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BEM-FEM Coupling For Acoustic Effects On Aeroelastic
Stability Of Structures

Harijono Djojodihardjo1, Irtan Safari2

Abstract: A series of work has been carried out to develop the foundation for
the computational scheme for the calculation of the influence of the acoustic distur-
bance to the aeroelastic stability of the structure. The generic approach consists of
three parts. The first is the formulation of the acoustic wave propagation governed
by the Helmholtz equation by using boundary element approach, which then allows
the calculation of the acoustic pressure on the acoustic-structure boundaries. The
structural dynamic problem is formulated using finite element approach. The third
part involves the calculation of the unsteady aerodynamics loading on the struc-
ture using generic unsteady aerodynamics computational method. Analogous to
the treatment of dynamic aeroelastic stability problem of structure, the effect of
acoustic pressure disturbance to the aeroelastic structure is considered to consist of
structural motion independent incident acoustic pressure and structural motion de-
pendent acoustic pressure, referred to as the acoustic aerodynamic analogy. Results
are presented and compared to those obtained in earlier work.

Keywords: Boundary Element Method, Finite Element Method, Fluid-Structure
Coupling, Computational Mechanics

1 Introduction

The foundation for the computational scheme for the calculation of the influence
of the acoustic disturbance to the aeroelastic stability of the structure has been
developed in earlier work [Djojodihardjo and Tendean (2004), Djojodihardjo and
Safari(2005, 2006))]. Analogous to the treatment of dynamic aeroelastic stability
problem of structure, in which the aerodynamic effects can be distinguished into
motion independent and motion induced aerodynamic forces, the effect of acoustic
pressure disturbance to the aeroelastic structure (acousto-aero-elastic problem) can
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be viewed to consist of structural motion independent incident acoustic pressure
and structural motion dependent acoustic pressure, which is known as the scattering
pressure. This can be referred to as the acoustic aerodynamic analogy. Proceed-
ing to the formulation of BE-FE coupling to treat the fluid-structure interaction,
reference is made on the solution of structural-acoustic interaction problems using
BEM-FEM coupling given by Holström(2001) and Meddahi, Marquez, and Selgas
(2004). Applying similar approach to solve the acousto-aeroelastic problem, the
present work consists of three parts. The first part involves the formulation of the
acoustic wave propagation governed by the Helmholtz equation by using bound-
ary element approach, which then allows the calculation of the acoustic pressure
on the acoustic-structure boundaries. The governing Helmholtz equation will be
solved using Boundary Element method, following the procedure elaborated by
Wrobel (2002) and taking into considerations various techniques and development
described in many recent literature, such as those elaborated by Holström (2001),
Zhang, Gu and Chen (2009a, 2009b). Chen, Chen and Liang(2001), and Papachar-
alampopoulos, et al (2010). The second part addresses the structural dynamic prob-
lem using finite element approach. The acoustic-structure interaction is then given
special attention to formulate the BEM-FEM fluid-structure coupling. The third
part involves the calculation of the unsteady aerodynamic loading on the structure
using a conveniently chosen unsteady aerodynamics computational method, to be
utilized in the aeroelastic problem. The acoustic pressure disturbance is then su-
perposed to the aeroelastic problem, following the acoustic aerodynamic analogy.
Solution procedure can then be readily formulated. Figure 1 shows the computa-
tional strategy to treat the aeroacoustic effects on aeroelastic structure.

2 Discretization of the Helmholtz Integral Equation for the Acoustic Field

For an exterior acoustic problem, as depicted in Figure 2, the problem domain V is
the free space Vext outside the closed surface S. V is considered enclosed between
the surface S and an imaginary surface Λ at a sufficiently large distance from the
acoustic sources and the surface S such that the boundary condition on Λ satisfies
Sommerfeld’s acoustic radiation condition as the distance approaches infinity.

For time-harmonic acoustic problems in fluid domains, the corresponding boundary
integral equation is the Helmholtz integral equation [Dowling and Ffowcs-Williams
(1983)]

cp(R) =
∫
S

(
p(R)

∂g
∂n0
−g(|R−R0|)

∂ p
∂n0

)
dS (1)

where n0 is the surface unit normal vector, and the value of c depends on the lo-
cation of R in the fluid domain, and where g the free-space Green’s function. R0
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denote a point located on the boundary S, as given by

g(|R−R0|) =
e−ik|R−R0|

4π |R−R0|
(2)

To solve Eq. (1) with g given by Eq. (2), one of the two physical properties, acous-
tic pressure and normal velocity, must be known at every point on the boundary
surface. At the infinite boundary Λ, the Sommerfeld radiation condition in three
dimensions can be written as [Dowling and Ffowcs-Williams (1983)]:

lim
|R−R0|→∞

r
(

∂g
∂ r

+ ikg
)
⇒ 0 as r⇒ ∞,r = |R−R0| (3)

which is satisfied by the fundamental solution.

Figure 1: Computational strategy for the calculation of acoustic effects on aeroe-
lastic structures

The total pressure, which consists of incident and scattering pressure, serves as an
acoustic excitation on the structure. The integral equation for the total wave is given
by

cp(R)− pinc(R) =
∫
S

[
p(R)

∂g(R−R0)

∂n0
− ∂ p(r)

∂n0
g(R−R0)

]
dS (4)



208 Copyright © 2013 Tech Science Press CMES, vol.91, no.3, pp.205-234, 2013

where p = pinc + psc, and where

c =


1
1/2
Ω/4π

0

, R ∈ Vext
, R ∈ S
, R ∈ S
, R ∈ Vint

(non smooth surface)
(5)

The Helmholtz equation is then discretized by dividing the boundary surface S into
N elements. The discretized boundary integral equation becomes,

cpi− pinc−
N

∑
j=1

∫
S

pgdS = iρ0ω

N

∑
j=1

∫
S

gvdS (6)

where i indicates field point, j source point and S jsurface element j, and for con-
venience, g is defined as

g≡ ∂g
∂n

(7)

Figure 2: Exterior problem for homogeneous Helmholtz equation

Let

H i j =
∫
S j

gdS (8)

Gi j =
∫
S j

gdS (9)
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Substituting g in Eq.(2) to be the monopole Green’s free-space fundamental solu-
tion, it follows that:

Gi j =
∫
S j

gdS =
∫
S j

g
(∣∣R j−Ri

∣∣)dS =
∫
S j

eik|R j−Ri|

4π
∣∣R j−Ri

∣∣dS (10)

or, in Cartesian coordinate system,

Gi j =
∫
S j

e−ik
√
(x j−xi)

2
+(y j−yi)

2
+(z j−zi)

2

4π

√
(x j− xi)

2 +(y j− yi)
2 +(z j− zi)

2
dS (11)

where R j is the coordinate vector of the midpoint of element j and Ri is the coordi-
nate vector of the node i. In the development that follows, four-node iso-parametric
quadrilateral elements are used throughout. To calculate H i j, the derivative ḡ has
to be evaluated

H i j =
∫
S j

gdS =
∫
S j

∂g
∂ n̂

dS =
∫
S j

(∇g)T n̂dS (12)

where

n̂ =

 nx

ny

nz

 (13)

and

∇g =



− xe
−ik

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

4π

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

(
ik+ 1√

(xi−x j)
2
+(yi−y j)

2
+(zi−z j)

2

)

− ye
−ik

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

4π

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

(
ik+ 1√

(xi−x j)
2
+(yi−y j)

2
+(zi−z j)

2

)

− ze
−ik

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

4π

√
(xi−x j)

2
+(yi−y j)

2
+(zi−z j)

2

(
ik+ 1√

(xi−x j)
2
+(yi−y j)

2
+(zi−z j)

2

)


(14)

For a four-node iso-parametric quadrilateral element, the pressure p and the normal
velocity v at any position on the element can be defined by their nodal values and
linear shape functions, i.e.

v(ξ ,η) = N1v1 +N2v2 +N3v3 +N4v4 =
[

N1 N2 N3 N4
]

v1
v2
v3
v4

 (15)
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p(ξ ,η) = N1 p1 +N2 p2 +N3 p3 +N4 p4 =
[

N1 N2 N3 N4
]

p1
p2
p3
p4

 (16)

where the shape functions in the element coordinate system are,

N1 =
1
4 (ξ −1)(η−1) N2 =−1

4 (ξ +1)(η−1)
N3 =

1
4 (ξ +1)(η +1) N2 =−1

4 (ξ −1)(η +1)
(17)

The four node quadrilateral element can have any arbitrary orientation in the three-
dimensional space. Using the shape functions (20), the integral on the left hand
side of Eq. (5), considered over one element j, can be written as:

∫
S j

pgids=
∫
S j

[
N1 N2 N3 N4

]
gidS


p1
p2
p3
p4


j

=
[

h
1
i j h

2
i j h̄3

i j h
4
i j

]
p1
p2
p3
p4


j

(18)

while that on the right hand side

∫
S j

gvdS=
∫
S j

[
N1 N2 N3 N4

]
gidS


v1
v2
v3
v4


j

=
[

g1
i j g2

i j g3
i j gi j

n
]

v1
v2
v3
v4


i

(19)

where

h
k
i j =

∫
S j

Nkg jdS k = 1,2,3,4 (20)

gk
i j =

∫
S j

Nkg jdS k = 1,2,3,4 (21)

The integration in Eq. (18) and (19) can be carried out using Gauss points [Weaver
and Johnston (1987), Holström (2001)]. These Gauss points in the iso-parametric
system are defined as:

(ξ1,η1) =
1√
3
(1,−1) (ξ2,η2) =

1√
3
(1,1)

(ξ3,η3) =
1√
3
(−1,1) (ξ4,η4) =

1√
3
(−1,−1)

(22)
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Substituting equations (18) and (19) into equation (6) for all elements j, there is
obtained

ci pi− pinc−
N

∑
j=1, j 6=i

[
h

1
i j h

2
i j h

3
i j h

4
i j

]
p1
p2
p3
p4


j

= iρω0

N

∑
j=1

[
g1

i j g2
i j g3

i j g4
i j
]

vn1
vn2
vn3
vn4


j

(23)

Equation (23) can be rewritten as

N

∑
j=1

[
h1

i j h2
i j h3

i j h4
i j
]

p1
p2
p3
p4


j

= iρω0

N

∑
j=1

[
g1

i j g2
i j g3

i j g4
i j
]

vn1
vn2
vn3
vn4


j

+ pinc (24)

Hence the discretized equation forms a set of simultaneous linear equations, which
relates the pressure pi at field point i due to the boundary conditions p to v at source
surface Si of element i and the incident pressure pinc.

In matrix form:

[H]{p}= iρ0ω [G]{v}+{pinc} (25)

where, H and G are two N×N matrices of influence coefficients, while p and v
are vectors of dimension N representing total pressure and normal velocity on the
boundary elements. This matrix equation can be solved if the boundary condition
v = ∂ p

/
∂n and the incident acoustic pressure field pinc are known.

At this point, a few remarks are necessary. Proper interpretation should be given
to the diagonal terms of [H] in equation (19) as implied by the original boundary
integral (3), since these terms concern the evaluation of influence coefficient for
which the field point is located at the source element. Accordingly, [H] should be
written as

[H] = [H]D +[H]OD (26)

i.e. the diagonal and the off-diagonal part.

The matrix [H]Das implied in (26) can be written as [H]D = [H̄]D+[C] where C is
space angle constant as implied in Eq.(4) which is the quotient of Ω/4π and H̄ is
the matrix implied by the second term of eq.(23) . For a node coinciding with three
or four element corners, Ω is the space angle towards the acoustic medium, and the
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space angle for a sphere is 4π . For a smooth surface the space angle is 2π , and C =
1/2.

The boundary integral equation of equation (4) fails at frequencies coincident with
the interior cavity frequencies of homogeneous Dirichlet boundary conditions [Wro-
bel(2002)]. In the case of the formulation of the exterior problem, these frequen-
cies correspond to the natural frequencies of acoustic resonances in the interior
region. When the interior region resonates, the pressure field inside the interior
region has non-trivial solution. Since the interior problem and the exterior prob-
lem shares similar integral operators, the exterior integral equation may also break
down. The discretized equation of the [H]matrix in equation (25) becomes ill-

Figure 3: (a) Surface pressure distribution on pulsating sphere for analytical, BEM,
and BEM-CHIEF solution for one and two CHIEF point ; (b) error of the surface
pressure distribution in (a) with respect to the exact solution. 384 isometric surface
elements are utilized, and the use of one (1) CHIEF point has been able to eliminate
the spurious solution with reasonably good accuracy.



BEM-FEM Coupling For Acoustic Effects 213

conditioned when the exciting frequency is close to the interior frequencies, thus
providing an erroneous acoustic loading matrix. This problem could be overcome
by using the CHIEF [Schenck(1976), Chen, Chen and Liang(2001)] or Burton-
Miller method [Burton and Miller(1971), Chen, Chen, Kuo and Liang(2001)], or
a recent technique utilizing SVD and Fredholm alternative theorem [Chen, Chen,
Kuo and Liang(2001), Chen, Chen & Chen (2006), Chen, Chen, LEE and LEE
(2012)]. To avoid non-uniqueness problem, reference [13] describes special treat-
ment to be carried out to inspect whether the H matrix is ill-behaved or not by
utilizing SVD updating technique. The present method, however, resorts to the uti-
lization of CHIEF method, if eq. (25) ill-behaved. Such approach applied to the
present method has proved to be successful, as indicated in Figure 3.

3 BEM-FEM Acoustic-Aeroelastic Coupling (AAC)

Following [Weaver and Johnston (1987)], the BE region is treated as a super finite
element and its stiffness matrix is computed and assembled into the global stiffness
matrix, and identified as the coupling to finite elements. The state of affairs is
schematically depicted in Figure.4(a).

The utilization of FEM on the structural domain leads to a system of simultane-
ous equations which relate the displacements at all the nodes to the nodal forces.
In the BEM, on the other hand, a relationship between nodal displacements and
nodal tractions is established. Representing the elastic structure by FE model, the
structural dynamic equation of motion is given by [Bisplinghoff, Ashley and Half-
man(1955)]

[M]{ẍ}+[C]{ẋ}+[K]{x}= {F} (27)

where M, C and K are structural mass, damping and stiffness, respectively, which
are expressed as matrices in a FE model, while F is the given external forcing
function vector, and {x} is the structural displacement vector. The incorporation
of the self excited aerodynamic effects to the structural dynamics equation can be
written as [Bisplinghoff, Ashley and Halfman (1955), Rodden and Johnson(1994)
and Zona-Tech(1992)]:

[M]{ẍ}+[C]{ẋ}+[K]{x}−q∞ [A(ik)]{x}= {0} (28)

where A(ik) is an aerodynamic influence coefficient after applying aero-structure
coupling from the control points of aerodynamic boxes to the structural finite ele-
ment grid points as elaborated in [Djojodihardjo and Safari (2006)].

Taking into account the acoustic pressure p on the structure at the fluid-structure
interface as a separate excitation force, the acoustic-structure problem can be ob-
tained from Eq.(28) by introducing a fluid-structure coupling term given by [L]{p}.
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Figure 4: (a).Schematic of Fluid-Structure Interaction Domain (b).Schematic of
FE-BE problem representing quarter space problem domains for half wing

It follows that

[M]{ẍ}+[C]{ẋ}+[K]{x}−q∞ [A(ik)]{x}+[L]{p}= {F} (29)

where L is a coupling matrix of size M×N in the BEM/FEM coupling thus for-
mulated. M is the number of FE degrees of freedom and N is the number of BE
nodes on the coupled boundary. For the BE part of the surface at the fluid-structure
interface a, Eq.(19) can be utilized.
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The global coupling matrix L transforms the acoustic fluid pressure acting on the
nodes of boundary elements on the entire fluid-structure interface surface a to nodal
forces on the finite elements of the structure. Hence L consists of n assembled local
transformation matrices Le, given by

Le =
∫
Se

NT
F nNBdS (30)

in which NF is the shape function matrix for the finite element and NB is the shape
function matrix for the boundary element. It can be shown that:

NF =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 [Ni] (31)

The rotational parts in NF are neglected since these are considered to be small in
comparison with the translational ones in the BE-FE coupling, consistent with the
assumptions in structural dynamics as, for example, stipulated in [Bisplinghoff,
Ashley and Halfman (1955)].

For the normal fluid velocities and the normal translational displacements on the
shell elements at the fluid-structure coupling interface, a relationship, which takes
into account the velocity continuity over the coinciding nodes, should be estab-
lished. This relationship is given by

v = iω (T.x) (32)

Similar to L, T (n × m) is also a global coupling matrix that connects the normal
velocity of a BE node with the translational displacements of FE nodes obtained
by taking the transpose of the boundary surface normal vector n[Beer and Watson
(1992), Holström (2001)]. The local transformation vector Te can then be written
as:

Te = nT (33)

The presence of an acoustic source can further be depicted by Figure4(b). Three
regions are considered, i.e. a,b and c; region a is the fluid-structure interface region,
where FEM mesh and BEM mesh coincide and region b and c is the region where
all of the boundary conditions (pressure or velocity) are known.

For the coupled FEM-BEM regions, BEM equation can now be written as: H11 H12 H13
H21 H22 H23
H31 H32 H33


pa

pb
pc

= iρ0ω

 G11 G12 G13
G21 G22 G23
G31 G32 G33


va

vb
vc

+


pinca

pincb

pincc

 (34)
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Considering va = iω (T.x), BEM equation can be modified as:

 H11 H12 H13
H21 H22 H23
H31 H32 H33


pa

pb
pc

= iρ0ω

 G11 G12 G13
G21 G22 G23
G31 G32 G33


iω [T]x
vb
vc

+


pinca

pincb

pincc


(35)

or:

H11 pa +H12 pb +H13 pc =−ρ0ω2G11Tx+ iρ0ωG12vb + iρ0ωG13vc +{pinca}
H21 pa +H22 pb +H23 pc =−ρ0ω2G21Tx+ iρ0ωG22vb + iρ0ωG23vc +{pincb}
H31 pa +H32 pb +H33 pc =−ρ0ω2G31Tx+ iρ0ωG32vb + iρ0ωG33vc +{pincc}

(36)

If the pressure boundary condition on b (pb), velocity boundary condition on c (vc),
and the incident pressure on a,b and c are known, by taking to the left side all the
unknown the above equation can be written as:

ρ0ω2G11Tx+H11 pa− iρ0ωG12vb +H13 pc =−H12 pb + iρ0ωG13vc +{pinca}
ρ0ω2G21Tx+H21 pa− iρ0ωG22vb +H23 pc =−H22 pb + iρ0ωG23vc +{pincb}
ρ0ω2G31Tx+H31 pa− iρ0ωG32vb +H33 pc =−H32 pb + iρ0ωG33vc +{pincc}

(37)

Since the pressure p on FEM equation lies in region a, Eq. (22) can be written as

[M]{ẍ}+[C]{ẋ}+[K]{x}−q∞ [A(ik)]{x}+[L]{pa}= {F} (38)

where pa is the total acoustic pressure resulting from the application of acoustic
disturbance force to the structure, which consists of the incident acoustic pressure
pinc and scattering acoustic pressure psc. The scattering acoustic pressure will be
dependent on the dynamic response of the structure due to the incident acoustic
pressure. Following the general practice in structural dynamics, solutions of Eq.
(31) are sought by considering synchronous motion with harmonic frequency ω .
Correspondingly, Eq. (31) reduces to:[
K+ iωC−ω

2M
]
{x̄}−q∞ [A(ik)]{x}+[L]{ p̄a}=

{
F
}

(39)

where

x = x̄eiωt ; pa = p̄aeiωt (40)
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or, dropping the bar sign for convenience, but keeping the meaning in mind, Eq.
(39) can be written as[
K+ iωC−ω

2M
]
{x}−q∞ [A(ik)]{x}+[L]{pa}= {F} (41)

Combining Eq. (37) and (41), the coupled BEM-FEM equation can then be written
as:
[
K+ iωC−ω2M

]
−q∞ [A(ik)]{x} L 0 0

ρ0ω2G11T H11 −iρ0ωG12 H13
ρ0ω2G21T H21 −iρ0ωG22 H23
ρ0ω2G31T H31 −iρ0ωG32 H33




x
pa

vb
pc


=


F
−H12 pb + iρ0ωG13vc + pinca

−H22 pb + iρ0ωG23vc + pincb

−H32 pb + iρ0ωG33vc + pincc


(42)

This equation forms the basis for the treatment of the fluid-structure interaction
in a unified fashion. The solution vector consisting of the displacement vector of
the structure and total acoustic pressure on the boundaries of the acoustic domain,
including the acoustic-structure interface, can be obtained by solving Eq. (42) as a
dynamic response problems.

4 Further Treatment for AAC; Acoustic-Aerodynamic Analogy

At this point, the solution approach philosophy is in order. Analogous to the
treatment of dynamic aeroelastic stability problem of structure, in which the aero-
dynamic effects can be distinguished into motion independent (self-excited) and
motion induced aerodynamic forces, the effect of acoustic pressure disturbance to
the aeroelastic structure (acousto-aero-elastic problem) can be viewed to consist of
structural motion independent incident acoustic pressure (excitation acoustic pres-
sure) and structural motion dependent acoustic pressure, which is known as the
scattering pressure. However the scattering acoustic pressure is also dependent
on the incident acoustic pressure. The consequence of such treatment has been
adopted in the above section and will further be implemented in the subsequent
development.

For aeroelastic calculation purposes, further treatment to simplify Eq. (42) will
be carried out. Since the pressure boundary condition on b (pb= 0) and velocity
boundary condition on c (vc = 0), Eq. (37) can be written as:
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ρ0ω
2G11Tx+H11 pa− iρ0ωG12vb +H13 pc = pinca (43a)

ρ0ω
2G21Tx+H21 pa− iρ0ωG22vb +H23 pc = pincb (43b)

ρ0ω
2G31Tx+H31 pa− iρ0ωG32vb +H33 pc = pincc (43c)

Since G22 and H33 are square matrices, equation (43b) and (43c) can be written as

vb =−
i

ρ0ω
[G22]

−1 (
ρ0ω

2G21Tx+H21 pa +H23 pc− pincb

)
(44a)

pc =− [H33]
−1 (

ρ0ω
2G31Tx+H31 pa− iρ0ωG32vb− pincc

)
(44b)

Substituting equation (44b) into equation (43b)

ρ0ω
2A21Tx+B21 pa− iρ0ωA22vb +B23 pincc− pincb = {0} (45)

where

A21 =
(

G21−H23 [H33]
−1 G31

)
B21 =

(
H21−H23 [H33]

−1 H31

)
B23 =

(
H23 [H33]

−1
)

A22 =
(

G22−H23 [H33]
−1 G32

) (46)

Since A22 is square matrix, Eq. (45) can be written as:

vb =−
i

ρ0ω
[A22]

−1 (
ρ0ω

2A21Tx+B21 pa +B23 pincc− pincb

)
(47)

Substituting equation (44a) into equation (43c)

ρ0ω
2C31Tx+A31 pa +A33 pc +B32 pincb− pincc = {0} (48)

where

C31 =
(

G31−G32 [G22]
−1 G21

)
A31 =

(
H31−G32 [G22]

−1 H21

)
A33 =

(
H33−G32 [G22]

−1 H23

)
B32 =

(
G32 [G22]

−1
) (49)
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Since A33 is square matrix, Eq. (48) can be written as:

pc =− [A33]
−1 (

ρ0ω
2C31Tx+A31 pa +B32 pincb− pincc

)
(50)

Substituting Eq. (47) and (50) into equation (43a)

ρ0ω
2D11Tx+E11 pa +F12 pincb +F13 pincc = {pinca} (51)

where

D11 =
(

G11−G12 [A22]
−1 A21−H13 [A33]

−1 C31

)
E11 =

(
H11−G12 [A22]

−1 B21−H13 [A33]
−1 A31

)
F12 = G12 [A22]

−1−H13 [A33]
−1 B32

F13 = H13 [A33]
−1−G12 [A22]

−1 B23

(52)

Since E11 is square matrix

pa =− [E11]
−1 (

ρ0ω
2D11T{x}− pinca +F12 pincb +F13 pincc

)
(53)

Matrix E11 and D11 are also a square matrix, finally by substituting equation (53)
into equation (41) BEM-FEM aero-acoustic-structure coupling can be obtained as:[

K+ iωC−ω2M
]
{x}−q∞ [A(ik)]{x}

+ [L]
(
− [E11]

−1 (
ρ0ω2D11T{x}− pinca +F12 pincb +F13 pincc

))
= {F}

(54)

Incident pressure on region b and c will not influence the stability problem asso-
ciated with the structures, and may at this point be disregarded. Hence, without
considering damping matrix C Eq. (54) simplifies to:[

K−ω2M
]
{x}−q∞ [A(ik)]{x}

−ρ0ω2 [L] [E11]
−1 [D11] [T]{x}=− [L] [E11]

−1 {pinca}+{F}
(55)

or[
K−ω

2M
]
{x}−q∞ [A(ik)]{x}−ρ0ω

2 [Facsc (kw)]{x}= {Facinc (kw)}+{F} (56)

where

[Facsc (kw)] = [L] [E11]
−1 [D11] [T]

{Facinc (kw)}=− [L] [E11]
−1 {pinca}

(57)

Eq. (56) will not be solved directly since the size of the mass and stiffness matrices
of the aircraft model are very large. Instead one uses the modal approach where the
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structural deformation {x} is transformed to the generalized coordinate {q} given
by the following relation:

x = Φq (58)

where Φ is the modal matrix whose columns contain the lower order natural modes.
Pre multiplying by ΦT and converting dynamic pressure q∞ into reduced frequency
(k) as elaborated in [Djojodihardjo and Safari (2006)], Eq. (56) can then be written
as:

Φ
T

[
K−ω

2

(
M+

ρ

2

(
L
k

)2

[A(ik)]+ρ0 [Facsc (kw)]

)]
Φ{q}=

Φ
T {Facinc (kw)}+Φ

T {F}
(59)

since all of the acoustic terms are functions of wave number (kw) Eq. (59) can be
solved by utilizing iterative procedure.

Incorporation of the scattering acoustic term along with the aerodynamic term in
the second term of Eq.(59) can be regarded as one manifestation of the acoustic-
aerodynamic analogy followed in this approach.

Further method of approach for the solution of the acousto-aeroelastic problem
is then dealt with. Following the same procedure as developed in earlier work
[Djojodihardjo and Tendean (2004), Djojodihardjo and Safari (2005)], the acoustic
excitation is incorporated by coupling it to the unsteady aerodynamic load in the
flutter stability formulation. Linearity and principle of superposition has been as-
sumed. Hence the acoustic loading can be superposed to the aerodynamic loading
on the structure, and form the modified aeroelastic equation (acousto-aeroelastic
equation) of the structural dynamic problem associated with acoustic and aerody-
namic excitation. In the earlier work, tacit consideration is only given to the inci-
dent acoustic pressure as the acoustic excitation, without considering the acoustic
scattering effects, and without considering L. The incident pressure pinc was also
assumed to belong to a certain class that allows its incorporation in the aerodynam-
ics term. Thus eq. (42) was treated in a decoupled fashion. Such approach has
given instructive results.

In the present development, rigorous consideration has been devoted to the acoustic
scattering problem. Two generic approaches to solve Eq. (42) can be followed. The
first is to solve Eq.(42) as a stability equation in a ”unified treatment”, and the dis-
turbance acoustic pressure already incorporates the total pressure, i.e. the incident
plus the scattering acoustic pressure. The treatment of the incident acoustic pres-
sure pinc in Eq. (59) follows similar approach adopted for the scattering acoustic
pressure by tuning pinc so that it behaves like the aerodynamic terms in the modal
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Eq.(59). This is considered logical for the problem considered since the intention
is to look at its enhancement effect to the aerodynamic one, thus only a class of pinc

will meet the eigenvalue requirements of Eq.(59). This approach will be elaborated
further in the following section. The second generic approach is to solve Eq.(42)
as a dynamic response problem due to acoustic excitation. The left hand side of
Eq.(42) incorporates the scattering acoustic pressure term. Appropriate algebraic
manipulation is carried out to allow modal approach of pinc[Djojodihardjo (2007)].

5 Acoustically Modified Flutter Formulation (Stability Problem) using
(K-Method)

For the calculation of the influence of acoustic effect on aeroelastic stability prob-
lem, Eq. (59) can be further formulated by making special treatment to the acoustic
incident force and without other external forces (F=0) in the right hand side. This
treatment can be made by “tuning” that term to behave like the aerodynamic terms
in generalized variables, in addition to the treatment of the scattering acoustic pres-
sure. This assumption has been made by assuming linearity and principle of super-
position. This assumption allows the superposition of the acoustic loading to the
aerodynamic loading on the structure, and form the modified aeroelastic equation
(acousto-aeroelastic equation) of the structural dynamic problem associated with
acoustic and aerodynamic excitation. Define{

F∗acinc
(kw)

}
= Φ

T {Facinc (kw)} (60)

Then Eq.(59) can be written as:[
K∗−ω

2

(
M∗+

ρ

2

(
L
k

)2

[A∗ (ik)]+ρ0
[
F∗acsc

(kw)
])]
{q}= ω

2 [F∗∗acinc
(kw)

]
{q}

(61)

where

M∗ = Φ
TMΦ = generalized mass matrix (62a)

K∗ = Φ
TKΦ = generalized stiffness matrix (62b)

A∗(ik) = Φ
TA(ik)Φ = generalized aero matrix (62c)

F∗acsc
(kw) = Φ

T [Facsc (kw)]Φ (62d)

(
F∗∗acinc

)
i =

(
F∗acinc

)
i

ω2
i qi

(62e)
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As modified aeroelastic stability problem, Eq.(61) can be written as[
K∗−ω

2

(
M∗+

ρ

2

(
L
k

)2

[A∗ (ik)]+ρ0
[
F∗acsc

(kw)
]
+
[
F∗∗acinc

(kw)
])]
{q}= {0}

(63)

which can be simplified as:

[M∗∗−λK]q = 0 (64)

where

[M∗∗] =

[
K∗−ω

2

(
M∗+

ρ

2

(
L
k

)2

[A∗ (ik)]+ρ0
[
F∗acsc

(kw)
]
+
[
F∗∗acinc

(kw)
])]

(65)

and

λ =
1+ ig

ω2 (66)

Eq. (65) is solved as an eigenvalue problem for a series of values for parameters
kand ρ . Since M∗∗ is in general a complex matrix, the eigenvalues λ are also
complex numbers. For n structural modes, there are n eigenvalues corresponding
to n modes at each k. The air speed, frequency and structural damping are related
to the eigenvalue λ as follows:

ω f =
1√

Re(λ )
(67a)

U f =
ω f b

k
(67b)

g =
Im(λ )

Re(λ )
(67c)

To evaluate the flutter speed, V − g and V − f diagrams are constructed [Bis-
plinghof, Ashley and Halfman (1955), Dowell (ed) (1980)]. The V-g diagram plots
the structural damping as a function of velocity, and the V-f diagram plots the fre-
quency as a function of velocity. The flutter critical speeds is indicated in the V −g
diagram as the lowest velocity V at which the gcurve crosses the V axis from its
negative (stable region) to its positive value (unstable region), i.e. when g= 0.
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6 Numerical Results

6.1 Acoustic Boundary Element Simulation

In order to verify the validity the boundary elements acoustic models, a numeri-
cal test case is conducted to test the validity of the method. To avoid complexity,
the acoustic source is assumed to be a monopole source which creates the acous-
tic pressure. This acoustic pressure is interacting with the unsteady aerodynamic
forces.

For a pulsating sphere an exact solution for acoustic pressure a at a distance r from
the center of a sphere with radius a pulsating with uniform radial velocity Ua is

p(r) =
a
r

Ua
iz0ka

1+ ika
e−ik(r−a) (68)

where z0 is the acoustic characteristic impedance of the medium and k is the wave
number.

Figure 5 shows the discretization of the surface elements of an acoustics pulsating
sphere representing a monopole source. BEM calculation for scattering pressure
from acoustic monopole source will be compared with exact results. Figure 6 which
shows the excellent agreement between the computational procedure developed and
the exact one.

Figure 5: Discretization of one octant pulsating sphere
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Figure 6: Comparison of monopole source exact and BEM scattering pressure re-
sults
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The calculation depicted in Figure 6 was based on the assumption of f=10 Hz,
ρ=1.225 Kg/m3, and c=340 m/s. The excellent agreement of these results with
exact calculation serves to validate the developed MATLAB® program for further
utilization.

6.2 Coupled BEM-FEM Numerical Simulation

The BAH wing structure [Bisplinghoff, Ashley and Halfman (1955)] and the sur-
rounding boundary representing quarter space of the problem are discretized as
shown in Figure 7. The problem domain is divided into two parts. First the near
field region is a quarter space with radius of two times the BAH wing span and
is relatively more densely discretized; second, the intermediate to far field region
is a quarter space with radius ten times the BAH wing span and is less densely
discretized compared to the near field region, and is modeled with BEM only.

Figure 7: 3-D domain representing of BAH wing structure and its surrounding
boundary

The BAH wing which is modeled as FEM and BEM is subjected to an excitation
due to an acoustic monopole source; the acoustic medium is air with density ρ

=1.225 kg/m3 and the sound velocity is c = 340 m/s. The monopole acoustic source
is placed at the intersecting line of the half span and half chord planes of the BAH
wing structure, and at about 0.1 m above the wing surface. The monopole source
has the frequency of 10 Hz, radius of a = 0.1 m. The result of applying Eq.(62) for F
= 0 is presented as the incident, total and scattering pressures drawn as color-coded
diagrams in Figure 8, which qualitatively exhibit the expected behavior. It could be
added that in the example considered, CHIEF method has also been utilized in the
BEM part to take care of the fictitious frequency problem, so that such phenomena
can be eliminated in the BEM-FEM acoustic-structure coupling.
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Figure 8: Pressure distribution on symmetric equivalent BAH wing; a) Incident
pressure [dB] from monopole acoustic source as an acoustic excitation and b) de-
formation and total acoustic pressure response [dB]
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6.3 Flutter Calculation for Coupled Unsteady Aerodynamic and Acoustic Ex-
citations

Figure 9: (a) Unsteady aerodynamics pressure distribution (Cp), and (b) Mode
shape of the wing structure when flutter occurs

In earlier work [Djojodihardjo and Tendean (2004), Djojodihardjo and Safari (2005)],
the acoustic excitation is incorporated by coupling it to the unsteady aerodynamic
load in the flutter stability calculation. Linearity and principle of superposition has
been assumed.

Hence the acoustic loading can be superposed to the aerodynamic loading on the
structure, and form the modified aeroelastic equation (acousto-aeroelastic equa-
tion) of the structural dynamic problem associated with acoustic and aerodynamic
excitation. In the earlier work, tacit consideration was only given to the incident
acoustic pressure as the acoustic excitation, without considering the acoustic scat-
tering effects, and without considering L.

The incident pressure pinc was also assumed to belong to a certain class that allows
its incorporation in the aerodynamics term. Thus Eq.(62) was treated in a decoupled
fashion, Such approach has resulted in the delay of the inception of flutter. Figure
9 shows the unsteady aerodynamics pressure (Cp) and mode shape of the structure
when flutter occurs.

In the present development, rigorous consideration has been devoted to the acoustic
scattering problem. by solving Eq.(62) as a stability equation in a ”unified treat-
ment”, and the disturbance acoustic pressure already incorporates the total pressure,
which has been “tuned” to behave like the aerodynamic terms in the modal Eq.(62).
The solution is exhibited as Figure10, which shows that the flutter inception is de-
layed at a higher speed also.
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Figure 10: Damping and frequency diagram for BAH wing calculated using V-g
method written in MATLAB® for the acousto-aeroelastic problem (the total acous-
tic pressure already incorporates the scattering pressure).

7 AAC Parametric Study

The computational scheme for the distribution of acoustic pressure on the surface
of the pulsating sphere, the total acoustic pressure for coupled BEM-FEM prob-
lem, and the influence of placing an acoustic monopole above a three dimensional
wing (a BAH wing) to the flutter velocity, by using coupled BEM-FEM formula-
tion for the acoustic incident pressure induced by the monopole source have been
validated using NASTRAN® [Rodden and Johnston(1994)] and ZAERO® [Zona
Tech (2004)]. The calculation of the unsteady aerodynamic terms in Eq.(57) is car-
ried out using Doublet Point Method as elaborated in [Houbolt (1969), Ueda and
Dowell (1982)], and developed into a routine written in MATLAB® , as elaborated
in [Djojodihardjo and Safari (2006)].

It is of interest to look into some simple applications to obtain the usefulness of
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the method. Along this line, several parametric studies are carried out. The first
study looks into the influence of the intensity of the acoustic source on the flutter
stability by varying its location above the wing. Figure11(a) indicates that the most
effective way in placing the acoustic monopole source is on the tip of the wing and
Figure11(b) indicates that the most effective way in placing the acoustic monopole
source is on the trailing edge of the wing.

Figure 11: The Influence of Acoustic Monopole Source Intensity on flutter velocity
as a function of Monopole position; (a) at midchord along wing span, (b) at wing-
tip section along the chord

Next the influence of the distance between the acoustic source and the wing on
the flutter stability is investigated. Figure12 exhibits the results of such study and
indicates that the most effective way in placing the acoustic monopole source is on
the nearest distance from the wing. These results serve to indicate the logical trend
of such problem, which will be useful for further practical applications. However,
the favorable effect of the introduction of a monopole source closer to the wing
should be accompanied by the increase of its strength.

8 Concluding Remarks

The computational scheme for the calculation of the influence of the acoustic dis-
turbance to the aeroelastic stability of a structure has been developed using a unified
treatment by applying acoustic aerodynamic analogy.

By considering the effect of acoustic pressure disturbance to the aeroelastic struc-
ture (acousto-aero-elastic problem) to consist of structural motion independent inci-
dent acoustic pressure and structural motion dependent acoustic pressure, the scat-
tering acoustic pressure can be grouped to-gether in the aerodynamic term of the
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Figure 12: The Influence of Acoustic Monopole Source Strength on Flutter Veloc-
ity as a function of the distance of the Monopole Source above the wing from the
tip-chord point of the wing-tip section

aeroelastic equation. By tuning the incident acoustic pressure, it can also be in-
corporated along with the scattering acoustic term, forming the acousto-aeroelastic
stability equation. For this purpose the topology of the problem domain has been
defined to consist of those subjected to acoustic pressure only and that subject to
acoustic structural coupling, which is treated as acousto-aeroelastic equation. Us-
ing BE and FE as appropriate, an integrated formulation is then obtained as given
by the governing Eq. (42), which relates all the combined forces acting on the
structure to the displacement vector of the structure. The solution of Eq. (42) –
and after using modal approach in structural dynamics, Eq.(59) - can be obtained
by solving Eq.(63) as a stability equation in a ”unified treatment”, and the dis-
turbance acoustic pressure already incorporates the total pressure ( incident plus
scattering pressure), which has been “tuned” to behave like the aerodynamic terms
in the modal Eq.(61). Such approach allows the application of the solution of the
acousto-aeroelastic stability equation in the frequency domain using V-g method.
Such technique forms the first generic approach to solve Eq.(42). Alternatively, the
acousto-aeroelastic equation part can also be treated as a dynamic response prob-
lem, which forms the second generic approach and which has been dealt with in
[Djojodihardjo and Safari (2006) and [Djojodihardjo (2007)].

The method developed has been demonstrated to be capable of solving the acoustic-
aero-elastomechanic coupling problem. Specifically, the results of both generic
approaches to the example worked out show that the presence of acoustic excitation
at a frequency near the original flutter frequency can delay the flutter inception, thus
confirming our expectation. Further improvements in the computational technique
based on efficient algorithm and specific numerical behavior may take advantage
of the work of Schanz (2010) and Wu, Liu and Jiang (2012).
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List of Symbols

[AIC] : Aerodynamics Influence Coefficient

[A(ik)] : Unsteady Aerodynamics Matrix

b : wing chord/span chosen for convenience

[C] : Viscous Damping

c : constant for BEM equation, or speed of sound

[F] : External Forces

Gi j : influence coefficient matrices

g : free space green function

Hi j : influence coefficient matrices

[K] : Stiffness Matrix

k : reduced frequency

kw : wave-number, in the Helmholtz equation

[L] : fluid-structure coupling matrix

[M] : Mass Matrix

N : shape function, as implied by the context

n0 : surface normal vector

p : acoustic pressure

pinc : incident acoustic pressure

psc : scattering acoustic pressure

q : generalized coordinates

q∞ : dynamic pressure of the fluid surrounding the structure

R0 : a point in boundary surface

S : bounding surface

Vf : flutter speed

v : normal velocity vector

δ : Kronecker’s delta function

λ : wave length

ρ : air density
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