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A mapping method for shock waves using ALE
formulation
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Abstract: To simulate accurately a pressure wave propagation problem, a fine
mesh is required in order to capture peak pressures accurately. This may require
a very large size problem with several millions of elements. To reduce CPU time
and prevent high mesh distortion, a two-dimensional problem for blast ignition and
pressure propagation is performed first on a fixed Eulerian mesh. When the pres-
sure wave gets closer to the structure, a three dimensional ALE simulation follows,
where the fluid mesh and structure mesh at the fluid structure interface are coinci-
dent. The three dimensional problem is performed after mapping history variables
from the two-dimensional to the three dimensional mesh. In this paper an ALE
multi-material formulation is used for both explosive and air materials, and a clas-
sical Lagrangian formulation for the structure. The method has been implemented
successfully in LSDYNA code and validated with different applications. To vali-
date the method, this technique is used for pressure wave propagation, due to ex-
plosive detonation, and its interaction with the structure. The numerical solution,
in term of maximum displacement, is compared to experimental data performed at
Aeronautical and Maritime Research Laboratory at DSTO, Australia. Good corre-
lation has been observed between numerical results and experimental data.
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1 Introduction

The principle of an ALE code is based on the independence of the Finite Element
mesh movement with respect to the material motion. In fact, the freedom of moving
the mesh offered by the ALE formulation enables a combination of advantages of
Lagrangian and Eulerian methods.
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In the Lagrangian description of motion the computational domain follows the
material motion, which greatly simplifies the governing equations. Lagrangian
schemes have proven very accurate as long as the mesh remains regular. However,
the material may undergo large deformations that lead to severe mesh distortions
and thereby accuracy losses and a reduction of the critical time step, which is the
amount of time necessary for an acoustic wave to cross the smallest element in the
mesh (the Courant Friedrichs Levy condition).

With an Eulerian description of motion the mesh is fixed in space and the material
passes through the element grid. The transport of mass between elements com-
plicates the governing equations by introducing nonlinear transport terms. Mass
conservation is not automatically satisfied. Advection algorithms need to be imple-
mented for the mass, momentum and internal energy conservation and for tracking
of all state variables.

It has been specified by Benson (Benson 1992) that the accuracy of Eulerian codes
are comparable to the accuracy of Lagrangian codes in hydrodynamic applications,
when using higher order advection algorithms. Furthermore, since the reference
system is fixed, the Eulerian formulation preserves the mesh regularity. The main
drawbacks are the computational cost per cycle and the dissipation errors generated
when treating the advective terms in the governing equations.

Eulerian and ALE hydrocodes split each computational timestep into two phases.
The first step is the Lagrangian phase, where the material motion and the mesh
motion are identical and where the incremental motion of the material is computed.
All physical phenomena as well as boundary conditions are considered during this
phase.

The second step is the Eulerian phase, which is referred to as the advection, or
remap phase. In this step the mesh is moved independently to the material motion
and there is a transport of material between the cells. This corresponds to the
treatment of the convective terms introduced in the governing equations.

Pioneering work on the ALE formulation were presented by Hughes et al. (Hughes,
1981) and Liu et al. (Liu,1988) to solve free surface problems for incompressible
viscous flow, by Benson (Benson, 1992) and Belytschko et al. (Belytschko, 1982)
to treat fluid-structure interaction problems. A detailed survey of ALE Finite El-
ement methods was presented by Donea (Donea,1983). Hughes et al. developed
a streamlined upwind Petrov-Galerkin method (Hughes, 1981), which was imple-
mented in an ALE formulation by Liu et al. (Liu,1988). The formulation has been
applied for several applications in automotive, aerospace and biomedical industries
for free surface modeling, sloshing tanks, fluid-structure coupling applications and
for high velocity impact and penetration problems. An explicit ALE formulation
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has been applied by Aquelet et al (Aquelet 2006), for high velocity impacts of
elasto-plastic materials and for the analysis of sloshing tanks in aerospace applica-
tions.

This paper presents a new mesh relaxation method for explicit multi-material Arbi-
trary Lagrangian-Eulerian (ALE) Finite Element simulations. The proposed method
is valid for structured and unstructured meshes and it is designed with the objec-
tive to reduce numerical dissipation errors when analyzing the propagation of shock
fronts. The method aims to delay the advection phase in the vicinity of shock fronts
in order to obtain an as "Lagrange like" behavior as possible near the shock, while
at the same time keeping the mesh distortions on an acceptable level.

The outline of this paper is as follows. In Section 2 an overview of the governing
equations in the ALE description of motion are presented. Section 3 describes the
mapping strategy used to reduce computational time and performing the simulation
on a very fine mesh.

In Section 4 the numerical modeling of a high explosive detonation in air using a
structured ALE Cartesian grid is presented, illustrating the performance of the map-
ping technique. In this application the air blast loads a steel plate and a comparison
with available experimental data (Boyd, 2000) was possible.

2 Lagrangian and advection phases of the Eulerian formulation

A multi-material Eulerian formulation, where soil and explosive materials can be
mixed in the same element is used in the paper. Since Eulerian formulation is a par-
ticular case of the ALE formulation, a brief description of the ALE formulation is
presented. A mixture theory is used to partition the material inside the element and
compute the volume weighted stress from the constitutive model of each material
as described in detail in (Aquelet 2006).

In the ALE description, an arbitrary referential coordinate is introduced in addition
to the Lagrangian and Eulerian coordinates. The material derivative with respect
to the reference coordinate can be described in equation (1). Thus substituting the
relationship between material time derivative and the reference configuration time
derivative leads to the ALE equations in (1)

∂ f (Xi, t)
∂ t

=
∂ f (xi, t)

∂ t
+wi

∂ f (xi, t)
∂xi

(1)

where Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi is the relative
velocity. Let denote by v the velocity of the material and by u the velocity of
the mesh. In order to simplify the equations we introduce the relative velocity
w = v−u. Thus the governing equations for the ALE formulation are given by the
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following conservation equations, mass, momentum and energy:

∂ρ

∂ t
+wi

∂ρ

∂xi
=−ρ.div(v) (2)

ρ
∂vi

∂ t
+ρwi

∂vi

∂x j
= div(σ) + fext (3)

ρ
∂E
∂ t

= σi jvi, j −ρw j
∂E
∂x j

+Qext (4)

where σ is the stress tensor defined by σ =−p.I+d τ .

τis the shear stress from the constitutive model, and p the pressure computed from
an equation of state, fext and Qext are external load and heat flux.

The conservation equations (2) to (4) are applied for soil, and explosive materials.
For soil material, the pressure is given from volumetric strain-pressure curve, ob-
tained through experimental compression tests. For explosive gas the pressure is
computed through JWL (Jones-Wilkins-Lee) equation of state.

Note that the Eulerian equations commonly used in fluid mechanics are derived by
assuming that the velocity of the reference configuration is zero, u = 0, and that the
relative velocity between the material and the reference configuration is therefore
the material velocity, w = v. The term in the relative velocity in (3) and (4) is
usually referred to as the advective term, and accounts for the transport of material
past the mesh. It is the additional term in the equations that makes solving the ALE
equations much more difficult numerically than the Lagrangian equations, where
the relative velocity is zero.

There are two ways to implement the ALE equations, and they correspond to the
two approaches taken in implementing the Eulerian viewpoint in fluid mechanics.
The first way solves the fully coupled equations for computational fluid mechanics;
this approach used by different authors in CFD can handle only a single material in
an element as described for example in (Longatte 2009). The alternative approach
is referred to as an operator split in the literature, where the calculation, for each
time step is divided into two phases. First a Lagrangian phase is performed, in
which the mesh moves with the material, in this phase the changes in velocity
and internal energy due to the internal and external forces are calculated. In the
Lagrangian formulation the equilibrium equations can be describes by equations
(5) and (6):

ρ
∂vi

∂ t
= div(σ)+ fext (5)

ρ
∂E
∂ t

= σi jvi, j +Qext . (6)
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In the Lagrangian phase, mass is automatically conserved, since no material flows
across element boundaries, and element density is algebraically computed by (7)
as the ratio of the mass element by the deformed element volume.

ρ =
M

Vol
(7)

In the second phase, the advection phase, transport of mass, energy and momen-
tum across element boundaries are computed; this may be thought of as remapping
the displaced mesh at the Lagrangian phase back to its original for Eulerian for-
mulation or arbitrary position for ALE formulation using smoothing algorithms.
From a discretization point of view of (5) and (6), one point integration is used for
efficiency using hourglass viscous forces to eliminate locking. The resolution is
advanced in time with central difference method, which provides a second order
accuracy for time integration. First nodal acceleration is computed based on nodal
forces by (8):

an = M−1(Fext +Fint) (8)

Second, velocity and displacement are updated using second order central finite
difference method (9):

un+1/2 = un−1/2 +∆t.an, xn+1/2 = xn−1/2 +∆t.un+1/2 (9)

Where Fint is the internal vector force andFext the external vector force associated
with body forces, coupling forces, and pressure boundary conditions, Mis a diago-
nal lumped mass matrix. For each element of the mesh, the internal force is com-
puted based on the element stress computed through constitutive material model.

In the second phase, the transport ofmass, momentum and internal energy across
the element boundaries is computed. This phase may be considered as a ‘re-
mapping’ phase. The displaced mesh from the Lagrangian phase is remapped into
the initial mesh for an Eulerian formulation. To illustrate the advection phase, we
consider in figure 1 a simple problem with 2 different materials, one with high
pressure and the second a lower pressure. During the Lagrangian phase, material
hwith high pressure expands, and the mesh moves with the material. Since we are
using Eulerian formulation, the mesh is mapped to its initial configuration, in the
advection phase, material volume called flux is moving from element to element,
but we keep separate materials in the same element, with a interface between the 2
materials inside a single element.

All the physics is performed in the Lagrangian phase, stress computation, bound-
ary conditions, contact forces, and time step. The advection phase can be seen as a
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Figure 1: Lagrangian and advection phase in a 1 timestep

remapping phase from a deformable mesh to initial mesh for an Eulerian formula-
tion, or to an arbitrary mesh for general ALE formulation. In the advection phase,
volume flux of material through element boundary needs to be computed.

Once the flux on element faces of the mesh is computed, all state variables are
updated according to the following algorithm, using a finite volume algorithm (10),

V+M+ =V−M−+∑
f aces
j=1 Flux.jM

−
j (10)

where the superscripts ‘-‘ and ‘+’ refer to the solution values before and after the
transport. Values that are subscripted by j refer to the boundaries faces of the ele-
ment, through which the material flows, and the Flux j are the volume fluxes trans-
ported through the adjacent elements. The flux is positive if the element receives
material and negative if the element looses material.

The ALE multi-material method is attractive for solving a broad range of non-
linear problems in fluid and solid mechanics, because it allows arbitrary large de-
formations and enables free surfaces to evolve. The advection phase of the method
can be easily implemented in an explicit Lagrangian finite element code. Be-
fore advection, special treatment for elements containing more than one material
is needed, For a mixed element, a volume fraction of the material is computed that
satisfiesVf ≤ 1.

3 Constitutive models and equation of State

3.1 Equation of State for explosive material

In High explosive process, a rapid chemical reaction is involved, which converts
the material into high pressure gas. From a constitutive material point of view,
the gas is assumed inviscid with zero shear, and the pressure is computed through
JWL equation of state (Jones-Wilkins-Lee) , a specific equation of state, commonly
used for explosive material. There have been many equations of state proposed
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for gaseous products of detonation, from simple theoretically to empirically based
equations of state with many adjustable parameters.

The explosive was modeled with 8-nodes elements. The equation of state deter-
mines the relation between blast pressure, change of volume and internal energy.
The JWL equation of state was used in the following form :

p = A
(

1− ω

R1V

)
exp(−R1V )+B

(
1− ω

R2ω

)
exp(−R2V )+

ω

V
E (11)

In Equation (11) p is the pressure, V is the relative volume:

V =
v
v0

Where v and v0 are the current and initial element volume respectively, while A,
B, R1, R2 and ω are material constants defined in table 1. These performance
properties are based on the cylinder expansion test in controlled conditions.

Table 1: Parameters used for C-4 explosive

A (Mbar) 4.911

B (Mbar) 0.091061
R1 4.4
R2 1.1
E0 (Mbar– cm3/ cm3) 0.08
ω 0.3
Vd(cm / µs) 0.747
ρ (g / cm3) 1.67
ρCJ (Mbar) 0.25

At the beginning of the computations V =1.0. E is the initial energy per unit volume.

The first term of JWL equation, known as high pressure term, dominates first for V
close to one. The second term is influential in the JWL pressure for V close to two.
Observe that in the expanded state, the relative volume is sufficiently important so
that the exponential terms vanish, and JWL equation of state takes the form of an
ideal gas equation of state:

P = ω
E
V
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The temperature T can be computed using internal energy:

E =Cv.T

Where Cv is the average heat capacity. The heat capacity is held constant through-
out the calculation.

3.2 Material model and Equation of state for air

Air is modeled using the hydrodynamic material model. The model requires an
equation of state, density, pressure cut-off and dynamic viscosity to be defined. The
viscosity and pressure cut-off are set to zero, because pressure cannot be negative
and the viscosity forces are negligible. The ideal gas law (i.e. gamma law) is
used as an equation of state for air. This polytropic equation of state is given by
considering the general linear polynomial equation of state (12):

P = (γ −1)
ρ

ρ0
E (12)

Where ρ and ρ0 = 1 kg/m3 are current and initial densities of air respectively, and
E is the specific internal energy per unit volume (units of pressure) and γis the
polytropic ratio of specific heats. For the diatomic molecules comprising air, this
adiabatic expansion coefficient is γ = 1.4. To be thermodynamically consistent, air
must be initialized to atmospheric pressure. Note that from equation (12) at time
t=0, for an initial pressure P=

0 0.1MPa, the initial internal energy should be set to
E=

0 1.25 MPa , since γ = 1.4, and ρ = ρ0at initial time. Setting a non-zero initial
pressure in the air domain, appropriate boundary conditions are imposed at the
external boundary, to avoid initial air leakage, thus a 0.1 MPa pressure boundary
condition need to be assumed.

3.3 Constitutive material model for the structure

The structure is a composed of square shells with the same size. On Figure 2, the
nodes at the interface of the air and structure meshes are sheared with the fluid to
handle fluid-structure interaction phenomena.

For the structure, a classical elasto-plastic constitutive material law is used, where
material properties are given in the following table:

4 Experimental Setup and numerical model

As mentioned earlier, the experimental test was performed at DSTO, a Defence
and Sciences and Technology Organization, part of the Australian Department of
Defence (Boyd 2000). A 1200 mm square, 5 mm thick mild steel plate bolted to a
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Table 2: Parameters used for Structure
Density (g/ cm3) 7.85

Young Modulus (Mbar) 2.03
Poisson ratio 0.3
Yield Stress (Mbar) 27.e-4
Tangent Modulus 47.e-4

heavy steel frame of 50 mm weight. A central area of 1000 mm square free is free
to move under explosive loading. Space was available between the blocks for ac-
cess to the bolts and also to position the instrumentation, as can be seen Figure2. A
sphere of Pentolite explosive, a mixture of 50% PETN and 50%TNT with a density
of 1.65 g/cm3 and a detonation of 7400 m/s. The 250 g explosive was detonated
centrally using an Exploding Bridge Wire detonator. The plate to explosive stand-
off distance is 500 mm. The numerical model is described in figure 1, to use the
symmetrical properties of the model, 2 planes of symmetry, with symmetry bound-
ary conditions are used. The mesh of three dimensional fluid model consists of 5.6
millions hexahedra elements for explosive and air domains, with a mesh size of 0.3
cm, figure 3 describe a sketch of the model used in the simulation.

We notice the this resolution is too coarse to obtain accurate peak pressure, but can
be fine enough for obtaining pressure pulse. The plate is located at 500 mm from
the explosive charge. The physical dimensions of the plate is 1000 mm by 1000
mm and 5 mm thick. The mesh of the plate consists of 26.266 shell elements

Figure 2: Experimental setup (Boyd 2000) and Numerical model
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5 Mapping algorithm for three dimensional problems

The mesh with three planes of symmetry is presented on Fig.1. The air mesh is a
Cartesian ALE grid with a cubic mesh size of 1cm. The mass of the explosive is
computed in the air mesh so that the explosive be a 1/4th of sphere with a radius
of 32.9mm. The ignition point is applied at the center of the sphere. The high
explosive material was modeled with the JWL (Jones-Wilkins-Lee) equation of
state.

Using 5.6 millions elements, this resolution is too coarse to obtain accurate peak
pressure, but can be fine enough for obtaining pressure pulse. The mesh of the
structure plate located at 500 mm from the explosive charge, is sharing same nodes
with the fluid mesh. Fluid structure coupling between the plate and the air material
is automatically satisfied through common nodes. This is a simple way to define
the coupling, and for complex problems, this way of coupling cannot be applied.
General coupling methods have been developed by the authors in previous papers,
Aquelet et al ( 2006). It is not the goal of the paper to develop and describe a
coupling method that has already been developed in previous research papers and
applied to different industrial and academic problems by the authors. The main
goal of the paper, is to develop a mapping method between different meshes, in
order to reduce computational time without reducing accuracy.

To reduce computational time, we first run a 2D spherical model for both explosive
and air materials, for pressure wave propagation, with a radius at with the pressure
wave propagation becomes non spherical, as illustrated in figure 4. The use of a two
dimensional model allows a very fine mesh at the detonation process for the model
to capture physical peak pressure. We know from previous simulations, to capture
the measured Chapman - Jouguet pressure inside the explosive during detonation,
mesh size of 0.1 mm or less needs to be used. For three dimensional problems, this
mesh size requirement leads to large problems up to several millions of elements.
The final results form the two dimensional model is projected or mapped into the
three dimensional model In the mapping algorithm, history variables and velocity
are mapped from the 2D to the 3D mesh. Pressure wave plot from the 2D simulation
can be seen in figure 5.

6 Numerical results and validation

To highlight and validate the performance of the mapping method described in the
paper, we consider the blast problem described in previous sections, where experi-
mental data are available for correlations. During the first step, a two dimensional
problem using a very fine mesh, to capture accurate peak pressure values, is per-
formed. As shown in figure ??, the run is stopped when the pressure wave gets
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Figure 3: mesh of the air and explosive materials with 2 symmetry planes

Figure 4: mapping of the pressure for 2D to 3D model

very close to the structure, but no interaction between the fluid and structure has
started. The second step of the simulation consists of mapping history variables,
internal energy, pressure, fluid density, as well as nodal velocities from the two
dimensional mesh to the 3D mesh. This step is well described in figure 4, where
data from 2D mesh is mapped into 3D mesh. Following the mapping step, we con-
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Figure 5: Pressure wave in 2D mesh at t=150 microseconds

sider the real problem starting with a pressure wave accurately computed in 2D
fine mesh. This step is automatically implemented in the LSDYNA code, Hallquist
(1998) and validated for complex industrial applications, using contact algorithms,
Euler Lagrange coupling and general boundary conditions. To describe the cou-
pling between the blast wave and the structure, we plot the Von-Mises stress on the
plate as shown in figure 6, we also plot displacement time history of the center of
the plate in figure 7, where the maximum displacement is estimated at 28 mm.

As noted in table 3, the error between numerical and experimental value of the
peak displacement is estimated at 12%. This can be improved using explosive
mass scaling described in Souli (2012).

Table 3: experimental and numerical data of displacement at the center

Numerical
Peak displacement

Experimental
Peak displacement

28 mm 33 mm

These simulations are of great interest for the design of structures to resist blast load
and provide protection against damage from munitions and debris fragments pro-
duced by the blast. Since the ultimate objective is the design of resistant structures,
numerical simulations can be included in shape design optimization with shape op-
timal design techniques, Souli et al (1993), and material optimisation, Erchiqui et
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Figure 6: Von Mises stress at time t=150microseconds

Figure 7: displacement time history at plate center
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al (2007), and Ozdemir et al (2010). Once simulations are validated by test results,
it can be used as design tool for the improvement of the system structure involved.

7 Conclusion

For structure integrity and safety, several efforts have been made in defense and
civilian industries, for modeling explosions and their effect on structures. Em-
pirical loading models have been developed for predicting the effects of blast on
structures. In engineering, CONWEP (1991), a code for Conventional Weapons
Effects, is mainly used for preliminary design. From previous analysis, it is well
known that these techniques have some limitations, particularly when the explosive
charge is very close to the structure. In this paper, an ALE multi-material formu-
lation approach for air and explosive materials and a Lagrangian approach for the
structure are used for the simulation of pressure wave and its interaction with the
structure. These two approaches are coupled using sheared nodes at the interface
between all materials involved in the analysis. To reduce computational time with-
out affecting the accuracy of the results, we first use a 2D model for blast wave
propagation, since for a 2D model we can allow very fine mesh inside and outside
the explosive material, and reduce dissipation and dispersion errors due to mesh
effects. This technique used for different applications, allows to simulate problems
containing several millions of elements, that we could simulate in the past only on
large and expensive mainframe computers. To validate the method, the maximum
displacement of the impacted structure is compared to experimental data, where
the experiments has been performed at Australian Department of Defence. Good
agreement for maximum displacement has been observed. The mapping strategy
technique can be used for more complex problems where the structure can be de-
fined with several complex components.
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