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General distance transformation for the numerical
evaluation of nearly singular integrals in BEM

J.H. Lv1, Y. Miao1,2 and H.P. Zhu1

Abstract: The accurate and efficient evaluation of nearly singular integrals is
one of the major concerned problems in the implementation of the boundary ele-
ment method (BEM). Among the various commonly used nonlinear transformation
methods, the distance transformation technique seems to be a promising method to
deal with various orders of nearly singular integrals both in potential and elasticity
problems. In this paper, some drawbacks of the conventional distance transforma-
tion, such as the sensitivity to the position of projection point, are investigated by
numerical tests. A general distance transformation technique is developed to cir-
cumvent these drawbacks, which is aimed to remove or weaken the limitations of
the projection point. Several numerical examples are presented for both straight and
curved line elements to validate the accuracy and efficiency of presented method.

Keywords: Boundary element method, Nearly singular integrals, Numerical in-
tegration, Distance transformation technique.

1 Introduction

The nearly singular integrals arise when the source point is very close to but not on
the integration element in the implementation of boundary element method (BEM).
The conventional Gauss quadrature becomes inefficient or even inaccurate to eval-
uate such integrals. The accurate and efficient evaluation of nearly singular in-
tegrals plays an important role in many cases, especially involving problems of
thin or shell-like structures [Cruse and Aithal (1993); Krishnasamy, Rizzo, and Liu
(2005); Liu (1998)], the unknowns around crack tips [Aliabadi and Rooke (1991)],
the contact problems [Karami (1993)] and the sensitivity problems [Zhang, Rizzo,
and Rudolphi (1999)].
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Various numerical techniques have been proposed to remove the near singulari-
ties, such as the element subdivision technique [Eberwien, Duenser, and Moser
(2005)], the rigid body displacement solutions [Chen, Lu, Huang, and Williams
(1998)], global regularization method [Sladek, Sladek, and Tanaka (1993); Liu
and Rudolphi (1999)], semi-analytical and analytical algorithms [Niu, Wendland,
Wang, and Zhou (2005); Zhou, Niu, Cheng, and Guan (2008)], and various nonlin-
ear transformation methods. The element subdivision technique is simple but not
recommended because of its inefficient. The closer the computing point is to the
integration element, the more subdivisions are needed, which consumes great com-
putation effort and may increase the accumulative error. The rigid body displace-
ment method constructs a nearly zero factor in the denominator of kernel function
by the zero factor in density function using the regularization ideas, but the accu-
racy of the results are not satisfactory. The analytical and semi-analytical algo-
rithms are effective but only limited to linear or planar elements. Curved elements
must be divided into a large number of linear or planar elements, thus losing effi-
ciency and accuracy. At present, the most widely used methods are various nonlin-
ear transformations, such as the cubic polynomial transformation [Telles (2005)],
the bi-cubic transformation [Cerrolaza and Alarcon (1989)], the sigmoidal and
semi-sigmoidal transformation [Johnston (1999, 2000)], the coordinate optimiza-
tion transformation [Sladek, Sladek, and Tanaka (2000)], the attenuation mapping
method [Nagarajan and Mukherjee (1993)], the rational transformation [Huang and
Cruse (1993)], the PART method [Hayami (2005)], the exponential transformation
method [Zhang, Gu, and Chen (2009)] and the sinh transformation [Johnston and
Elliott (2005)]. The basic ideas of the above transformations can be generalized
into two categories: one is removing the nearly zero factor in the denominator of
the kernels using zero factor, the other is converting the nearly zero factor in the
denominator of the kernels to be part of the numerator. However, most nonlinear
transformations are limited to certain order of singularities or specific boundary
element. The distance transformation method [Ma and Kamiya (2001, 2002a,b,
2003)], which has been proposed by Ma, is a general strategy to deal with nearly
singular integrals in BEM. This promising method is derived from Guiggiani’s ex-
cellent work for dealing with singular boundary integrals [Guiggiani and Gigante
(1990)]. It has been applied to two- and three-dimensional nearly singular integrals
with various orders both in potential and elasticity problems, and attractive results
have been presented.

However, as the definition of the projection point, finding the projection point is
essential for each computation, which may lower the efficiency of the method.
The numerical tests in Section 4.1 show that the local coordinate of the projec-
tion point must be calculated accurately, otherwise undesirable results will be ob-
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tained. Moreover, if the projection point is located on the tangential line through
the projection point, the method failed and another transformation should be taken.
In this paper, a general distance transformation is developed to circumvent these
drawbacks.

The paper is organized as follows. The general form of nearly singular integrals
is described in Section 2. The conventional distance transformation is briefly re-
viewed in Section 3. The drawbacks for conventional distance transformation are
presented by numerical tests and a general distance transformation is developed
in the Section 4. Some illustrative numerical examples are given to verify the
efficiency and accuracy of presented method in Section 5. The paper ends with
conclusions in Section 6.

2 Statement of the problem

Considering the description of 2D potential problems in the domain Ω enclosed by
boundary Γ, the two basic integral equations are written in terms of the flux q and
the potential u on the boundary as follows:

c(y)u(y) =
∫

Γ

q(x)u∗(x,y)dΓ(x)−
∫

Γ

u(x)q∗(x,y)dΓ(x) (1)

c(y)uk(y) =
∫

Γ

q(x)u∗k(x,y)dΓ(x)−
∫

Γ

u(x)q∗k(x,y)dΓ(x) (2)

where y and x are the source and the field points, respectively. c is a coefficient
depending on the smoothness of the boundary at the source point y. u∗(x,y) repre-
sents the fundamental solution for 2D potential problems expressed as

u∗(x,y) =
1

2π
log(

1
r
) (3)

and u∗k(x,y), q∗(x,y) and q∗k(x,y) are the derived fundamental solutions

u∗k(x,y) =
∂u∗(x,y)

∂xk
, q∗(x,y) =

∂u∗(x,y)
∂n

, q∗k(x,y) =
∂q∗(x,y)

∂xk
(4)

where r denotes the Euclidean distance between the source and the field points and
n is the unit outward normal on the boundary Γ.

To evaluate the boundary integrals numerically, the boundary Γ is discretized into
a number of linear or quadratic elements and then the boundary integrations are
performed on each element. When the source point is very close to but not on the
integration element, nearly singular integrals arise with different orders.
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In this paper, we deal with these boundary integrals with nearly singularity of the
following forms:

I =
∫ 1

−1
O(1/rχ) f (ξ )φi(ξ )G(ξ )dξ (5)

where O(1/rχ) represents the nearly singular integral kernels, log(1/r) for nearly
weak singular integrals, 1/r for nearly strong singular integrals and 1/r2 for nearly
hyper-singular integrals. f (ξ ) is a bounded function for local coordinate ξ , ξ ∈
[−1,1]. φi(ξ ) denotes the shape functions and G(ξ ) is the Jacobian of the trans-
formation from dΓ to dξ . As the singular integrals over linear elements can be
computed analytically, only quadratic elements are discussed in this paper.

3 Conventional distance transformation
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Figure 1: Definition of the projection point xc

In this section, the definition of the conventional distance function and the variable
transformation technique are reviewed. As shown in Fig. 1, the minimum distance
r0 from the source point to the boundary element is defined perpendicular to the
tangential line, through the projection point xc and the source point y. By employ-
ing the first-order Taylor expansion in the neighborhood of the projection point, we
have

xk− yk = xk− xc
k + xc

k− yk =
∂xk

∂ξ
|ξ=c(ξ − c)+ r0nk(c)+O(|ξ − c|2) (6)
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where c is the local coordinate of the projection point xc. The real distance can be
expanded to the following form:

r2(ξ ) = (xk− yk)(xk− yk)

= r2
0 +

∂xk

∂ξ

∂xk

∂ξ
|ξ=c(ξ − c)2 +2r0

∂xk

∂ξ
|ξ=cnk(c)(ξ − c)+O(|ξ − c|3)

= r2
0 +G2

c(ξ − c)2 +O(|ξ − c|3)
= G2

cg2(ξ )+O(|ξ − c|3)

(7)

where Gc denotes the Jacobian at point c and g(ξ ) is the distance function defined
as

g(ξ ) =
√

α2 +(ξ − c)2 (8)

This definition represents the distance in the local parametric plane and α = r0/Gc.
When the projection point is inside of the boundary element, the integration span is
split into two parts at point c, taking the following one-order transformation pairs
for the integration variable:

η(ξ ) = log[g(ξ )+(ξ − c)] (9)

ξ (η) =
1
2
[exp(η)−α

2 exp(−η)]+ c (10)

Substituting Eq. 9 and Eq. 10 into Eq. 5 yields

I =
∫ 1

−1
O(1/r) f (ξ )φi(ξ )G(ξ )dξ

=

η(c)∫
η(−1)

O(1/rχ) f [ξ (η)]φi[ξ (η)]G[ξ (η)]dη

+

η(1)∫
η(c)

O(1/rχ) f [ξ (η)]φi[ξ (η)]G[ξ (η)]dη

(11)

It is easily can be seen that the distance function and the Jacobian of transformation
play the role of damping out the nearly singularity of the kernels. For the possibility
of unifying and simplifying the computer code, the one-order transformation is
used for various orders of singularities, which can obtain an acceptable result even
for the hyper-singular kernel [Ma and Kamiya (2002a)].
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4 General distance transformation

4.1 Sensitivity to the position of projection point

As we know, finding the accurate position of the projection point is an essential
step for the successful implementation of the distance transformation method when
dealing with nearly singular integrals. The Newton’s method is widely used to
find approximate position of the projection point and an inevitable error will be
produced. In this section, the influence of the position of the projection point on
the accuracy of the distance transformation method is investigated. Here we assume
the source point is fixed and the local coordinate ξ c

a of the approximate projection
point is determined by an offset parameter k with the following equation:

ξ
c
a = ξ

c + kξ
c (12)

where ξ c is the accurate local coordinate of the projection point and k indicates
the offset caused by the error during finding the projection point. Obviously, the
approximate projection point is coincident with the accurate one when k = 0.

Considering the first example in Ref. [Ma and Kamiya (2002a)], the relative dis-
tance describing the closeness of the near singular point to the boundary is taken
as 10−4 and ten points Gauss quadrature is used for all the computations. The inte-
grals with kernel u∗ and q∗ corresponding to different offset values of k have been
computed using the conventional distance transformation and the reference values
are obtained by subdivision method with enough subelements. Numerical results
are shown in Fig. 2 and Fig. 3, and it can be seen that the results obtained with con-
ventional distance transformation is very sensitive to the position of the projection
point and poor results are obtained even with a very little deviation of the position
of the projection point. Besides, the results get much worse for high order singular
integrals.

The drawbacks of the distance transformation method are very obvious: the com-
putation of the position of the projection point should be very rigorous and the
process of finding the projection point is time-consuming but essential for each
source point, which may lower the computational efficiency. Is the projection point
really essential? The work presented later is tried to overcome the shortcomings of
the conventional distance transformation method.

4.2 Definition of general distance function

In this section, a general projection point xc0 is defined to construct a new distance
function as shown in Fig. 4. The general projection point xc0 can be located inside
the integration element or on one node of the element. τ and n are the unit tangen-
tial and outward normal vector, respectively. A new vector d from the source point
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Figure 2: Various integrals with kernel u∗
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Figure 3: Various integrals with kernel q∗

y to the general projection point xc0 is defined additionally, which is not required
to be perpendicular to the tangential line through xc0 . By applying the first-order
Taylor expansion in the neighborhood of point xc0 , we have

xk− yk = xk− xc0
k + xc0

k − yk =
∂xk

∂ξ
|ξ=c0(ξ − c0)+dk +O(|ξ − c0|2) (13)

where c0 is the local coordinate of the general projection point xc0 , and dk is one
of the components of d. The real distance can also be expanded to the following
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Figure 4: General definition of the projection point xc0

form:

r2(ξ ) = (xk− yk)(xk− yk)

= d2 +
∂xk

∂ξ

∂xk

∂ξ
|ξ=c0(ξ − c0)

2 +2dk
∂xk

∂ξ
|ξ=c0(ξ − c0)+O(|ξ − c0|3)

(14)

Noted that

2dk
∂xk

∂ξ
|ξ=c0(ξ − c0) = 2Gc0(d · τ) = 2Gc0d cosθ (15)

where Gc0 denotes the Jacobian at point c0 and θ is the angle between d and τ ,
which is only related to the position of xc0 and y. The real distance can be rewritten
as

r2(ξ ) = d2 +G2
c0
(ξ − c0)

2 +2Gc0d cosθ(ξ − c0)+O(|ξ − c0|3)
= G2

c0
[α2 +(ξ − c0)

2 +2α cosθ(ξ − c0)]+O(|ξ − c0|3)
= G2

c0
g2(ξ )+O(|ξ − c0|3)

(16)

where g(ξ ) is the general distance function defined as follows:

g(ξ ) =
√

α2 +(ξ − c0)2 +2α cosθ(ξ − c0) (17)

with α being d/Gc0 . g(ξ ) represents the distance in the local parametric plane as
shown in Fig. 5, which can be proved using the cosine law.
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Figure 5: The distance function g(ξ ) in the local parametric plane

Now we introduce a similar pair of transformations for the integration variable,
which is expressed as

η(ξ ) = log[g(ξ )+(ξ − c0)+α cosθ ] (18)

ξ (η) =
1
2

exp(−η)[(exp(η)−α cosθ)2−α
2]+ c0 (19)

After splitting the integration element into two parts at point (c0−α cosθ), which is
unnecessary if the general projection point is located at the vertex of the integration
element, we can obtain the distance-transformed form of the near singular boundary
integrals as Eq. 20. Now the nearly singular integrations with various orders can be
computed accurately even if xc0 is a little far away from the conventional projection
point.

I =
∫ 1

−1
O(1/r) f (ξ )φi(ξ )G(ξ )dξ

=
∫ (c0−α cosθ)

−1
O(1/r) f (ξ )φi(ξ )G(ξ )dξ +

∫ 1

(c0−α cosθ)
O(1/r) f (ξ )φi(ξ )G(ξ )dξ

=
∫ log[g(c0−α cosθ)]

log[g(−1)+(−1−c0)+α cosθ ]
O(1/rχ) f [ξ (η)]φi[ξ (η)]G[ξ (η)]dη

+
∫ log[g(1)+(1−c0)+α cosθ ]

log[g(c0−α cosθ)]
O(1/rχ) f [ξ (η)]φi[ξ (η)]G[ξ (η)]dη

(20)
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5 Numerical examples

In this section, a number of numerical examples including straight and curved lines
are presented to validate the accuracy and efficiency of our method. The relative
distance is given in terms of r0/l to describe the influence of the nearly singular
integrals over each element, where r0 is the minimum distance as shown in Fig. 1
and l stands for the length of the element. For the purpose of error estimation, the
relative error is defined as follows:

error =
Inum− Ire f

Ire f
(21)

where the subscripts num and re f refer to the numerical and reference solutions,
respectively. The reference solutions are obtained by subdivision method with
enough subelements. Ten Gauss points are used in all cases for the convenience
of comparisons.

5.1 Numerical examples for straight line

The first example considers the nearly singular integrals on a straight line with the
node coordinates of (0.0, 0.0), (0.5, 0.5) and (1.0, 1.0). The local coordinate of the
conventional projection point c is located at 0.5 and the general projection point is
put inside the element interval and c0 = 0.0. The relative errors of nearly singular
integrals using general and conventional distance transformation are listed in Table
Tab. 1. It can be seen that the method using general distance transformation can
get results of the same precision as the conventional distance transformation for
various orders of singularity. To investigate the influence of the position of the
general projection point, c0 varies from -1.0 to 1.0 by the increment of 0.5 and
r0/l is taken as 10−4. Table Tab. 2 presents the relative error of nearly singular
integrals when the general projection point moves along the element. Results with
high accuracy can be obtained, even when the general projection point is located on
the vertex of the element as c0 =±1.0. These attractive results have demonstrated
the efficiency of our method.

Remark 1. For straight lines, the conventional projection point is unessential and
the accuracy of results is independent of the projection point. Results with high
accuracy can be obtained using general projection point, and the general projection
point can be specified arbitrarily, even on the vertex of the element.

5.2 Numerical examples for curved line

The numerical examples in Ref. [Ma and Kamiya (2002a)] is taken as the second
example. The example is computed over a curved boundary element with the node
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coordinates of (2.0, 0.0), (1.0, 1.0), and (0.0, 0.5). The local coordinate of the con-
ventional projection point c is set outside of the element interval and c = 1.01. The
relative error of nearly singular integrals using general and conventional distance
transformation is presented in Table Tab. 3. The local coordinate of the general pro-
jection point c0 is located at 0.0. For results obtained with the conventional distance
transformation, the precision will decline as the range of r0/l. The results using the
general distance transformation can keep high precision in a wide range of r0/l,
which is better than the results obtained by conventional distance transformation.

The influence of the location of the general projection point is also studied for
curved boundary element. As the general projection point moves along the element,
computations for nearly singular integrals with r0/l being 10−4 are performed and
the relative error is given in Table Tab. 4. As the general projection point is located
at the middle of the element, best results can be obtained compared with other loca-
tions. All the results are acceptable relative to those obtained with the conventional
distance transformation.

As the local coordinate of the conventional projection point c changes from 1.1 to
1.000001, the source point y becomes increasingly closer to the element, which
may lead to poor results during computation of nearly singular integrals. Here
we assume c0 = 0 and r0/l = 10−4 to verify the effectiveness of the conventional
and general distance transformation. The results with kernel u∗ as c varies from
1.1 to 1.000001 are listed Table Tab. 5. It can be easily seen that our method is
less sensitive to different values of c and better results can be obtained than the
conventional distance transformation.

Remark 2. When the conventional projection point is outside of the curved bound-
ary element, the presented method can get results with high accuracy in a wide
range of r0/l, even in some adverse cases. As the general projection point moves
along the element, acceptable results can be obtained compared with the conven-
tional method.

5.3 Sensitivity to the position of projection point

Now we consider the case of curved boundary element with |c| < 1, namely, the
conventional projection point is located inside the element interval. The curved
boundary element in Ref. [Ma and Kamiya (2002a)] is considered and the con-
ventional projection point c is also set at -0.5 with r0/l = 10−4.Giving a set of
values of k using in Eq. 12, the relative error for results with kernels u∗ and q∗

are shown in Fig. 6 and Fig. 7, respectively. The sensitivity to the position of the
conventional projection point has been studied in detail, of which the results have
been presented in Section 4.1. It is obviously seen that acceptable results can be
obtained when there is a little offset. The presented method is less sensitive to the
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position of the projection point. On the contrary, the accuracy of results using the
conventional distance transformation becomes very poor.
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Figure 6: Relative errors for integrals with kernel u∗
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Figure 7: Relative errors for integrals with kernel q∗

Remark 3. For the case of curved boundary element with |c|< 1, acceptable results
can be obtained when there is a little offset, namely, the accuracy of the presented
method is less sensitive to the position of the projection point. This property is
particularly beneficial when the projection point cannot be accurately calculated.
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6 Conclusions

In this paper, the drawbacks of the conventional distance technique, such as the
sensitivity to the position of projection point, are investigated by numerical tests.
A general distance transformation technique is developed to remove or weaken the
limitations of projection point, which is based on a more general definition of the
projection point.

The presented method has been verified through several numerical examples with
different kernel functions and relative distances. The results demonstrate that the
projection point is completely unessential for straight liner elements. When the
conventional projection point is outside of the curved boundary element, the con-
ventional projection point is unessential. If the conventional projection point is
located inside the element interval, the presented method is less sensitive to the
position of the projection point than the conventional distance transformation. The
extended form to deal with hyper-singular integrals will be researched in the later
work.
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