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Numerical solution of fractional partial differential
equations using Haar wavelets
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Abstract: In this paper, we present a computational method for solving a class of
fractional partial differential equations which is based on Haar wavelets operational
matrix of fractional order integration. We derive the Haar wavelets operational
matrix of fractional order integration. Haar wavelets method is used because its
computation is sample as it converts the original problem into Sylvester equation.
Finally, some examples are included to show the implementation and accuracy of
the approach.
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1 Introduction

In the last decades, fractional derivative and fractional differential equations have
found their applications in several different disciplines. Many practical problems
can be elegantly modeled with the help of the fractional derivative [Sun, Chen and
Wei (2011); Sun, Chen and Li (2010); Chen (2007)]. For example, the fluid dy-
namic traffic model with fractional derivatives can eliminate the deficiency arising
from the assumption of continuum traffic flow [He (1999)], and nonlinear oscilla-
tion of earthquake can be modeled with fractional derivatives [He (1998)]. Accord-
ing to the increasing applications, a lot of attention has been given to numerical
and exact solution of fractional differential equations. The analytical solutions of
fractional differential equations are still in a preliminary stage. However, it is dif-
ficult to obtain their exact solutions. In recent years, both mathematicians and
physicists have engaged in discussing the numerical methods for solving fractional
differential equations. The most commonly used ones are Adomian Decomposi-
tion Method [EI-Kalla (2008); Hosseini (2006)], Generalized Differential Trans-
form Method [Momani and Odibat (2007); Odibat and Momani (2008)], Varia-
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tional Iteration Method [Odibat (2010)], Finite Difference Method [Sun, Chen and
Li (2012); Meerschaert, Scheffler and Tadjeran (2006)], Homtopy Analysis Method
[Hashim and Abdulaziz (2009)], and Wavelet Method [Chen and Wu (2010); Jafari
and Yousefi (2011); Chen, Yiand Yu (2012)].

In this paper, we consider a class of fractional partial differential equations

∂ αu
∂xα

+
∂ β u
∂ tβ

= f (x, t) (1)

subject to

∂u
∂x

∣∣∣∣
t=0

= δ1(x),
∂u
∂ t

∣∣∣∣
x=0

= δ2(t) (2)

u(0, t) = θ1(t),u(x,0) = θ2(x) (3)

where ∂ α u(x,t)
∂xα and ∂ β u(x,t)

∂ tβ
are fractional derivative of Caputo sense, f ,δ1,δ2,θ1,θ2

are the known continuous functions, u(x, t)is the unknown function, 0 < α,β ≤ 1.

There have been several methods for solving the fractional partial differential equa-
tions. [Podlubny (1999)] used the Laplace transform method to solve the fractional
partial differential equations with constant coefficients. [Zhang (2009)] discussed
a practical implicit method to solve a class of initial boundary value space-time
fractional convection-diffusion equations with variable coefficients. [Odibat and
Momani (2008)] applied generalized differential transform method to solve the nu-
merical solution of linear partial differential equations of fractional order.

Wavelets theory is a new and emerging area in mathematical research, it is very suc-
cessfully used in signal analysis for waveform representation and segmentations,
time frequency analysis. In this paper, our purpose is to proposed Haar wavelets
operational matrix method to solve a class of fractional partial differential equa-
tions.

2 Definition of fractional derivative and integral

In this section, we give some necessary definitions and preliminaries of the frac-
tional calculus theory which will be used in this work [Podlubny (1999)].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥
0of a function is defined as

Jαv(x) =
1

Γ(α)

∫ x

0
(x− t)α−1v(t)dt, α > 0, x > 0 (4)

J0v(x) = v(x) (5)
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The properties of the operator Jαare given as follows

i) JαJβ v(x) = Jα+β v(x),

ii) JαJβ v(x) = Jβ Jαv(x),

iii) Jαxγ = Γ(γ+1)
Γ(α+γ+1)x

α+γ .

Definition 2.2 The fractional derivative of v(x)in the Caputo sense is defined as

Dα
∗ v(x) =

{ drv(x)
dxr , α = r ∈ N;

1
Γ(r−α)

∫ x
0

v(r)(t)
(x−t)α−r+1 dt, 0≤ r−1 < α < r.

(6)

The Caputo fractional derivative of order αis also defined as Dα
∗ v(x) = Jr−αDrv(x),

where Dris the usual integer differential operator of order r.

3 Haar wavelets and function approximation

For x ∈ [0,1], the orthogonal set of Haar wavelets functions are defined by [Chen
and Hsiao (1997)]:

h0(x) =
1√
m

(7)

hi(x) =
1√
m


2 j/2, k−1

2 j ≤ x < k−1/2
2 j

−2 j/2, k−1/2
2 j ≤ x < k

2 j

0, otherwise
(8)

where i = 0,1,2, . . . ,m−1, m = 2p+1and pis a positive integer. jand krepresent the
integer decomposition of the index i, i.e. i = 2 j + k−1.

Any function v(x) ∈ L2([0,1)) can be expanded into Haar wavelets by

v(x) =
∞

∑
i=0

cihi(x) (9)

where ci =
∫ 1

0 v(x)hi(x)dxare wavelet coefficients.

If v(x)is approximated as piecewise constant during each subinterval, Eq. (9) will
be terminated at finite terms

v(x)∼=
m−1

∑
i=0

cihi(x) = cT Hm(x) (10)

where c = [c0,c1, . . . ,cm−1]
T , Hm(x) = [h0(x),h1(x), . . . ,hm−1]

T , mis a power of 2.
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The matrix form of Eq.(10) is

v = cT H (11)

where the row vector vis the discrete form of the function v(x). His Haar wavelets
matrix of order m = 2p+1, p = 0,1,2, . . ., i.e.

H =


h0(t0) h0(t1) · · · h0(tm−1)
h1(t0) h1(t1) · · · h1(tm−1)
...

...
. . .

...
hm−1(t0) hm−1(t1) · · · hm−1(tm−1)

 .
For arbitrary function u(x,t) ∈ L2([0,1)× [0,1)), it can be also expanded into Haar
series by [Wu (2009)]

u(x,t)∼=
m-1

∑
i=0

m-1

∑
j=0

ui jhi(x)h j(t) (12)

where ui j =
〈
hi(x),

〈
u(x,t),h j(t)

〉〉
are wavelet coefficients,〈

hi(x),h j(x)
〉
=
∫ 1

0 hi(x)h j(x)dx.

Eq.(12) will be written as

u(x, t)∼= HT
m(x)UHm(t) (13)

In this paper, we apply wavelet collocation method to determine the coefficients
ui j. These collocation points are shown in the following

xl=tl = (l−1/2)/m, l = 1,2, . . . ,m. (14)

Discreting Eq.(13) by the step Eq.(14), we can obtain the matrix form of Eq.(13)

C = HTUH (15)

where U = [ui j]m×mandC = [u(xi,t j)]m×m.

From the definition of Haar wavelets functions, we may know easily that His a
orthogonal matrix.

4 Convergence of the Haar wavelets bases

In this part, we assume that ∂u(x,t)
∂x is continuous and bounded on (0,1)×(0,1), then

∃M > 0, ∀x, t ∈ (0,1)× (0,1),
∣∣∣∣∂u(x, t)

∂x

∣∣∣∣≤M (16)
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Suppose um(x, t)is the following approximation of u(x, t)

um(x, t) =
m−1

∑
n=0

m−1

∑
l=0

unlhn(x)hl(t) (17)

Then we have

u(x, t)−um(x, t) =
∞

∑
n=m

∞

∑
l=m

unlhn(x)hl(t) =
∞

∑
n=2p+1

∞

∑
l=2p+1

unlhn(x)hl(t) (18)

The orthonormality of the sequence {hi(x)}on [0,1)implies that∫ 1

0
hn(x)hn′(x)dx =

{
1/m, n = n′

0, n 6= n′
(19)

Therefore

‖u(x, t)−um(x, t)‖2
E =

∫ 1
0
∫ 1

0 [u(x, t)−um(x, t)]2dxdt

=
∞

∑
n=2p+1

∞

∑
l=2p+1

∞

∑
n′=2p+1

∞

∑
l′=2p+1

unlun′l′
(∫ 1

0 hn(x)hn′(x)dx
)(∫ 1

0 hn(t)hn′(t)dt
)

= 1
m2

∞

∑
n=2p+1

∞

∑
l=2p+1

u2
nl

(20)

where unl = 〈hn(x),〈u(x, t),hl(t)〉〉.
According to Eq.(7) and Eq.(8), we have

〈u(x, t),hl(t)〉=
∫ 1

0
u(x, t)hl(t)dt

=
2 j/2
√

m

(∫ (k− 1
2 )2
− j

(k−1)2− j
u(x, t)dt−

∫ k2− j

(k− 1
2 )2
− j

u(x, t)dt

) (21)

Using mean value theorem of integrals:

∃t1, t2 : (k−1) ·2− j ≤ t1 < (k− 1
2
) ·2− j, (k− 1

2
) ·2− j ≤ t2 < k ·2− j

such that

〈u(x, t),hl(t)〉
= 2 j/2
√

m

{
[(k− 1

2)2
− j− (k−1)2− j]u(x, t1)− [k2− j− (k− 1

2)2
− j]u(x, t2)

}
= 2− j/2−1

√
m (u(x, t1)−u(x, t2))

(22)

hence
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unl =

〈
hn(x),

2− j/2−1
√

m
(u(x, t1)−u(x, t2))

〉

=
2− j/2−1
√

m

∫ 1

0
hn(x)(u(x, t1)−u(x, t2))dx

=
2− j/2−1
√

m

(∫ 1

0
hnu(x, t1)dx−

∫ 1

0
hn(x)u(x, t2)dx

)
=

1
2m

(∫ (k− 1
2 )2
− j

(k−1)2− j
u(x, t1)dx−

∫ k2− j

(k− 1
2 )2
− j

u(x, t1)dx

−
∫ (k− 1

2 )2
− j

(k−1)2− j
u(x, t2)dx+

∫ k2− j

(k− 1
2 )2
− j

u(x, t2)dx

)

Using mean value theorem of integrals again:

∃x1,x2,x3,x4 : (k−1) ·2− j ≤ x1,x3 < (k− 1
2
) ·2− j,

(k− 1
2
) ·2− j ≤ x2,x4 < k ·2− j

such that

unl =
1

2m

{
[(k− 1

2)2
− j− (k−1)2− j]u(x1, t1)− [k2− j− (k− 1

2)2
− j]u(x2, t1)

−[(k− 1
2)2
− j− (k−1)2− j]u(x3, t2)+ [k2− j− (k− 1

2)2
− j]u(x4, t2)

}
= 1

2 j+2m [(u(x1, t1)−u(x2, t1))− (u(x3, t2)−u(x4, t2))]
(23)

hence

u2
nl =

1
22 j+4m2 [(u(x1, t1)−u(x2, t1))− (u(x3, t2)−u(x4, t2))]2 (24)

Using mean value theorem of derivatives:

∃ξ1,ξ2 : x1 ≤ ξ1 < x2, x3 ≤ ξ2 < x4

such that

u2
nl =

1
22 j+4m2

[
(x2− x1)

∂u(ξ1,t1)
∂x − (x4− x3)

∂u(ξ2,t2)
∂x

]2

≤ 1
22 j+4m2

{
(x2− x1)

2
[

∂u(ξ1,t1)
∂x

]2
+(x4− x3)

2
[

∂u(ξ2,t2)
∂x

]2

+2(x2− x1)(x4− x3)
∣∣∣ ∂u(ξ1,t1)

∂x

∣∣∣ ∣∣∣ ∂u(ξ2,t2)
∂x

∣∣∣}
(25)
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Combining Eq.(16) and Eq.(25) , we obtain

u2
nl ≤

4M2

24 j+4m2 =
M2

24 j+2m2 (26)

Substituting Eq.(26) into Eq.(20), then we have

‖u(x, t)−um(x, t)‖2
E = 1

m2

∞

∑
n=2p+1

∞

∑
l=2p+1

u2
nl =

1
m2

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1
∑

l=2 j
u2

nl

)

≤ 1
m2

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1
∑

l=2 j

M2

24 j+2m2

)

= M2

m4

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1
∑

l=2 j

1
24 j+2

)
= M2

3m4
1

22(p+1) =
M2

3
1

m6

(27)

Therefore

‖u(x, t)−um(x, t)‖≤E
M√

3
1

m3 (28)

From the Eq.(28), we can find that ‖u(x, t)−um(x, t)‖E → 0when m→ ∞. The
larger the value of m, the more accurate the numerical solution.

5 Haar wavelets operational matrix of fractional order integration

Now, we derive the Haar wavelets operational matrix of fractional order integration.
For this purpose, we may use the definition of Riemann-Liouville fractional integral
operator Jα .

The Haar wavelets operational matrix of fractional order integration Pαcan be de-
duced by

PαHm(x) = JαHm(x)

= [Jαh0(x),Jαh1(x), . . . ,Jαhm−1(x)]T

= [
1

Γ(α)

∫ x

0
(x− t)α−1h0(t)dt,

1
Γ(α)

∫ x

0
(x− t)α−1h1(t)dt,

. . . ,
1

Γ(α)

∫ x

0
(x− t)α−1hm−1(t)dt]T

= [Ph0(x),Ph1(x), . . . ,Phm−1(x)]T
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Figure 1: 0.5-order integration of the function v(x) = x

where

Ph0(x) =
1√
m

xα

Γ(α +1)
x ∈ [0,1) (29)

Phi(x) =
1√
m


0, 0≤ x < k−1

2 j

2 j/2ϕ1(x), k−1
2 j ≤ x < k−1/2

2 j

2 j/2ϕ2(x),
k−1/2

2 j ≤ x < k
2 j

2 j/2ϕ3(x), k
2 j ≤ x < 1

(30)

where

ϕ1(x) =
1

Γ(α +1)

(
x− k−1

2 j

)α

;

ϕ2(x) =
1

Γ(α +1)

(
x− k−1

2 j

)α

− 2
Γ(α +1)

(
x− k−1/2

2 j

)α

;

ϕ3(x)=
1

Γ(α +1)

(
x− k−1

2 j

)α

− 2
Γ(α +1)

(
x− k−1/2

2 j

)α

+
1

Γ(α +1)

(
x− k

2 j

)α

.
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The derived Haar wavelets operational matrix of fractional integration is Pα =
(PαH) ·HT . For instance, if α = 0.5, m = 8, we have

P1/2 =



0.7549 -0.2180 -0.1072 -0.0579 -0.0516 -0.0289 -0.0223 -0.0189
0.2180 0.3190 -0.1072 0.1565 -0.0516 -0.0289 0.0809 0.0389
0.0579 0.1565 0.2337 -0.0312 -0.0730 0.1052 -0.0229 -0.0044
0.1072 -0.1072 0 0.2337 0 0 -0.0730 0.1052
0.0189 0.0389 0.1052 -0.0044 0.1788 -0.0189 -0.0025 -0.0009
0.0223 0.0809 -0.0730 -0.0229 0 0.1788 -0.0189 -0.0025
0.0289 -0.0289 0 0.1052 0 0 0.1788 -0.0189
0.0516 -0.0516 0 -0.0730 0 0 0 0.1788


The fractional order integration of the function x is selected to verify the correctness
of matrix Pα . The fractional order integration of the function v(x) = x is obtained
as follows

Jαv(x) =
Γ(2)

Γ(α +2)
xα+1 (31)

When α = 0.5, m = 32, the comparison result for fractional integration is shown
in Fig. 1.

6 Applications and results

In this section, we will use the Haar wavelets operational matrix of fractional order
integration to solve the fractional partial differential equation Eq.(1). To demon-
strate the effectiveness of this method, we consider four numerical examples.

6.1 Example 1

Consider the following nonhomogeneous partial differential equation

∂ 1/4u
∂x1/4 +

∂ 1/4u
∂ t1/4 = f (x, t), 0≤ x, t ≤ 1 (32)

such that ∂u
∂x

∣∣∣
t=0

= ∂u
∂ t

∣∣∣
x=0

= u(0, t) = u(x,0) = 0, f (x, t) = 4(x3/4t+xt3/4)
3Γ(3/4) , the exact

solution is xt.

Let ∂ 2u
∂x∂ t
∼= HT

m(x)UHm(t), then

∂u
∂x

=
∫ t

0

∂ 2u
∂x∂ t

dt +
∂u
∂x

∣∣∣∣
t=0

∼=
∫ t

0
[HT

m(x)UHm(t)]dt +
∂u
∂x

∣∣∣∣
t=0

= HT
m(x)UP1Hm(t)

(33)
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∂u
∂ t

=
∫ x

0

∂ 2u
∂x∂ t

dx+
∂u
∂ t

∣∣∣∣
x=0

∼=
∫ x

0
[HT

m(x)UHm(t)]dx+
∂u
∂ t

∣∣∣∣
x=0

= HT
m(x)[P

1]TUHm(t)
(34)

Therefore

u(x, t)∼= HT
m(x)[P

1]TUP1H(t)+u(0, t) = HT
m(x)[P

1]TUP1H(t) (35)

Then we have

∂ 1/4u
∂x1/4 = J3/4

(
∂u
∂x

)
∼= J3/4 (HT

m(x)UP1Hm(t)
)
= HT

m(x)[P
3/4]TUP1Hm(t) (36)

∂ 1/4u
∂ t1/4 = J3/4

(
∂u
∂ t

)
∼= J3/4 (HT

m(x)[P
1]TUHm(t)

)
= HT

m(x)[P
1]TUP3/4Hm(t) (37)

Similarly, f (x, t)may be expanded by the Haar wavelets functions as follows

f (x, t)∼= HT
m(x)FHm(t) (38)

where F = [ fi j]m×m.

Substituting Eq.(36), Eq.(37) and Eq.(38) into Eq.(32), we have

HT
m(x)[P

3/4]TUP1Hm(t)+HT
m(x)[P

1]TUP3/4Hm(t) = HT
m(x)FHm(t) (39)

Dispersing Eq.(39) by the points (xi, t j), i = 1,2, · · · ,mand j = 1,2, · · · ,m, we can
obtain

HT
m [P

3/4]TUP1Hm+HT
m [P

1]TUP3/4Hm = HT
m FHm (40)

Eq.(40) can be also written as

[P−1]T [P3/4]TU+UP3/4P−1 = [P−1]T FP−1 (41)

Eq.(41) is a Sylvester equation which is solved easily by using Matlab software.
Solving it, we can get U . Then using Eq.(35), we obtain the approximation u(x, t).
The numerical results for m = 8, m=16,m=32are shown in Fig. 2, Fig. 3, Fig. 4.
The exact solution is shown in Fig. 5. From the Fig. 2-5, we can see clearly that
numerical solutions are in very good agreement with exact solution.
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Figure 2: Numerical solution of m=8 Figure 3: Numerical solution of m=16

Figure 4: Numerical solution of m=32 Figure 5: Exact solution for Example 1
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6.2 Example 2

Consider the following fractional partial differential equation

∂ 1/3u
∂x1/3 +

∂ 1/2u
∂ t1/2 = f (x, t), 0≤ x, t ≤ 1 (42)

subject to ∂u
∂x

∣∣∣
t=0

= 2x, ∂u
∂ t

∣∣∣
x=0

= 2t, u(0, t) = t2, u(x,0) = x2, f (x, t) = Γ(3)x5/3

Γ(8/3) +

Γ(3)t3/2

Γ(5/2) .

The exact solution of the equation is x2 + t2.

Let ∂ 2u
∂x∂ t
∼= HT

m(x)UHm(t), then

∂u
∂x

=
∫ t

0

∂ 2u
∂x∂ t

dt +
∂u
∂x

∣∣∣∣
t=0

∼=
∫ t

0
[HT

m(x)UHm(t)]dt +
∂u
∂x

∣∣∣∣
t=0

= HT
m(x)UP1Hm(t)+2x

(43)

∂u
∂ t

=
∫ x

0

∂ 2u
∂x∂ t

dx+
∂u
∂ t

∣∣∣∣
x=0

∼=
∫ x

0
[HT

m(x)UHm(t)]dx+
∂u
∂ t

∣∣∣∣
x=0

= HT
m(x)[P

1]TUHm(t)+2t
(44)

Hence

u(x, t)∼= HT
m(x)[P

1]TUP1H(t)+ x2 +u(0, t) = HT
m(x)[P

1]TUP1H(t)+ x2 + t2 (45)

Then we have

∂ 1/3u
∂x1/3 = J2/3

(
∂u
∂x

)
∼= J2/3

(
HT

m(x)UP1Hm(t)+2x
)

= HT
m(x)[P

2/3]TUP1Hm(t)+
2Γ(2)
Γ(8/3)x

5/3
(46)

∂ 1/2u
∂ t1/2 = J1/2

(
∂u
∂ t

)
∼= J1/2

(
HT

m(x)[P
1]TUHm(t)+2t

)
= HT

m(x)[P
1]TUP1/2Hm(t)+

2Γ(2)
Γ(5/2) t

3/2
(47)

Substituting Eq.(46) and Eq.(47) into Eq.(42), we have

HT
m(x)[P

2/3]TUP1Hm(t)+HT
m(x)[P

1]TUP1/2Hm(t) = 0 (48)

According to Eq.(48), we may find that U = 0is the solution of Eq.(48). Substitut-
ing U = 0into Eq.(45), we get u(x, t) = x2 + t2 which is the exact solution of the
initial fractional partial differential equation.
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6.3 Example 3

Consider this equation

∂ αu
∂xα

+
∂ β u
∂ tβ

= f (x, t), 0≤ x, t ≤ 1 (49)

such that ∂u
∂x

∣∣∣
t=0

= 2x, ∂u
∂ t

∣∣∣
x=0

= 2t, u(0, t) = t2 +1, u(x,0) = x2 +1,

and f (x, t) = Γ(3)x2−α (t2+1)
Γ(3−α) + Γ(3)(x2+1)t2−β

Γ(3−β ) , the exact solution is (x2 +1)(t2 +1).

Let ∂ 2u
∂x∂ t
∼= HT

m(x)UHm(t), then we have

∂u
∂x

=
∫ t

0

∂ 2u
∂x∂ t

dt +
∂u
∂x

∣∣∣∣
t=0

∼=
∫ t

0
[HT

m(x)UHm(t)]dt +
∂u
∂x

∣∣∣∣
t=0

= HT
m(x)UP1Hm(t)+2x

(50)

∂u
∂ t

=
∫ x

0

∂ 2u
∂x∂ t

dx+
∂u
∂ t

∣∣∣∣
x=0

∼=
∫ x

0
[HT

m(x)UHm(t)]dx+
∂u
∂ t

∣∣∣∣
x=0

= HT
m(x)[P

1]TUHm(t)+2t
(51)

Therefore

u(x, t)∼= HT
m(x)[P

1]TUP1H(t)+ x2 +u(0, t)

= HT
m(x)[P

1]TUP1H(t)+ x2 + t2 +1
(52)

Then we can get

∂ α u
∂xα = J1−α

(
∂u
∂x

)
∼= J1−α

(
HT

m(x)UP1Hm(t)+2x
)

= HT
m(x)[P

1−α ]TUP1Hm(t)+
Γ(3)

Γ(3−α)x
2−α

(53)

∂ β u
∂ tβ

= J1−β

(
∂u
∂ t

)
∼= J1−β

(
HT

m(x)[P
1]TUHm(t)+2t

)
= HT

m(x)[P
1]TUP1−β Hm(t)+

Γ(3)
Γ(3−β ) t

2−β
(54)

Substituting Eq.(53), Eq.(54) into Eq.(49), we have

HT
m(x)[P

1−α ]TUP1Hm(t)+HT
m(x)[P

1]TUP1−β Hm(t) = g(x, t) (55)

where g(x, t) = Γ(3)x2−α t2

Γ(3−α) + Γ(3)x2t2−β

Γ(3−β ) . Similarly, g(x, t)can be expressed as follows

g(x, t)∼= HT
m(x)GHm(t) (56)
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where G = [gi j]m×m. Dispersing Eq.(55) and Eq.(56) by the points (xi, t j), i =
1,2, · · · ,mand j = 1,2, · · · ,m, we can obtain

HT
m [P

1−α ]TUP1Hm+HT
m [P

1]TUP1−β Hm = HT
m GHm (57)

Namely

[P−1]T [P1−α ]TU+UP1−β P−1 = [P−1]T GP−1 (58)

Eq.(58) is a Sylvester equation. We can obtain Uby solving it . Then using Eq.(52),
we get the numerical solution of u(x, t).

Table 1: Numerical solution of α=3/4,β=2/3

(x, t) m = 8 m = 16 m = 32 m = 64
(0,0) 4.308840e-006 2.727204e-007 1.725163e-008 1.090640e-009
(1/8,1/8) 7.640897e-005 8.671441e-006 3.222372e-006 1.100921e-006
(2/8,2/8) 1.351753e-004 5.072255e-005 1.723830e-005 5.859165e-006
(3/8,3/8) 4.827074e-004 1.354669e-004 4.566683e-005 1.565391e-005
(4/8,4/8) 7.985028e-004 2.699575e-004 9.138683e-005 3.147262e-005
(5/8,5/8) 1.433897e-003 4.606640e-004 1.567464e-004 5.411168e-005
(6/8,6/8) 2.126908e-003 7.134967e-004 2.437371e-004 8.425278e-005
(7/8,7/8) 3.104180e-003 1.033717e-003 3.541178e-004 1.224983e-004

Taking α = 1/2, β = 1/3, we may achieve the absolute errors for different m. The
absolute errors are shown in Tab. 1. From the Tab. 1, we can see clearly that
the absolute errors become more and more small when mincreases. The numerical
results and the exact result forx = 0.25, m = 64 are shown in Fig. 6. From the Fig.
6, we find easily that the numerical solutions are in good agreement with the exact
solution.

6.4 Example 4

Consider the below fractional partial differential equation

∂ αu
∂xα

+
∂ β u
∂ tβ

= cosx+ cos t, 0≤ x, t ≤ 1 (59)

subject to ∂u
∂x

∣∣∣
t=0

= cosx, ∂u
∂ t

∣∣∣
x=0

= cos t, u(0, t) = sin t, u(x,0) = sinx.
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Figure 6: : Numerical solution of α=3/5,β=1/3

Let ∂ 2u
∂x∂ t
∼= HT

m(x)UHm(t), then

∂u
∂x

=
∫ t

0

∂ 2u
∂x∂ t

dt +
∂u
∂x

∣∣∣∣
t=0

∼=
∫ t

0
[HT

m(x)UHm(t)]dt +
∂u
∂x

∣∣∣∣
t=0

= HT
m(x)UP1Hm(t)+ cosx

(60)

∂u
∂ t =

∫ x
0

∂ 2u
∂x∂ t dx+ ∂u

∂ t

∣∣∣
x=0
∼=
∫ x

0 [H
T
m(x)UHm(t)]dx+ ∂u

∂ t

∣∣∣
x=0

= HT
m(x)[P

1]TUHm(t)+ cos t
(61)

Hence we have

u(x, t)∼= HT
m(x)[P

1]TUP1H(t)+ sinx+u(0, t)

= HT
m(x)[P

1]TUP1H(t)+ sinx+ sin t
(62)

Substituting Eq.(60) and Eq.(61) into Eq.(59) when α=β=1

HT
m(x)UP1Hm(t)+HT

m(x)[P
1]TUHm(t) = 0 (63)

U = 0is the exact solution of Eq.(63). We can get u(x, t) ∼= sinx+ sin tby using
Eq.(62). When α=β=1, the exact solution of initial partial differential equation is
sinx+ sin t.



284 Copyright © 2013 Tech Science Press CMES, vol.91, no.4, pp.269-287, 2013

When α,β 6= 1, we have

∂ α u
∂xα = J1−α

(
∂u
∂x

)
∼= J1−α

(
HT

m(x)UP1Hm(t)+ cosx
)

= HT
m(x)[P

1−α ]TUP1Hm(t)+ J1−α(cosx)
(64)

∂ β u
∂ tβ

= J1−β

(
∂u
∂ t

)
∼= J1−β

(
HT

m(x)[P
1]TUHm(t)+ cos t

)
= HT

m(x)[P
1]TUP1−β Hm(t)+ J1−β (cos t)

(65)

Substituting Eq.(64), Eq.(65) into Eq.(59), we have

HT
m(x)[P

1−α ]TUP1Hm(t)+HT
m(x)[P

1]TUP1−β Hm(t) = g(x, t) (66)

where g(x, t) = cosx− J1−α(cosx)+ cos t− J1−β (cos t).

Let cosx∼= uT
1 Hm(x), cos t ∼= uT

2 Hm(t),

where u1 = [c0,c1, . . . ,cm−1]
T , u2 = [c′0,c

′
1, . . . ,c

′
m−1]

T .

Then g(x, t)will be

g(x, t) = cosx−uT
1 P1−αHm(x)+ cos t−uT

1 P1−β Hm(t) (67)

Similarly, g(x, t)can be also expressed as follows

g(x, t)∼= HT
m(x)GHm(t) (68)

where G = [gi j]m×m.

Dispersing Eq.(66) and Eq.(68) by the points (xi, t j), i = 1,2, · · · ,m and j = 1,2,
· · · ,m, we have

HT
m [P

1−α ]TUP1Hm+HT
m [P

1]TUP1−β Hm = HT
m GHm (69)

Thus

[P−1]T [P1−α ]TU+UP1−β P−1 = [P−1]T GP−1 (70)

Eq.(70) is a Sylvester equation. We can get Uby solving Eq.(70) . Then apply-
ing Eq.(62), we obtain the approximation of u(x, t). Fig. 7 and Fig. 8 show the
numerical solutions for different values of α , β . Here, we may take m = 32. Com-
pared with the generalized differential transform method in [Odibat and Momani
(2008)], taking advantage of above technique greatly reduces computation. What’s
more, the method in this paper is easy implementation.
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Figure 7: Numerical solution of α =
3/4,β = 2/3

Figure 8: Numerical solution of α =
3/5,β = 1/3

7 Conclusion

A numerical method for the fractional partial differential equations based on Haar
wavelets operational matrix of fractional integration has been proposed. A general
procedure of forming the matrix Pα is summarized. This matrix is used to obtain
the numerical solutions of a class of fractional partial differential equations. The
convergence analysis of the Haar wavelet bases is given in section 4. The initial
fractional partial differential equations have been transformed into Sylvester equa-
tion. Some numerical examples are provided to verify the validity of the method
and the correctness of the theoretical analysis.

Compared with the Haar wavelets operational matrix method in the Ref.[ Yi and
Chen (2012)], we can also obtain the same Haar wavelets operational matrix of
fractional integration. However, we needn’t calculate the Haar wavelets opera-
tional matrix of fractional differentiation to solve the fractional partial differential
equations. Therefore, our method may greatly reduce the computation and achieve
the numerical solutions with good coincidence.
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