (16), the wavelet coefficients as(i) can be successively calculated. This
process started with

u(xl, t0) =
1
2

[
1+ tanh

(
xl

2
√

2

)]
u
′
(xl, t0) =

1
4
√

2
sech2

(
xl

2
√

2

)
u
′′
(xl, t0) =−

1
8

sech2
(

xl

2
√

2

)
tanh

(
xl

2
√

2

)
5 Burgers-Huxley Equation

Consider the generalized Burgers-Huxley equation

ut +αuδ ux−uxx = βu(1−uδ )(uδ − γ), 0≤ x≤ 1, t ≥ 0 (17)

with initial condition

u(x,0) =
(

γ

2
+

γ

2
tanh[A1,x]

)1/δ

(18)

The exact solution of Eq. (17) is given by [Javidi (2006); Wang, Zhu, and Lu
(1990)]

u(x, t) =
(

γ

2
+

γ

2
tanh[A1(x−A2t)]

)1/δ

(19)

where

A1 =
−αδ +δ

√
α2 +4β (1+δ )

4(1+δ )
γ,

A2 =
γα

1+δ
− (1+δ − γ)(−α +

√
α2 +4β (1+δ ))

2(1+δ )
(20)

where α , β , γ and δ are parameters with β ≥ 0 and δ > 0.

This exact solution satisfies the following boundary conditions

u(0, t) =
[

γ

2
+

γ

2
tanh(−A1A2t)

]1/δ

, t ≥ 0

u(1, t) =
[

γ

2
+

γ

2
tanh(A1(1−A2t))

]1/δ

, t ≥ 0 (21)
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6 Application of Haar wavelet method for solving Burgers-Huxley equation

Haar wavelet solution of u(x, t) is sought by assuming that u̇
′′

can be expanded in
terms of Haar wavelets as

u̇
′′
(x, t) =

2M

∑
i=1

as(i)hi(x) for t ∈ [ts, ts+1] (22)

where “·” and “′” stands for differentiation with respect to t and x respectively.

Integrating eq. (22) with respect to t from ts to t and twice with respect to x from 0
to x the following equations are obtained

u
′′
(x, t) = (t− ts)

2M

∑
i=1

as(i)hi(x)+u
′′
(x, ts)

u
′
(x, t) = (t− ts)

2M

∑
i=1

as(i)pi(x)+u
′
(x, ts)−u

′
(0, ts)+u

′
(0, t) (23)

u(x, t) = (t− ts)
2M

∑
i=1

as(i)qi(x)+u(x, ts)−u(0, ts)+ x[u
′
(0, t)−u

′
(0, ts)]+u(0, t)

u̇(x, t) =
2M

∑
i=1

as(i)qi(x)+ xu̇
′
(0, t)+ u̇(0, t)

By using the boundary conditions, at x = 1, we have

u̇
′
(0, t) =−

2M

∑
i=1

as(i)qi(1)+ u̇(1, t)− u̇(0, t) (24)

It is obtained from eq. (6) that,

qi(1) =
{

0.5 if i = 1
1

4m2 if i > 1
(25)
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Discretising the results by assuming x→ xl , t→ ts+1 we obtain

u
′′
(xl, ts+1) =(ts+1− ts)

2M

∑
i=1

as(i)hi(xl)+u
′′
(xl, ts) (26)

u
′
(xl, ts+1) =(ts+1− ts)

2M

∑
i=1

as(i)pi(xl)+u
′
(xl, ts)−u

′
(0, ts)+u

′
(0, ts+1)

u(xl, ts+1) =(ts+1− ts)
2M

∑
i=1

as(i)qi(xl)+u(xl, ts)−u(0, ts)+

xl[u
′
(0, ts+1)−u

′
(0, ts)]+u(0, ts+1)

u̇(xl, ts+1) =
2M

∑
i=1

as(i)qi(xl)+ xl u̇
′
(0, ts+1)+ u̇(0, ts+1)

Substituting Eqs. (24), (25) and (26) in Eq. (17), we have

2M

∑
i=1

as(i)[qi(xl)− xlqi(1)] =u
′′
(xl, ts)+u(xl, ts)[1−u(xl, ts)][u(xl, ts)−0.001]−

u(xl, ts)u
′
(xl, ts)− u̇(0, ts+1)− xl[u̇(1, ts+1)− u̇(0, ts+1)]

(27)

From the above equation the wavelet coefficients as(i) can be successively calcu-
lated. This process started with

u(xl, t0) = 1+ tanh
(xl

2

)
u
′
(xl, t0) =

1
2

sech2
(xl

2

)
u
′′
(xl, t0) =−

1
2

sech2
(xl

2

)
tanh

(xl

2

)
7 Numerical Results and discussions

The following tables show the comparisons of the exact solutions with the approx-
imate solutions of Burgers-Huxley equation taking α = 1, β = 1, γ = 0.001, δ = 1
and different values of t. In tables 1-4, J is taken as 3 i.e. M = 8 and ∆t is taken as
0.0001.
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Table 1: The absolute errors for Burgers-Huxley equation for various collocation
points of x with t = 0.4 and γ = 0.001.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.00050006 0.000500054 6.5661e-9
0.09375 0.000500121 0.000500062 5.90949e-8
0.15625 0.000500234 0.000500069 1.64153e-7
0.21875 0.000500399 0.000500077 3.21739e-7
0.28125 0.000500617 0.000500085 5.31854e-7
0.34375 0.000500887 0.000500093 7.94498e-7
0.40625 0.00050121 0.000500101 1.10967e-6
0.46875 0.000501586 0.000500109 1.47737e-6
0.53125 0.000502014 0.000500116 1.8976e-6
0.59375 0.000502495 0.000500124 2.37036e-6
0.65625 0.000503028 0.000500132 2.89565e-6
0.71875 0.000503613 0.00050014 3.47347e-6
0.78125 0.000504251 0.000500148 4.10381e-6
0.84375 0.000504942 0.000500155 4.78669e-6
0.90625 0.000505685 0.000500163 5.5221e-6
0.96875 0.000506481 0.000500171 6.31009e-6

Table 2: The absolute errors for Burgers-Huxley equation for various collocation
points of x with t = 0.6 and γ = 0.001.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.000500089 0.000500079 9.84903e-9
0.09375 0.000500175 0.000500087 8.86412e-8
0.15625 0.000500341 0.000500094 2.46226e-7
0.21875 0.000500585 0.000500102 4.82602e-7
0.28125 0.000500908 0.00050011 7.97771e-7
0.34375 0.00050131 0.000500118 1.19173e-6
0.40625 0.00050179 0.000500126 1.664e-6
0.46875 0.00050235 0.000500134 2.216e-6
0.53125 0.000502988 0.000500141 2.847e-6
0.59375 0.000503705 0.000500149 3.556e-6
0.65625 0.0005045 0.000500157 4.343e-6
0.71875 0.000505375 0.000500165 5.21e-6
0.78125 0.000506328 0.000500173 6.155e-6
0.84375 0.00050736 0.00050018 7.18e-6
0.90625 0.000508471 0.000500188 8.283e-6
0.96875 0.000509661 0.000500196 9.465e-6
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Table 3: The absolute errors for Burgers-Huxley equation for various collocation
points of x with t = 1 and γ = 0.001.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.000500145 0.000500129 1.6414e-8
0.09375 0.000500284 0.000500137 1.47726e-7
0.15625 0.000500555 0.000500144 4.10351e-7
0.21875 0.000500957 0.000500152 8.04288e-7
0.28125 0.00050149 0.00050016 1.32954e-6
0.34375 0.000502154 0.000500168 1.9861e-6
0.40625 0.00050295 0.000500176 2.774e-6
0.46875 0.000503877 0.000500183 3.694e-6
0.53125 0.000504935 0.000500191 4.744e-6
0.59375 0.000506125 0.000500199 5.926e-6
0.65625 0.000507445 0.000500207 7.238e-6
0.71875 0.000508898 0.000500215 8.683e-6
0.78125 0.000510481 0.000500223 1.0258e-5
0.84375 0.000512196 0.00050023 1.1966e-5
0.90625 0.000514042 0.000500238 1.3804e-5
0.96875 0.00051602 0.000500246 1.5774e-5

Table 4: The absolute errors for Burgers-Huxley equation for various collocation
points of x with t = 0.4 and γ = 2.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 1.01558 0.817686 0.197938
0.09375 1.04679 0.848061 0.198731
0.15625 1.07792 0.878725 0.199192
0.21875 1.10889 0.909622 0.199267
0.28125 1.13965 0.940695 0.198957
0.34375 1.17015 0.971882 0.198263
0.40625 1.20032 1.00312 0.197191
0.46875 1.23011 1.03436 0.19575
0.53125 1.25948 1.06553 0.193949
0.59375 1.28838 1.09657 0.191803
0.65625 1.31676 1.12743 0.189327
0.71875 1.34458 1.15804 0.186538
0.78125 1.37181 1.18835 0.183456
0.84375 1.39841 1.2183 0.180104
0.90625 1.42436 1.24785 0.176504
0.96875 1.44964 1.27695 0.172693

The error function is given by

Error function =||uapprox(xl, t)−uexact(xl, t)||

=

√
2M

∑
l=1

(uapprox(xl, t)−uexact(xl, t))2
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Global error estimate = R.M.S.error =
||uapprox(xl, t)−uexact(xl, t)||√

2M

=
1√
2M

√
2M

∑
l=1

(uapprox(xl, t)−uexact(xl, t))2

(28)

In case of γ = 0.001, the R.M.S. error between the numerical solutions and the exact
solutions of Burgers-Huxley equations for t = 0.4,0.6 and 1 are 0.00000300204,
0.00000450295 and 0.00000750449 respectively and for γ = 2 and t = 0.4, the
R.M.S. error is 0.19142.

In the following tables 5-7 also J has been taken as 3 i.e. M = 8 and ∆t is taken
as 0.0001. Similarly, tables 5-7 exhibit the absolute errors for Huxley equation by
taking k = 1 and different values of t. Again, the R.M.S. error can be calculated
from eq. 28 for different values of t. For t = 0.4,0.6 and 1, the R.M.S. error between
the numerical solutions and the exact solutions of Huxley equation are 0.0209303,
0.0354936 and 0.060677 respectively.

Table 5: The absolute errors for Huxley equation for various collocation points of
x with k = 1 and t = 0.4.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.455737 0.455641 0.0000955529
0.09375 0.467153 0.466623 0.000530592
0.15625 0.478927 0.477636 0.0012907
0.21875 0.491048 0.488672 0.00237582
0.28125 0.503505 0.499718 0.00378609
0.34375 0.516287 0.510765 0.00552185
0.40625 0.529385 0.521802 0.0075836
0.46875 0.542789 0.532817 0.00997205
0.53125 0.556488 0.5438 0.012688
0.59375 0.570474 0.554741 0.0157326
0.65625 0.584736 0.565629 0.019107
0.71875 0.599266 0.576454 0.0228126
0.78125 0.614057 0.587206 0.026851
0.84375 0.629099 0.597876 0.031223
0.90625 0.645576 0.608453 0.037123
0.96875 0.668244 0.61893 0.049314
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Table 6: The absolute errors for Huxley equation for various collocation points of
x with k = 1 and t = 0.6.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.431155 0.430968 0.000187446
0.09375 0.442789 0.441837 0.000951983
0.15625 0.454998 0.452763 0.00223552
0.21875 0.467771 0.463734 0.00403766
0.28125 0.481098 0.47474 0.0063583
0.34375 0.494968 0.485771 0.0091976
0.40625 0.509372 0.496816 0.012556
0.46875 0.524298 0.507863 0.0164343
0.53125 0.539737 0.518904 0.0208334
0.59375 0.55568 0.529925 0.0257546
0.65625 0.572117 0.540918 0.0311994
0.71875 0.589041 0.551871 0.0371696
0.78125 0.606441 0.562774 0.043667
0.84375 0.62431 0.573616 0.050694
0.90625 0.645842 0.584389 0.061453
0.96875 0.683829 0.595081 0.088748

Table 7: The absolute errors for Huxley equation for various collocation points of
x with k = 1 and t = 1.

x Approximate value Exact value Absolute Error
(uapprox) (uexact)

0.03125 0.383171 0.382747 0.00042376
0.09375 0.395066 0.393241 0.00182475
0.15625 0.407796 0.403834 0.00396201
0.21875 0.421352 0.414518 0.00683392
0.28125 0.435721 0.425282 0.0104393
0.34375 0.450895 0.436118 0.0147773
0.40625 0.466863 0.447015 0.0198477
0.46875 0.483614 0.457964 0.0256507
0.53125 0.501139 0.468953 0.0321868
0.59375 0.519429 0.479972 0.0394572
0.65625 0.538474 0.491011 0.0474633
0.71875 0.558265 0.502058 0.056207
0.78125 0.578795 0.513104 0.065691
0.84375 0.600054 0.524137 0.075917
0.90625 0.632639 0.535146 0.097493
0.96875 0.718961 0.546121 0.17284

In case of Burgers-Huxley equation, the figures 1-3 cite the comparison graphically
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between the numerical and exact soutions for different values of t and γ . Similarly,
in case of Huxley equation, the figures 4-6 present the comparison graphically be-
tween the numerical and exact solutions for different values of t and k = 1.

Figure 1: Comparison of Numerical solution and exact solution of Burgers-Huxley
equation when t = 0.4 and γ = 0.001.

Figure 2: Comparison of Numerical solution and exact solution of Burgers-Huxley
equation when t = 0.6 and γ = 0.001

Figure 3: Comparison of Numerical solution and exact solution of Burgers-Huxley
equation when t = 1 and γ = 0.001
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Figure 4: Comparison of Numerical solution and exact solution of Huxley equation
for t = 0.4 and k = 1

Figure 5: Comparison of Numerical solution and exact solution of Huxley equation
for t = 0.6 and k = 1

Figure 6: Comparison of Numerical solution and exact solution of Huxley equation
for t = 1 and k = 1

8 Conclusions

In this paper, the generalized Burgers-Huxley equation and Huxley equation have
been solved by Haar wavelet method. The obtained results are then compared
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with exact solutions. These have been cited in Tables and also graphically. These
results demonstrated in Tables justify the accuracy and efficiency of Haar wavelet
method. This method is reliable and convenient for solving Burgers-Huxley and
Huxley equations. The main advantage of this method is its simplicity and small
computational overhead.
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