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Electrostatic potential in a bent flexoelectric
semiconductive nanowire
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Abstract: Flexoelectricity presents a strong size effect, and should not be ig-
nored for nanodevices. In this paper, the flexoelectric effect is taken into account
to investigate the electrostatic potential distribution in a bent flexoelectric semi-
conductive nanowire, and the numerical solution is obtained by using the finite
difference method. The effect of donor concentration on the electrostatic potential
are also investigated. The results show that, the flexoelectricity increases the value
of the voltage on the cross section. The flexoelectric effect is varied with the size,
i.e. when the radius of the nanowire is small the flexoelectric effect is significant. It
is also shown that a lower donor concentration can increase the value of the voltage
on the cross section. The results indicated that one can use the flexoelectricity to
modify the transfer efficiency from mechanical energy to electric energy through
doping and strain engineering.

Keywords: Flexoelectricity; Piezoelectricity; Semiconductivity; Nanowire

1 Introduction

For a dielectric, in the original undeformed state, there is no polarization because of
the local compensation of the inherent electric dipole moment in the molecule, but
the infliction of nonuniform strain can break this kind of local compensation and
induce the polarization, which is called the flexoelectric effect (Tagantsev, 1986).
Inversely, the gradient of polarization can lead to deformation (Catalan et al., 2004).
In nanoscale, the flexoelectric effect is significant and the research on it is neces-
sary. Actually compared with the piezoelectric effect, the flexoelectric effect exists
in all dielectrics, that Askar et al. (1970) has confirmed by lattice dynamics. Re-
cently, the flexoelectricity fascinates many researchers and plays a very important
role in nanotechnology. Fousek et al. (1999) have proposed the possibility of fab-
ricating the piezoelectric composite without using piezoelectric materials based on
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the flexoelectricity. Catalan et al. (2004) presented a phenomenological model
considering the effect of flexoelectricity on the dielectric constants and polariza-
tion for ferroelectric thin films. Maranganti et al. (2006) reviewed the flexoelec-
tricity theory and developed a complete mathematical framework for it. Majdoub
et al. (2008) found the flexoelectricity has an obvious size effect and influences
the piezoelectric and elastic behavior of the nanostructures. A theory is developed
for nanosized dielectrics with both the flexoelectricity and surface effect, which
provides an underlying framework for the analysis and computation of electrome-
chanical problems in nanodielectrics (Shen and Hu, 2010; Hu and Shen, 2009).

Piezoelectric semiconductor has been used in high electron mobility transistors for
a long time. As a kind of piezoelectric semiconductive material, zinc oxide (ZnO),
with a hexagonal wurtzite structure, has extensional applications in nanodevices.
For examples, it has been used as piezoelectric diode, piezoelectric field effect tran-
sistors and piezoelectric sensor (Wang, 2011). Based on the coupling piezoelectric
and semiconductive property of ZnO nanowire, Wang and his colleagues (Wang
and Song, 2006; Song, Zhou, Wang, 2006) proposed a nanogenerator which can
convert the mechanical energy into the electric energy by mechanically bending
a ZnO nanowire (NW). Both physical and mathematical investigations have been
done by researchers to evaluate the piezoelectric potential generated in the bent
NW. Gao and Wang (2007) utilized the perturbation theory to deduce an analytical
solution for the piezoelectric potential distribution in the cross section of a bending
NW. Shao et al. (2010) presented a continuum model to calculate the piezoelec-
tric potential in a bending NW. To improve the electric efficiency, Momeni et al.
(2010) designed a nanocomposite generator composed of an array of ZnO NWs and
acquired an analytical solution. Gao and Wang (2009) analyzed the piezoelectric
potential in a laterally bent piezoelectric ZnO nanowire by considering its semicon-
ductivity. All the aforesaid papers are based on the classical piezoelectric theory,
and neglect the flexoelectricity. However, for nanosized devices, the flexoelectric
effect is significant. As discussed in Liu et al. (2012), the flexoelectric effect is very
strong. Therefore, it will be reasonable to take the flexoelectric effect into account
when one analyzes the piezoelectric potential induced by bending a NW, otherwise
the classical piezoelectric theory cannot give the accurate result. There is a wide
gap between the results from the classical piezoelectric theory and experiments. In
that paper, Liu et al. (2012) showed that it is possible to fill the gap by means of
the flexoelectricity.

This paper is to investigate the flexoelectric effect on the piezoelectric potential in
the bent ZnO NW when the flexoelectricity, piezoelectricity and semiconductivity
are all taken into account. The effect of donor concentration on the electrostatic
potential is also analyzed.
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2 Modeling of ZnO NWs

A typical application of the piezoelectric semiconductor is a nanogenerator devel-
oped by Wang and Song (2006). This device relies on deflecting a ZnO NW by
a conductive AFM tip, which results in polarization in the NW. It is the Schot-
tky contact between the metal tip and the semi-conductive NW that plays a crucial
role in controlling the accumulation and release of the piezoelectric energy (Song,
Zhou, Wang, 2006). The model of a bent ZnO NW can be typically set up as ap-
plying a force fy on the tip of a cantilever beam in a direction perpendicular to
the nanowire (z-axis) as shown in Fig. 1. The objective of this paper is to acquire
a relation between the lateral force fy and the electric potential distribution in a
bent semiconductive ZnO NW generated by both piezoelectricity and flexoelectric-
ity. The following calculations are conducted under an infinite strain assumption in
this model. We assume that the ZnO NW is a cylinder with diameter 2a and length
l, and the substrate of the ZnO NW is also made of ZnO (Gao and Wang, 2009).
To reduce the computational complexity of the electromechanical coupling, here
we only consider the direct piezoelectric effect and the direct flexoelectric effect.
Thus, the constitutive equations can be written as{

σi j = ci jklεkl
Di = ei jkε jk +κikEk + fi jklε jk,l

(1)

where σi j is the stress tensor, εkl is the strain tensor, Ek is the electric field, Di

is the electric displacement, ci jkl is the elastic constant, ei jk is the piezoelectric
coefficient, κik is dielectric constants, and fi jkl is the flexoelectric coefficient.

For a wurtzite ZnO crystal, the linear piezoelectric coefficient matrix e is as follows:

ei jk =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 (2)

As discussed in Gao and Wang (2007), the zinc oxide can be approximated as an
isotropic material. Thus, its elastic constants can be characterized by the isotropic
elastic modulus with Young’s modulus E and Poisson’s ratio v. Therefore, the
relationship between strain and stress can be written as
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Figure 1: External force applied on the ZnO NW

Per Saint-Venant’s principle, in the solution of pure bending problem of a beam in
elasticity, the stress in the ZnO NW is (Soutas-Little, 1999)
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where Ix =
(
π
/

4
)

a4 is the cross-sectional inertia moment of the NW.

In this paper, we only consider the finite concentration of donors and free charge
carriers in the ZnO. According to the Gauss’s law, the divergence of the electric
displacement can be written as

Di,i =
∂

∂xi

(
eiklεkl +κikEk + fi jklε jk,l

)
= ρV = ep− en+ eN+

D − eN−A (5)

where ρV is the free charge volume density, p is the hole concentration in the
valance band, e is the electron, n is the electron concentration in the conduction
band, N+

D is the ionized donor concentration, and N−A is the ionized acceptor con-
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centration. Generally, the ZnO NW is typically n-typed because of its unavoidable
point defects16, thus, we have p = N−A = 0 as in Gao and Wang (2009).

With Eqs. (1), (4), (5) and the geometrical compatibility equations, the electric
field generated by the bent NW wire can be calculated when a proper boundary
condition is given. We assume

DR
k = eki jεi j + fki jlεi j,l (6)

as the electric displacement vector in the polarization due to the piezoelectricity
and flexoelectricity, and the corresponding piezoelectric and flexoelectric charge
density is introduced as

ρ
R =−∇ ·DR (7)

which is the bound charge and cannot move freely like free charges. Then, Eq. (5)
can be written as

κik
∂ 2

∂xi∂xk
ϕ =−

(
ρ

R− en+ eN+
D

)
(8)

where ϕ is the electric potential. For simplicity, we ignore the free charge on the
surface due to the surface polarization. By now we have got Eq (8) as the govern-
ing equation for the electric potential in the bent ZnO NW under thermodynamic
equilibrium.

Under the thermodynamic equilibrium state, the electrons concentration and ion-
ized donor concentration will separately redistribute as

n = NcF1/2

(
−Ec (x)−EF

kT

)
(9)

N+
D = ND

1
1+2exp

(EF−ED
kT

) (10)

where Nc = 2
(

2πmekT
h2

)3/2
is the effective state density of conduction band in semi-

conductor physics, which is only determined by the effective mass of conduction
band electrons me and the temperature T according to this expression and indepen-
dent on the thermodynamic equilibrium. F1/2 (η) is the Fermionic-Dirac integral.
ND is the donor concentration. EF is the Fermi energy which is flat all over the
ZnO NW when the thermodynamic equilibrium is assumed (Gao and Wang, 2009).
Ec (x) is the position-dependent band edge energy, and ED (x) = Ec (x)−∆ED is
the position-dependent donor energy level, where ∆ED is the activation energy of
the donor. In addition, the electrostatic energy and the deformation potential make
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up a shift ∆Ec between Ec (x) and Ec0 which is the band edge energy of ZnO in
free-standing undeformed state, i.e.

Ec−Ec0 = ∆Ec =−eϕ +∆Ede f orm
c =−eϕ +ac

∆V
V

(11)

where ac is the deformation potential constant. V is the volume, and ∆V is the
change of the volume. We also define η =−Ec(x)−EF

kT which dictates how much the
semiconductor degenerates to conductor and when η > -3 it can be regarded as the
highly degenerated case.

Eq. (8) is a second-order nonlinear partial differential equation of electric potential
ϕ , and the boundary conditions are

ϕ|r=a− = ϕ|r=a+

(Dini)|r=a−− (Dini)|r=a+ = ρs = 0
ϕ|r=∞

= 0
(12)

where n is the normal vector of the cylindrical surface, ρs is the density of free
surface charge. Then, with the governing equation (8) and the boundary conditions
(12), the electric potential in the bent ZnO NW considering the flexoelectric effect
and the charge carrier density can be calculated.

3 Results and discussions

We use the finite difference method to solve the nonlinear partial differential equa-
tion (8) in polar coordinates. For the bulk ZnO material, the material constants are
taken the same value as in Gao and Wang (2009), i.e., an isotropic elastic Young’s
modulus E = 129.0GPa and Poisson ratio ν = 0.349; relative dielectric constants
κr
⊥ = 7.77, κr

|| = 8.91, piezoelectric constants e31 =−0.51C/m2, e33 = 1.22C/m2,
e15 =−0.45C/m2. Additionally, for the flexoelectric constants of isotropic materi-
als, one has that6

fi jkl = f12δkl + f44
(
δikδ jl +δilδ jk

)
The flexoelectric constants can be obtained by experiments and atomic calcula-
tions. However, due to lack of such work, here as an approximation, we choose
f12 = f44 =−0.45×10−9C/m, a reasonable value for flexoelectric coefficients. As
discussed in Kogan (1963), the order of 10−9 C/m is an appropriate lower bound
for flexoelectric coefficients. The external force is set to be fy = 80 nN. In our
calculations, we choose the typical donor concentration ND = 1× 1017Cm−3 and
only a single donor level with ∆ED = 35meV as in Gao and Wang (2009). For the
geometric sizes of the NW, we assume that the radius a = 25 nm and the length
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l = 600 nm (Wang and Song, 2006). In this paper, all the parameters required in
the calculations are taken the values depicted in this paragraph unless specified.

The electric potential distribution on the cross section at the height z = 400 nm for
T = 300 K is plotted in Fig. 2. The maximum of electric potential exist in the
tensile area on the surface of the NW is 0.040 V, while the minimum is -0.367 V
on the other side. To illustrate the flexoelectric effect, the electric potential distri-
butions are calculated by changing the flexoelectric constants, and the correspond-
ing electric potential distributions on the y-axis at z = 400 nm are shown in Fig.
3. In this figure, the black line presents the one without the flexoelectric effect
where all of the flexoelectric constants are zero (f12 = f44 = 0), which is highly
matched with the result obtained by using the finite element method in Gao and
Wang (2009). It is noted that the flexoelectric effect changes the electric potential
along the diameter obviously. Comparing the black and red lines in Fig. 3, the
polarization caused by stain gradient decreases the minimum of the negative poten-
tial by 0.030V (about 8.9%), and increases the maximum of the positive potential
by 0.006V (about 17.1%). With higher flexoelectric constants shown as the blue
line in Fig. 3, the electric potential changes more obviously with a higher electric
potential difference, i.e. the voltage, along the diameter. Additionally, the variation
of the electric potential brought by the flexoelectricity is non-uniform along the
diameter.

Figure 2: Cross section color plot of electric potential ϕ considering the flexoelec-
tric effect
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Figure 3: Line plot of ϕ with different flexoelectric constants along the diameter

Fig. 4 and Fig. 5 present the distributions of ionized donor concentration and elec-
tron concentration on the y-axis (z=400 nm) with different flexoelectric constants,
respectively. It is indicated that the flexoelectricity changes N+

D and n obviously
in the tensile area of the bent nanowire. In these 2 figures, the black line presents
the one without the flexoelectric effect where all the flexoelectric constants are zero
(f12 = f44 = 0), which agrees very well with the result obtained by using the finite
element method in Gao and Wang (2009).

To investigate the variation of the effect of flexoelectricity on the voltage with di-
ameters, we define Vf and V0 to be the voltage, i.e. the potential difference, on the
cross section with and without flexoelectricity respectively. We define the relative
difference between the voltage with and without flexoelectricity as (Vf −V0)

/
V0

(at z=300 nm) and plot the corresponding curve in Fig. 6 to analyze the effect of
flexoelectricity on the voltage in bent ZnO NWs with different wire diameters and
flexoelectric constants. It is obvious that the relative difference between the volt-
age with and without flexoelectricity decreases with the increase of wire diameters,
and the flexoelectric solution approaches to the classical piezoelectric one for large
diameter. The results clearly show that the flexoelectricity should not be ignored
for bending or inhomogeneously stretching a NW. By comparing the red and black
lines, it is indicated that the larger absolute value of the flexoelectric constants are,
the larger the influence range of the flexoelectricity is.
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Figure 4: Line plot of N+
D with different flexoelectric constants along the diameter

Figure 5: Line plot of n with different flexoelectric constants along the diameter
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Figure 6: Values of (Vf −V0)/V0 with radius

Figure 7: Electric potential along diameter with different donor concentration and
flexoelectric constants
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Fig. 7 describes the electric potential distributions along the y-axis with differ-
ent sets of flexoelectric constants and different donor concentrations. No matter
the flexoelectricity is considered or not, the effect of the doping is significant, the
electric potential along the diameter decreases obviously after doping.

It is apparently shown in this section that the flexoelectricity plays an important role
in changing the magnitude of voltage, the electrons concentration and ionized donor
concentration, even though the flexoelectric coefficients are set to be the minimum.
It means that one can use the flexoelectricity to modify the transfer efficiency from
mechanical energy to electric energy through doping and strain engineering.

4 Conclusions

In this paper, the effect of flexoelectricity on the polarization and semiconductiv-
ity is taken into account and the numerical solutions for electrostatic potential and
semiconductivity in a bent ZnO nanowire are obtained by using the finite difference
method. The solution shows that the size-dependent electromechanical coupling
due to inhomogeneous strain is significant. The flexoelectric effect also changes
the distributions of the electron concentration and ionized donor concentration in
the tensile area to some extent. The numerical results indicated that the flexoelec-
tric effect is size-dependent and cannot be neglected when the radius of the ZnO
nanowire is in nanoscale. In addition, a lower donor concentration can increase the
voltage on the cross section.
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