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Two-dimensional elastic wave propagation analysis in
finite length FG thick hollow cylinders with 2D nonlinear

grading patterns using MLPG method

S.M. Moussavinezhad1, Farzad Shahabian1, Seyed Mahmoud Hosseini2,3

Abstract: In this article, the propagation of elastic wave is studied in two di-
mensional functionally graded thick hollow cylinder with finite length subjected to
mechanical shock loading, considering two dimensional variations for mechanical
properties. The meshless local Petrov-Galerkin (MLPG) method is developed to
solve the boundary value problem. The Newmark finite difference method is used
to treat the time dependence of the variables for transient problems. The FG cylin-
der is considered to be under axisymmetric conditions. The mechanical properties
of FG cylinder are assumed to vary across thickness and length of FG cylinder in
terms of two dimensional volume fractions as nonlinear functions. A weak formu-
lation for the set of governing equations is transformed into local integral equations
on local sub-domains by using a Heaviside test function. Nodal points are regularly
distributed along the radius and length of the cylinder and each node is surrounded
by a circular sub-domain to which a local integral equation is applied. The wave
fronts of displacements are illustrated for various values of volume fraction expo-
nents in 2D domain at various time intervals. The 2D propagation of elastic wave
can be tracked through radial and axial directions in 2D functionally graded cylin-
der.
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1 Introduction

As a new kind of composite materials, functionally graded materials (FGMs) are
widely used in some industries with thermal applications. FGMs are made by
combination of two different materials such as ceramic and metal, which its mi-
crostructure and mechanical properties are vary continuously and smoothly from
one material to the other. One of the most important research topics in FGMs is
wave propagation and dynamic analysis of structures made of FGMs, which some
researches have been carried out in the recent years. The stress wave propagation
[Liu, Han, and Lam (1999)], analysis of one dimensional wave propagation [Chiu
and Erdogan (1999)], designing of FGMs based on management of stress waves
[Bruck (2000)] and dynamic analysis of FG structures under impulsive loading [Li,
Ramesh, and Chin (2001)] can be listed as some of previous works. By using lami-
nate plate theory, the behaviors of waves including scattering were studied in a FG
elastic plate by Chen et al. [Hosseini, Akhlaghi, and Shakeri (2007)]. Hosseini
et al. [Chen, Wang, and Bao (2007)] studied on wave propagation and dynamic
analysis of FG thick hollow cylinder under mechanical shock loading using lin-
ear FG element for a hybrid numerical method based on Galerkin finite element
and Newmark finite difference methods. Also, there are some analytical methods
to simulate the elastic wave propagation in FG structures that one of them was
presented by Hosseini and Abolbashari [Hosseini and Abolbashari (2010)]. Their
presented analytical method was based on the combination of Bessel’s functions.
From engineering perspective, to have a safe design based on high reliability in
structures especially in FG structures, some uncertainties in materials should be
considered in engineering analysis. Some researches have focused on stochastic
analysis of elastic and thermal wave propagation in structures and also dynamic
analysis considering uncertainty in mechanical properties. The thermoelastic wave
propagation was stochastically studied using an hybrid numerical method (GFE,
NFD and Monte Carlo simulation) for isotropic and functionally graded thick hol-
low cylinder by Hosseini and Shahabian [Hosseini and Shahabian (2011b), Hos-
seini and Shahabian (2011a)]. Recently, functionally graded materials with two
dimensional grading patterns are employed in some industrial applications. Dy-
namic analysis of functionally graded thick hollow cylinder with finite length and
two-dimensional grading patterns under impact loading was studied by Asgari et al
[Asgari, Akhlaghi, and Hosseini (2009)]. In their work, the finite element method
with graded material properties within each element is used to model the structure,
and the Newmark direct integration method is employed to solve the problem in
time domain. The hybrid numerical method based on Galerkin finite element (for
spatial variables) and Newmark finite difference (for time domain) was success-
fully used for heat wave propagation and coupled thermoelasticity without energy
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dissipation in functionally graded thick hollow cylinder of infinite and finite lengths
based on Green–Naghdi theory by Hosseini et al. [Hosseini, Akhlaghi, and Shakeri
(2008), Hosseini (2009)].

Some mesh-free and meshless methods such as meshless local Petrov-Galerkin
(MLPG) method have become very useful and effective solving methods in en-
gineering problems because these methods don’t require to the mesh generation on
the domain. The MLPG concept was presented first by Atluri and Zhu [Atluri and
Zhu (1998)]. They are solved elasto-static problems in two dimensional domains.
A local boundary integral equation formulation in Laplace-transform domain with
a meshless approximation, based on the meshless local Petrov-Galerkin (MLPG)
method, was successfully implemented by Sladek et al. [Sladek, Sladek, and Zhang
(2003)] to solve transient elastodynamic initial-boundary value problems in contin-
uously non-homogeneous solids. In their work, the moving least squares (MLS)
method is used for interpolation and the modified fundamental solution as the test
function. The bending, buckling and free vibration of Timoshenko nanobeams were
studied using the elasticity theory of Eringen and a meshless method by Roque
et al. [Roque, Ferreira, and Reddy (2011)]. Two MLPG formulations based on
Heaviside step functions and Gaussian weight functions were presented to ana-
lyze the dynamic behaviour of elastic and elastoplastic solids by Soares Jr. et al.
[Soares, Sladek, and Sladek (2009)]. For both their formulations, a MLS inter-
polation scheme was adopted, rendering a matricial time-domain system of second
order ordinary differential equations. In another research, they [Soares, Sladek, and
Sladek (2010)] used their presented method for analysis of the dynamic behavior
of elastic and elastoplastic solids. Also, the propagation of thermoelastic waves
in a FG thick hollow cylinder and coupled thermoelasticity analysis considering
without and with Gaussian uncertainty in mechanical properties were studied by
Hosseini et al. [Hosseini, Sladek, and Sladek (2011), Hosseini, Shahabian, Sladek,
and Sladek (2011)] using meshless local Petrov-Galerkin (MLPG) method.

It is very difficult to simulate the breakage of material into a large number of frag-
ments as some mesh based methods such as FEM is essentially based on continuum
mechanics, in which the elements formulated cannot be broken. The mesh genera-
tion is usually leads to a misrepresentation of the breakage path. Serious error can
occur because the nature of mechanical properties in FGMs is nonlinear, and there-
fore the results are highly path dependent. So, MLPG method can be successfully
used for dynamic analysis of FGMs. In other words, MLPG method is a power-
ful numerical method such as other methods (for example: finite element method,
generalized finite difference method,. . . ).

In this paper, two dimensional elastic wave propagation and dynamic analysis are
studied in a functionally graded thick hollow cylinder with finite length and two di-
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mensional grading patterns using meshless local Petrov-Galerkin (MLPG) method.
The mechanical properties of 2D-FG cylinder are simulated by using a nonlinear
power function with two dimensional volume fractions. The elastic wave fronts
are tracked in two dimensional (r-z) domains for various kinds of grading pat-
terns. Also, the time history of displacement and propagation of elastic waves
are discussed in details for various values of exponents in two dimensional volume
fractions. The MLPG method shows that it is a very effective method with high
accuracy for wave propagation analysis of FGMs with one and two dimensional
grading patterns.

2 2D functionally graded materials

In 1D functionally graded cylinder, the mechanical properties are varied through
one direction for example in cylinder through radial direction (thickness of cylin-
der). In new generation of 2D functionally graded materials, the mechanical prop-
erties vary through two directions. In this study, the mechanical properties are as-
sumed to vary through radial and axial direction of FG cylinder. Two-dimensional
FGMs are usually made by continuous gradation of three or four distinct mate-
rial phases where one or two of them are ceramics and the others are metal alloy
phases, and the volume fractions of the constituents vary as a two dimensional
nonlinear functions. The 2D-FG cylinder is considered to be made of a combined
metal-ceramic material for which the mixing ratio is varied continuously in the r–
z directions from pure ceramic to pure metal.

In the present problem, the inner surface of the 2D-FG cylinder is made of two
distinct ceramics and the outer surface of two metals, which the terms “c1”, “c2”,
“m1” and “m2”stand for first ceramic, second ceramic, first metal and second metal,
respectively. Also, it is assumed that the terms “ri”, “ro” and “L” are inner radius,
outer radius and length of 2D-FG cylinder, respectively. To show the variation
of mechanical properties through two directions (r− z), the nonlinear two dimen-
sional volume fractions are employed to simulate the gradation of all mechanical
properties. The volume fraction nonlinear functions can be explained as follows

Vc1 = [1− λ
nr
r ]
[
1− λ

nz
z
]

(1)

Vc2 = [1− λ
nr
r ]
[
λ

nz
z
]

(2)

Vm1 = [λ nr
r ]
[
1− λ

nz
z
]

(3)

Vm2 = [λ nr
r ]
[
λ

nz
z
]

(4)

where
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λ
nr
r =
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r− ri

ro− ri

)nr

(5)

λ
nz
z =

( z
L

)nz
(6)

The material properties at an arbitrary point, (r,z) in the 2D-FGM cylinder can be
simulated using the rule of mixtures as follows

P(r,z) = Pc1Vc1 + Pc2Vc2 +Pm1Vm1 + Pm2Vm2 (7)

P(r,z) = Pc1 [1− λ nr
r ]
[
1− λ

nz
z
]
+Pc2 [1− λ nr

r ]
[

λ
nz
z
]

+Pm1 [λ
nr
r ]
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]
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nr
r ]
[
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z
] (8)

The term “P(r,z)” can be considered as modules of elasticity “E” and density “ρ”.

E (r,z) = Ec1 [1− λ nr
r ]
[
1− λ

nz
z
]
+Ec2 [1− λ nr

r ]
[
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nz
z
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r ]
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ρ (r,z) = ρc1 [1− λ nr
r ]
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nz
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]
+ρc2 [1− λ nr

r ]
[
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nz
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+ρm1 [λ
nr
r ]
[
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nz
z
]
+ ρm2 [λ

nr
r ]
[
λ

nz
z
] (10)

The presented volume fractions can be calculated at bounding surfaces and corners
of cylinder as Table 1 for the presented problem in this paper. The basic constituents
of the 2D-FGM cylinder are presented in Table 2.

Table 1: The values of volume fractions at bounding surfaces and corners of cylin-
der

z = 0 z = L
Vc1 Vc2 Vm1 Vm2 Vc1 Vc2 Vm1 Vm2

r = r i 1 0 0 0 0 1 0 0
r = ro 0 0 1 0 0 0 0 1
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Table 2: Basic constituents of the 2D-FGM cylinder [Asgari, Akhlaghi, and Hos-
seini (2009)]

Constituents Material E(GPa) ρ (kg/m3)
m1 Ti6Al4V Em1 = 115 ρm1 = 4515
m2 Al 1,100 Em2 = 69 ρm2 = 2715
c1 SiC Ec1 = 440 ρc1 = 3210
c2 Al 2O 3 Ec2 = 300 ρc2 = 3470

3 Mathematical formulations

To show the capability of MLPG method for two dimensional wave propagation
analysis in FGMs with two directional grading patterns, the following formulations
and modeling are used in this article. Although, the variable kinematics models
based on some unified formulation such as very well-known Carrera Unified For-
mulation (CUF) could be used to assess numerically the proposed technique [Car-
rera and Ciuffreda (2005), Carrera (2003), Rodrigues, Roque, Ferreira, Cinefra,
and Carrera (2012)]. This work furnishes a ground to develop the application of
MLPG for dynamic analysis of FGMs using unified formulations (such as CUF).

The axisymmetric geometry and loading conditions are assumed for the problem.
Consequently, the equations of motion in a 2D-FG cylinder are given by the fol-
lowing equations to obtain the displacements and stresses.

∂σrr

∂ r
+

σrr−σθθ

r
+

∂τrz

∂ z
= ρ (r,z)

∂ 2ur

∂ t2 (11)

∂τrz

∂ r
+

∂σzz

∂ z
+

τrz

r
= ρ (r,z)

∂ 2 uz

∂ t2 (12)

where “σr r”, “σθθ ”, “σzz” and “τr z” are radial, hoop, axial and shear stresses, re-
spectively. The terms “ur” and “uθ ” stand for radial and axial displacements. The
stress-strain relations are given as

σ = [D] ε (13)

where

σ
T =

{
σrr σθθ σzz τrz

}
(14)
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and

ε
T =

{
εrr εθθ εzz εrz

}
(15)

The matrix “D” is given for 2D-FGM as follows

[D] =
E (r,z)

(1+ν)(1−2ν)


1−ν ν ν 0
ν 1−ν ν 0
ν ν 1−ν 0
0 0 0 1−2ν

2

 (16)

and also we have

εrr =
∂ ur

∂ r ,
εθθ =

ur

r , εzz =
∂ uz

∂ z ,
εrz =

∂ uz

∂ r
+

∂ ur

∂ z
(17)

Figure 1: A sketch of quadrature domain
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In the MLPG method, the global domain of the problem is divided to many sub-
domains, which a weak-form over the local sub-domains such as “ΩQ” is con-
structed [Atluri (2004)]. These sub-domains can be overlapping each other, and
cover the whole global domain (see Figure 1). The local sub-domains could be of
any geometric shape such as circle and rectangular and various size. In the present
paper, the local sub-domains are taken to be of a circular shape for simplicity. In
such a case the calculation of domain-integrals is quite easy. The local weak-form
of the governing equations (3) and (4) for (r,z) ∈ Ωcan be written as

∫
Ω

{
∂σrr

∂ r
+

σrr−σθθ

r
+

∂τrz

∂ z
−ρ (r,z)

∂ 2ur

∂ t2

}
ψr (r,z, t)dΩ = 0 (18)

∫
Ω

{
∂τrz

∂ r
+

∂σzz

∂ z
+

τrz

r
−ρ (r,z)

∂ 2 uz

∂ t2

}
ψz (r,z, t)dΩ = 0 (19)

where “ψr (r,z, t)” and “ψz (r,z, t)” are weight or test functions. The sub-domains
in axisymmetric cases can be considered as

d Ω = 2π r dΩQ (20)

Therefore the governing equations in weak forms can be rewritten as follows

∫
ΩQ

{
∂σrr

∂ r
+

σrr−σθθ

r
+

∂τrz

∂ z
−ρ (r,z)

∂ 2ur

∂ t2

}
ψr (r,z, t)r dΩQ = 0 (21)

∫
ΩQ

{
∂τrz

∂ r
+

∂σzz

∂ z
+

τrz

r
−ρ (r,z)

∂ 2 uz

∂ t2

}
ψz (r,z, t)r dΩQ = 0 (22)

Applying the Gauss divergence theorem to equations (21) and (22) one can write

∫
ΓQ

r Ψr nr σrr dΓQ −
∫

Ω Q

(Ψr + r Ψr,r)σrr d ΩQ +
∫

Ωs

Ψr (σrr−σθθ ) d ΩQ

+
∫

ΓQ

r Ψr nz τr z dΓQ−
∫

ΩQ

Ψr,z τrz r d ΩQ−
∫

Ω Q

Ψr ρ (r,z) r ürd ΩQ = 0
(23)

∫
Ω Q

(r Ψr ,r σrr + Ψr σθθ + r Ψr ,z τrz) d ΩQ−
∫

ΓQ

r Ψr (nr σrr +nzτrz) dΓQ

+
∫

Ω Q

Ψr ρ (r,z) r ürd ΩQ = 0
(24)
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and

∫
ΓQ

r Ψz nr τr z dΓQ −
∫

Ω Q

(Ψz + r Ψz,r)τr z d ΩQ +
∫

ΩQ

Ψz τr z d ΩQ

+
∫

ΓQ

r Ψz nz σzz dΓQ−
∫

ΩQ

Ψz,z σzz r d ΩQ−
∫

Ω Q

Ψz ρ (r,z) r üzd ΩQ = 0
(25)

∫
Ω Q

(r Ψz ,r τr z + r Ψz ,z σzz) d ΩQ−
∫

ΓQ

r Ψz (nr τr z +nzσzz) dΓQ

+
∫

Ω Q

Ψz ρ r üzd ΩQ = 0
(26)

The local weak forms (24) and (26) are the starting point for deriving local bound-
ary integral equations on the basis of appropriate test functions. The boundary of
quadrature domain can be explained as ΓQ = ΓQi ∪ΓQu ∪ΓQt where “ΓQi” is the
internal boundary of the domain, “ΓQt” is the part of the natural boundary that in-
tersects with the quadrature domain, and “ΓQu” is the part of the essential boundary
that intersects with the quadrature domain (see Figure 1). The equations (24) and
(26) can be taken into account in new form as follows

∫
ΩQ

(r ψr , rσrr +ψr σθθ + r ψr,z τrz)dΩ−
∫

ΓQi
r ψr(nrσrr +nzτrz)dΓQi

−
∫

ΓQu
r ψr(nrσrr +nzτrz)dΓQu +

∫
ΩQ

r ψrρ (r,z) ∂ 2u
∂ t2 dΩ =

∫
ΓQt

r ψr tr dΓQt
(27)

∫
ΩQ

(r ψz ,rτrz + r ψz,zσzz)dΩ−
∫

ΓQi
r ψz(nrτrz +nzσzz)dΓQi

−
∫

ΓQu
r ψz(nrτrz +nzσzz)dΓQu +

∫
ΩQ

r ψzρ (r,z) ∂ 2w
∂ t2 dΩ =−

∫
ΓQt

r ψz tz dΓQt

(28)

where “tr” and “tz” are traction vectors.

4 Mesh-less technique

In mesh-less local Petrov-Galerkin (MLPG) method, a local interpolation is used
to represent the trial function with the values (or the fictitious values) of the un-
known variable at some randomly located nodes in analyzed domain. In the MLPG
method, the test and the trial functions are not necessarily from the same functional
spaces. The trial function is chosen to be the interpolation over a number of nodes
randomly distributed within the domain of influence. For the spatial distributions
of functions “ur (r, z , t)” and “uz (r, z , t)” we apply the mesh-less approximation
over a number of nodes randomly distributed within the domain of influence using
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the radial basis functions (RBF). Thus, assuming the separation of the radial and
axial displacement variables, the considered approximations take the form

ur (r, z , t) = ur (r̄, t) = RT (r̄) A(t) (29)

uz (r, z , t) = uz (r̄, t) = RT (r̄) A(t) (30)

where RT (r̄) = [R1 (r̄) , R2 (r̄) , ... , Rn (r̄)] is the set of radial basis functions cen-
tered around “r̄I”, and “A” and “B” are vectors containing the coefficients of “AI”
and “BI”, I = 1,2, ...,n. The term “n” is number of distributed nodes.

|r̄|2 =
(
|r− rI|2 + |z− zI|2

)
(31)

The radial basis function studied in this article is [Sladek, Sladek, Tanaka, and
Zhang (2005)]

RI (r̄) =
(
|r̄− r̄I|2 + c2

)m/2 (32)

Form the interpolation equations (29) and (30) for the radial basis functions, the
following systems of linear equations for the coefficients “A” and “B” are obtained

R0 A(t) = ûr (t) (33)

R0 B(t) = ûz (t) (34)

where

ûT
r (t) =

[
u1

r (t) , u2
r (t) , ... , un

r (t)
]

(35)

ûT
z (t) =

[
u1

z (t) , u2
z (t) , ... , un

z (t)
]

(36)

are composed of the time variable nodal values of displacements “uI
r (t)” and tem-

perature “uI
z (t)”, while R0 is the matrix defined by nodal values of the RBFs as

R0 =


R1 (r̄1) R2 (r̄1) ... Rn (r̄1)
R1 (r̄2) R2 (r̄2) ... Rn (r̄2)
: : : :
R1 (r̄n) R2 (r̄n) ... Rn (r̄n)

 . (37)
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To calculate the vectors “A(t)” and “B(t)”, we can write from equations (33) and
(34)

A(t) = R−1
0 ûr (t) (38)

B(t) = R−1
0 ûz (t) (39)

The approximated functions can be expressed in terms of the nodal values and the
shape functions as

ur (r̄, t) = RT (r̄) R−1
0 ûr (t) = Φ

T (r̄) ûr (t) =
n

∑
a=1

ϕ
a (r̄) ua

r (t) (40)

uz (r̄, t) = RT (r̄) R−1
0 ûz (t) = Φ

T (r̄) ûz (t) =
n

∑
a=1

ϕ
a (r̄) ua

z (t) (41)

where φ a (r̄) is the shape function associated with the node a. The nodal shape
functions are given by

Φ
T (r̄) = RT (r̄) R−1

0 (42)

The equations (40) and (41) can be rewritten in matrix forms as follows

U (r̄, t) =
{

ur (r̄, t)
uz (r̄, t)

}
=

n

∑
a=1

[
ϕ a (r̄) 0
0 ϕ a (r̄)

]{
ua

r (t)
ua

z (t)

}
=

n

∑
a=1

Φ
a (r̄) ua (t)

(43)

Also, the matrix forms of governing equations (27) and (28) for Ith node are given
as

∫
ΩQ

[Ψ′]I [σ ] dΩQ−
∫

ΓQi
r [Ψ]I [n] [σ ] dΓQi−

∫
ΓQu

r [Ψ]I [n] [σ ] dΓQu+∫
ΩQ

r [Ψ]I ρ (r,z) ∂ 2

∂ t2 [U ] dΩQ =
∫

ΓQt
r [Ψ]I [t] dΓQt

(44)

where

[
Ψ
′]= [ r ψr ,r ψr 0 r ψr ,z

0 0 r ψz ,z r ψz ,r

]
(45)



188 Copyright © 2013 Tech Science Press CMES, vol.91, no.3, pp.177-204, 2013

and

[σ ] = D
n

∑
a=1

[B]a ua (t) (46)

[D] =
E (r,z)

(1+ν)(1−2ν)


1−ν ν ν 0
ν 1−ν ν 0
ν ν 1−ν 0
0 0 0 1−2ν

2

 (47)

[B]a =


ϕ a
,r (r̄) 0

ϕ a
r (r̄)
r 0

0 ϕ a
,z (r̄)

ϕ a
,z (r̄) ϕ a

,r (r̄)

 (48)

The matrix of weight functions “[Ψ]” is given by

[Ψ] =

[
ψr 0
0 ψz

]
(49)

and the unit outward normal vector on the boundary is

[n] =
[

nr 0 0 nz

0 0 nz nr

]
(50)

and also

[t] =
[

tr

tz

]
(51)

Substitution of equation (39) into (37) leads us to the following discrete systems of
linear equations for the Ith node.

∫
ΩQ

[Ψ′]I

(
[D]

n
∑

a=1
[B]a ua (t)

)
dΩQ−

∫
ΓQi

r [Ψ]I [n]
(
[D]

n
∑

a=1
[B]a ua (t)

)
dΓQi

−
∫

ΓQu
r [Ψ]I [n]

(
[D]

n
∑

a=1
[B]a ua (t)

)
dΓQu+∫

ΩQ
r [Ψ]I ρ (r,z)

(
n
∑

a=1
Φa (r̄) ∂ 2 ua(t)

∂ t2

)
dΩQ =

∫
ΓQt

r [Ψ]I [t] dΓQt
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(52)

or

n
∑

a=1

{∫
ΩQ

[Ψ′]I [D] [B]a dΩQ−
∫

ΓQi
r [Ψ]I [n] [D] [B]a dΓQi

}
ua (t)

+
n
∑

a=1

{
−
∫

ΓQu
r [Ψ]I [n] [D] [B]a dΓQu

}
ua (t)+

n
∑

a=1

{∫
ΩQ

r [Ψ]I Φa (r̄)ρ (r,z) dΩQ

}
∂ 2 ua(t)

∂ t2 =
∫

ΓQt
r [Ψ]I [t] dΓQt

(53)

The governing equation in matrix form can be assembled as follows

[M] {ü} +[K] {u} = [F ] (54)

where

[K] =
∫

ΩQ
[Ψ′]I [D] [B]a dΩQ−

∫
ΓQi

r [Ψ]I [n] [D] [B]a dΓQi

−
∫

ΓQu
r [Ψ]I [n] [D] [B]a dΓQu

(55)

[M] =
∫

ΩQ

r [Ψ]I Φ
a (r̄)ρ (r,z) dΩQ (56)

[F ] =
∫

ΓQt

r [Ψ]I [t] dΓQt (57)

and

uT = [u1 (t) u2 (t) ... un (t)] (58)

üT = [ü1 (t) ü2 (t) ... ün (t)] (59)

5 Time domain analysis

There are a number of numerical methods to solve the system of differential equa-
tions (47) resulting from the application of the GFD method. In this article, the
Newmark time approximation scheme with suitable time step is used, and the time-
dependent displacement fields are obtained for the cylinder. Consider the system
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to be expressed in terms of non-dimensional time t̄ = tp in which the governing
equation of system takes the form

[M]
{

ü tp
}
+[K]

{
u tp
}
=
[
F tp
]

(60)

Using the initial conditions
{

F 0
}

and
{

u0
}

, the following equation can be obtained

[M]
{

ü0} =
{

F 0}− [K]
{

u0} (61)

The matrices [Km]and
{

F tp
m

}
are defined as follows:

[Km] = [K]+
1

λ1 ∆t2 [M] (62)

{
F tp

m

}
=
{

F tp
}
+

1
λ1 ∆t2 [M]

({
u tp−1

}
+∆t

{
u̇ tp−1

}
+(0.5−λ1)∆t2{ü tp−1

})
(63)

The matrices of [u tp ], [u̇ tp ], and [ü tp ] can be computed using following equations:

{
u tp
}
= [Km]

−1
{

f tp
m

}
(64)

{
ü tp
}
=

1
λ1 ∆t2

({
u tp
}
−
{

u tp−1
}
−∆t

{
u̇ tp−1

}
−∆t2 (0.5−λ1)

{
ü tp−1

})
(65){

u̇ tp
}
=
{

u̇ tp−1
}
+∆t

[
(1−λ2)

{
ü tp−1

}
+λ2

{
ü tp
}]

(66)

Using aforementioned equations, the matrices of[u tp ], [u̇ tp ], and [ü tp ] can be ob-
tained for an arbitrary time. The best convergence rate can be achieved in this
method by choosing λ 1 =

1
4 and λ 2 =

1
2 .

6 Numerical examples and discussions

To show the capability of presented MLPG method in engineering cases, a 2D-FG
thick hollow cylinder with finite length is assumed that “r i = 0.25m”, “ro = 0.5m”
and “L = 1m” are considered as inner radius, outer radius and length, respectively.
The mechanical properties of 2D-FG cylinder can be found in Table 2. In MLPG



Two-dimensional elastic wave propagation analysis 191

method, unit step functions are chosen for the test functions “Ψr” and “Ψz” in each
sub-domain.

Ψz (r,z, t) = Ψr (r,z, t) =
{

1 at (r,z) ∈ (Ωs ∪ Γs )
0 at (r,z) /∈Ωs

(67)

If the same boundary conditions with ref. [Hosseini, Akhlaghi, and Shakeri (2007)]
are assumed for the problem and also the volume fraction exponents are selected
as “nr = 0.01” and “nz = 0”, it is possible to compare the obtained results with
those reported in ref. [Hosseini, Akhlaghi, and Shakeri (2007)]. Figure 2 shows a
good agreement in comparison of results. The following boundary conditions are
assumed for the problem to continue the study.

Figure 2: The comparison of obtained results from MLPG with those using FEM
for radial displacement

σr (r i,z, t) = P(t) , τr z (r i,z, t) = 0
σr (ro,z, t) = 0 , τr z (ro,z, t) = 0
σz (r,z0, t) = 0 , τr z (r,z0, t) = 0
σz (r,zL, t) = 0 , τr z (r,zL, t) = 0

(68)

where

P(t) =
{

P0 t at 0≤ z≤ L
3 and t ≤ 0.005 sec

0 at L
3 〈z≤ L or t 〉 0.005 sec

(69)
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It is assumed that “P0 = 4 GPa”. Figure 3 depicts the 2D radial displacement prop-
agation in 2D domain for “nr = 0.5” and “nz = 0” at various times. It is possible to
track the contour of wave propagation at various time interval in displacement field
of 2D domain (r – z) for one dimensional grading pattern through radial direction.
Figure 4 shows us the 2D axial displacement wave propagation in both radial and
axial displacement fields for a FG cylinder with one dimensional grading patterns
through axial direction for “nr = 0” and “nz = 0.5” at various times. The elastic
wave fronts can be tracked as 2D contours in various time intervals in Figure 5 for
radial displacement in which the values of volume fraction exponents for FGM with
2D grading patterns are assumed as “nr = 0.5” and “nz = 0.5”. It is concluded
from Figures 3 to 5 that by increasing the value of volume fraction exponent for
a certain direction (axial or radial), the wave propagation speed is decreased. In
Figure 6, it is assumed that the grading patterns through both radial and axial di-
rections are similar such as “nr = nz = 0.5”, “nr = nz = 1” and “nr = nz = 5”.
The time histories of radial displacement of middle point on thickness and length
are illustrated in Figure 6. It can be seen that by increasing the values of volume
fraction exponent, the values of peak points are decreased and the frequency of
fluctuations are increased. The time histories of radial displacement are drawn for
middle point and various volume fraction exponents in Figure 7.

By considering a fixed value for “nr” as “nr = 0.5”, the time histories of radial
displacement of middle point are shown for various values of “nz” in Figure 8.
There is no any significant effect on time histories by increasing the value of “nz”.
However, the variation in value of “nr” create a significant effect on time history
of radial displacement, which can be seen in Figure 9. When the value of “nr” is
increased the values of peak points are decreased but the frequency of fluctuation
is increased. The similar behaviors with radial displacement can be seen for axial
displacement. It means that the variation in value of radial volume fraction expo-
nent “nr” has a significant effect on dynamic behaviors of displacement comparing
to the variation in value of “nz”.

Two sample of 2D distribution of radial displacement through both radial and ax-
ial directions are presented in Figures 10 and 11 for “nr = nz = 0.5” and “t =
0.065 sec” and “t = 0.085 sec”, respectively. Also, the axial displacement dis-
tributions in 2D domain (r – z) for “nr = nz = 0.5” and “t = 0.065 sec” are
illustrated in Figures 12.

The parameter c is considered to be equal to mean value of minimum distances
between nodes along radial and axial directions. The influence of values of this
parameter on numerical results is shown in Fig. 13. It is evidence from Fig. 13
that by choosing bigger values for parameter c, the obtained results don’t have high
accuracy and stability. It is concluded that the selected value for cis the optimum
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(a)

(b)

(c)

Figure 3: Two dimensional radial displacement wave propagation for nr = 0.5 and
nz = 0 at various times (a) at t = 2 ∗ 10−5 sec. (b) at t = 5 ∗ 10−5 sec. (c) at
t = 10−4 sec.

value. Also, a sensitivity analysis are presented for parameter m in Fig .14. It is
clear in this figure that the value of m should be less than 2. The shape of soppurt
domain is circular. The radius of support domain Rsis assumed to be Rs = 2.5 ∆

, which the term ∆ is the mean value of minimum distances between nodes along
radial and axial directions. It is concluded from Fig. 14 that the selected value for
Rs is optimum value. The Fig. 15 shows the influence of Rson numerical results.

As regards the choice of the size of the time step, it is clear that smaller time steps
enable us to get information at shorter time instants with respect to the initial time
t = 0. For numerical tests, we have chosen two time steps ∆ t = 10−4 sand ∆ t =
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(a)

(b)

(c)

Figure 4: Two dimensional axial displacement wave propagation for nr = 0 and
nz = 0.5 at various times (a) at t = 2 ∗ 10−5 sec. (b) at t = 10−4 sec. (c) at
t = 1.5∗10−4 sec.

10−5 s in calculation of two dimensional elastic wave propagation. The distribution
of wave fronts at several time instants is plotted in Fig. 16. For time instants
to t < 10−4 sonly the results corresponding to numerical computations with ∆ t =
10−5 s are available, but for t = 10−4 s and t = 2× 10−4 s a perfect agreement
is achieved for numerical results with using the time steps ∆ t = 10−4 s and ∆ t =
10−5 s. Therefore, to track the wave fronts in molar concentration and displacement
fields at every position, the time step is assumed to be ∆ t = 10−5 s. The number of
nodes along axial direction N∗z and along radial direction N∗r are selected as N∗z = 21
and N∗r = 15. The Figs. 17 and 18 show the influence of various values of N∗z and
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(a)

(b)

(c)

Figure 5: Two dimensional radial displacement wave propagation for nr = 0.5 and
nz = 0.5 at various times (a) at t = 2 ∗ 10−5 sec. (b) at t = 5 ∗ 10−5 sec. (c) at
t = 10−4 sec.
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Figure 6: Time history of radial displacement for middle point on thickness and
length for nr = nz = 0.5, nr = nz = 1 and nr = nz = 5.

Figure 7: Time history of radial displacement for middle point on thickness and
length for various values of nr and nz.

Figure 8: Time history of radial displacement for middle point on thickness and
length for certain value of nr and various values of nz.
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Figure 9: Time history of radial displacement for middle point on thickness and
length for certain value of nz and various values of nr.

Figure 10: Two dimensional distribution of radial displacement for nr = nz = 0.5
and t = 0.065 sec.

Figure 11: Two dimensional distribution of radial displacement for nr = nz = 0.5
and t = 0.085 sec.
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Figure 12: Two dimensional distribution of axial displacement for nr = nz = 0.5
and t = 0.065 sec.

Figure 13: The influence of parameter con numerical results.

N∗r on numerical results. It can be concluded that the selected values for N∗z and
N∗r are optimum values.

As other verifications for presented results and method, the radial and axial stresses
are compared with those obtained from finite element method (FEM) [Hosseini,
Akhlaghi, and Shakeri (2007)]. A good agreement can be observed from Figs. 19
and 20 between results.

Conclusions:
In this paper, the application of meshless local Petrov-Galerkin (MLPG) method is
exploited for dynamic and elastic wave propagation of 2D-FG thick hollow cylinder
with 2D nonlinear grading patterns. To simulate the variation of mechanical proper-
ties, two dimensional nonlinear volume fractions are presented. The inner surface
of 2D-FG thick hollow cylinder is excited by suddenly unloading as mechanical
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Figure 14: The influence of parameter con numerical results.

Figure 15: The influence of radius of support domain on numerical results.

Figure 16: The influence of size of time steps on numerical results.
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Figure 17: The influence of number of nodes along axial direction on numerical
results.

Figure 18: The influence of number of nodes along radial direction on numerical
results.

shock loading. To obtain the dynamic behaviors of displacement in time domain,
the meshless local Petrov-Galerkin (MLPG) method is combined with Newmark
finite difference (NFD) method. The major conclusions resulting from the above
analysis can be summarized as follows:

• The 2D wave motion in 2D-FGM is formulated based on meshless local
Petrov-Galerkin (MLPG) method for 2D elastic wave propagation analysis.

• The 2D contours of elastic wave fronts are obtained for various kinds of grad-
ing patterns in 2D-FGM at various time intervals. It means that the presented
method based on MLPG method has a high capability to study dynamic be-
haviors of FGMs with 2D grading patterns.
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Figure 19: The comparison of obtained radial stresses by MLPG with those ob-
tained by FEM.

Figure 20: The comparison of obtained axial stresses by MLPG with those obtained
by FEM.

• It is possible that the time histories of displacements are assessed for various
grading patterns in some points on the body of 2D-FG thick hollow cylin-
der by using the presented hybrid meshless technique (combined MLPG and
NFD method).

• The grading patterns through radial direction have a more effect on time his-
tories of displacements and dynamic behaviors of 2D-FG cylinder comparing
to grading patterns through axial direction.

• The presented analysis furnishes a ground for natural frequency analysis of
FGMs with two dimensional grading patterns.
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