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Richardson Extrapolation Method for Singularly
Perturbed Convection-Diffusion Problems on Adaptively

Generated Mesh

Pratibhamoy Das1 and Srinivasan Natesan2

Abstract: Adaptive mesh generation has become a valuable tool for the im-
provements of accuracy and efficiency of numerical solutions over fixed number
of meshes. This paper gives an interpretation of the concept of equidistribution
for singularly perturbed problems to obtain higher-order accuracy. We have used
the post-processing Richardson extrapolation technique to improve the accuracy of
the parameter uniform computed solution, obtained on a mesh which is adaptively
generated by equidistributing a monitor function. Numerical examples demonstrate
the high quality behavior of the computed solution.

Keywords: Singularly perturbed problem, Layer-adapted mesh, Mesh equidistri-
bution, Uniform convergence, Higher-order convergence, Extrapolation technique.

1 Introduction

The solution of singularly perturbed problem typically exhibits sharp layers of dif-
ferent widths at the boundary as well as at the interior part of the domain. This
problem arises in the modeling of convection dominated flow problems in fluid
dynamics for e.g., linearized Navier-Stoke equation with high Reynolds number.
Because of the presence of these layers, standard numerical methods fail to give
accurate results. To obtain a reliable numerical approximation, one well-known
technique is to use, locally refined meshes that are fine in narrow layer regions and
coarse outside. Several research have been done to get uniform convergence where
the mesh is chosen apriori. Here our aim is to construct higher-order accurate solu-
tion on adaptively generated fully nonuniform meshes by the moving mesh method
which can automatically detect accurate locations and widths of the layers.
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In the present paper, we consider the following singularly perturbed convection-
diffusion problem:{

Lu(x)≡−εu′′(x)− (a(x)u(x))′ = f (x), x ∈Ω = (0,1),

u(0) = 0, u(1) = 0,
(1)

where ε (0 < ε � 1) is the parameter. It will be assumed that a(x) and f (x) are in
C2(Ω). Under these assumptions, the problem (1) admits a unique solution u(x) ∈
C4(Ω)∩ C(Ω) where Ω = [0,1]. In general, the solution u(x) of (1) exhibits a
boundary layer at x = 0, if a(x) has a positive lower bound.

In the last few decades, the construction of ε-uniformly convergent schemes for sin-
gularly perturbed problems are attracted by several researchers. The apriori chosen
piecewise-uniform Shishkin mesh and Bakhvalov mesh are investigated by several
authors (see Miller, O’Riordan, and Shishkin (1996); Roos, Stynes, and Tobiska
(2008)) for singularly perturbed convection-diffusion problems. But, most of them
are almost first-order accurate. In this context, Natividad and Stynes (2003) consid-
ered a higher-order convergent technique using Richardson extrapolation method
which improves the order of convergence O(N−1 lnN) to O(N−2 ln2 N) on piece-
wise uniform Shishkin mesh. The extension of this technique for system of differ-
ential equations and partial differential equations can be seen in Deb and Natesan
(2008); Mukherjee and Natesan (2011) for Shishkin mesh. On this mesh, Das and
Natesan (2013) proposed a hybrid scheme which provides O(N−2 ln2 N) solution
for a system of Robin type singularly perturbed reaction-diffusion problems. In
the present paper, our aim is to achieve the higher-order convergent solution on the
adaptively generated mesh for a singularly perturbed convection-diffusion problem
of the form (1).

A commonly used technique in adaptive mesh generation is based on the idea of
equidistribution. A mesh ΩN ≡ {0 = x0 < x1 < · · ·< xN = 1} is said to be equidis-
tributed, if∫ x j

x j−1

M
(
s,u(s)

)
ds =

∫ x j+1

x j

M
(
s,u(s)

)
ds, j = 1, . . . ,N−1, (2)

where M
(
s,u(s)

)
> 0 is called the monitor function. This monitor function is nor-

mally some measure of computational error or solution variation, specially where
the solution changes rapidly. Equivalently, (2) can be expressed as∫ x j

x j−1

M
(
s,u(s)

)
ds =

1
N

∫ 1

0
M
(
s,u(s)

)
ds, j = 1, . . . ,N. (3)

It is common to use monitor functions which are bounded away from zero by a
constant to prevent mesh starvation outside the layer. In practice, the monitor func-
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tions are based on the simple functions which involves the derivatives of the un-
known solution. In this regard, one can refer Das and Natesan (2012) where a
monitor function, based on the curvature of the solution is used to achieve higher-
order accurate solution for singularly perturbed Robin type reaction-diffusion prob-
lems. The extension of this monitor function for parabolic problems can be seen in
Gowrisankar and Natesan (2012). The monitor function considered in this article
is originally due to Beckett and Mackenzie (2000). A first-order convergence is
observed by them for singularly perturbed convection-diffusion problems. Here,
our aim is to construct a higher-order convergent solution on equidistributed mesh
using Richardson extrapolation method.

In this paper, the following two monitor functions will be used for the error analysis

M
(
x,u(x)

)
= 1+ |u′′(x)|1/2, and M

(
x,w(x)

)
= 1+ |w′′(x)|1/2. (4)

Here u(x) is the solution of (1) and w(x) is the singular component of the solution
u(x).

The outline of this paper is as follows: In Section 2, the derivative bounds of the
analytical solution u(x) of (1) is introduced. Its decomposition into the smooth and
singular components and their derivatives bounds are established in this section.
The stability of the continuous solution is also provided here. A finite difference
discretization of the continuous problem (1) and the stability of the discrete solu-
tion is introduced in Section 3. Section 4 is devoted to study the detailed error
analysis. Also, two monitor functions are generated from the error analysis, which
will lead to the first-order parameter-uniform convergence on the equidistributed
mesh. Richardson extrapolation technique is used at the end of this section, where
the error is improved to second-order accuracy by equidistributing the proposed
monitor functions. Finally, Section 5 provides numerical experiments to support
the theoretical findings using an adaptive algorithm.

Throughout this paper, C denotes a generic positive constant independent of ε , xi-
the discretized grid and N-number of mesh intervals, and can take different values
at different places, even in the same argument. A subscripted C (for e.g., C1) is a
constant that is independent of ε and of the nodal point xi, but whose value is fixed.
To simplify the notation, we set gi = g(xi) for any function g, while the superscript
GN

i or/ Gi denotes an approximation of g at xi. We denote the discrete maximum
norm as || · ||∞ where ||φ ||∞ = max

ξ∈Ω

|φ(ξ )| for a function φ defined on some domain

Ω. When the domain is obvious, or of no particular significance, we simply write
|| · ||.
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2 Solution Decomposition and Derivative Bounds

This section presents the standard apriori bounds of the analytical solution of (1)
and its derivatives. For the analysis presented here, we assume that a(x) = a, a
constant in (1) such that a� ε > 0. The next lemma provides apriori bounds of
the solution and its derivatives.

Lemma 2.1 The solution u(x) of (1) and its derivatives satisfy the following bounds
for any prescribed r,

|u(k)(x)| ≤C
(
1+ ε

−k exp(−ax/ε)
)
, for k = 0, · · · ,r.

Proof. The proof of this lemma can be seen in Kellogg and Tsan (1978).

To establish the parameter-uniform properties of the numerical methods, we shall
decompose the analytic solution u into the smooth component v and the singular
component w such that u = v+w. The following lemma provides an insight about
the derivative bounds of the smooth component v and the singular component w.

Lemma 2.2 The smooth component v(x) of the solution u(x) of (1) satisfying{
Lv(x) = f (x), x ∈Ω,

v(0) = vε , v(1) = 0, with a suitable vε ,

admits the following bound

|v(k)(x)| ≤C, for k = 0, · · · ,r, and any prescribed r,

while the singular component w(x) satisfying{
Lw(x) = 0, x ∈Ω,

w(0) =−v(0), w(1) = 0,

is of the form w(x) = A+Bexp(−ax/ε), where

A =
v(0)exp(−a/ε)

1− exp(−a/ε)
, B =

−v(0)
1− exp(−a/ε)

.

Proof. To obtain the derivative bounds for the smooth component v(x), consider
the decomposition

v(x) =
r+1

∑
i=0

ε
ivi(x), with v(1) = 0.
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Now, comparing the powers of ε , we get

−av′0(x) = f (x), v0(1) = 0,

−av′i(x) = v′′i−1(x), vi(1) = 0, i = 1, · · · ,r,

Lvr+1(x) = v′′r (x), vr+1(1) = 0, vr+1(0) = u(0) = 0.

Since the last equation is similar to (1), Lemma 2.1 can be used to bound the term
vr+1(x). Combining the derivative bounds of each component, we obtain the re-
quired bound. A direct calculation from

Lw(x) = 0, w(0) =−v(0), w(1) = 0,

leads to

w(x) = A+Bexp(−ax/ε), with A =
v(0)exp(−a/ε)

1− exp(−a/ε)
, B =

−v(0)
1− exp(−a/ε)

,

which proves the lemma.

The continuous operator L defined in (1) enjoys the following stability property

||v||
∞,Ω ≤ 2a−1||Lv||∗,Ω, for all v with v(0) = v(1). (5)

This result is obtained by Andreev (2001), using the Green’s function associated
with the operator L.

3 Discretization of the Continuous Problem

In this section, we explicitly describe a upwind finite difference discretization for
the problem (1). For a given a discrete function {vi}N

i=0 on ΩN ≡ {0 = x0 < x1 <
· · ·< xN = 1}, define the forward and backward operators

D+vi =
vi+1− vi

hi+1
, and D−vi =

vi− vi−1

hi
,

respectively, where hi = xi− xi−1. The boundary-value problem (1) is discretized
by the following difference scheme:{

[LNU ]i ≡−ε[D+D−U ]i− [D+(aU)]i = fi, for i = 1, · · · ,N−1,

U0 =UN = 0.
(6)

The discrete operator LN satisfies the following stability property

||U ||∞,ΩN ≤ 2a−1||LNU ||∗,ΩN , for all U ∈ RN+1
0 , (7)
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(see Andreev (2001)), where

||U ||∗,ΩN = ||U ||−1,∞,ΩN = max
i=0,··· ,N−1

∣∣∣∣N−1

∑
p=i

hp+1Up

∣∣∣∣. (8)

The next lemma is very useful to have an upper bound of the mesh spacings through-
out the domain.

Lemma 3.1 The mesh widths generated by equidistribution of the monitor func-
tions (4) satisfy

hi ≤CN−1, for i = 1, · · · ,N.

Proof. It is clear that the monitor function (4) satisfies M(x,w(x)) ≥ 1. Again

the derivative estimates from Lemma 2.2 imply
∫ 1

0
M(x,w(x))dx ≤ C1 for some

constant C1. Hence, the equidistribution principle (3) leads to

hi ≤
∫ xi

xi−1

M(x,w(x))dx =
1
N

∫ 1

0
M(x,w(x))dx≤C1N−1⇒ hi ≤C1N−1.

This implies that

hi ≤CN−1.

By adopting a similar technique, it is easy to check that hi ≤CN−1 for the monitor
function M(x,u(x)).

4 Error Analysis

In this section, the standard error analysis involving the monitor functions given in
(4) is presented. These monitor functions are generated from the error expansion.
First, we provide a technical lemma, which is used for the proof of ε-uniform error
estimate.

Lemma 4.1 Consider the following continuous problem

Lφ = Φ
′, x ∈Ω, φ(0) = 0, φ(1) = 0. (9)

Here Φ(x) is a piecewise continuously differentiable function where the differentia-
tion can be understood in the distributional sense. If φ(x) ∈ C2(Ω), then it satisfies
the following equality

N−1

∑
p=i

hp+1[L
N

φ ]p = ε([D−φ ]i−φ
′
i−0)− ε([D−φ ]N−φ

′
N−0)+ΦN−0−Φi−0.
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Proof. This result can be obtained by integrating the continuous problem (9) and
the discrete problem (6) over the interval (xi,1) and combining them (see Linß
(2004)).

From this lemma, we can obtain the truncation error estimate of the numerical
solution U of (6). This error becomes

N−1

∑
p=i

hp+1[L
N(u−U)]p = ε([D−u]i−u′i−0) − ε([D−u]N−u′N−0)+ (10)

∫ 1

xi

f (x)dx−
N−1

∑
p=i

hp+1 fp.

Thus, using the discrete norm defined in (8), we have

||LN(u−U)||∗,ΩN ≤ 2ε max
i=1,··· ,N

|[D−u]i−u′i−0|+ max
i=0,··· ,N−1

∣∣∣∣∫ 1

xi

f (x)dx−
N−1

∑
p=i

hp+1 fp

∣∣∣∣.
(11)

One can observe that the terms appearing in the right-hand side of the truncation
error bound will provide at most first-order convergence. In fact, with the help of
discrete stability estimate (7), it is proved in Linß (2001) that

||u−U ||∗,ΩN ≤C max
i=1,··· ,N

∫ xi

xi−1

(
1+ |w′′(x)|1/2

)
dx.

Here, we have used Lemma 2.2. From this expression, it is clear that the equidis-
tribution principle (2) of the monitor function M(x,w(x)) leads to a first-order con-
vergent solution of (6). This monitor function is originally due to Beckett and
Mackenzie (2000) where a technique used in Pereyra and Sewell (1975) followed
for the convergence analysis.

Now onwards, for the sake of convenience, the left-hand derivative of u(x) at xi

will be denoted by u′i instead of u′i−0. To improve the accuracy of the numerical
solution, we have to eliminate the first-order dominating terms from the expression
(11). This can be achieved by introducing the extrapolation technique. Assume
that χ(x), the leading term of the error expansion is the solution of the following
problem

Lχ = Λ
′, χ(0) = χ(1) = 0, with Λ(x) =

εh(x)u′′(x)
2

−
∫ 1

x
h(t) f ′(t)dt, (12)

where

h(x) = x− xp−1, on x ∈ (xp−1,xp).
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Then, using Lemma 4.1, we have

N−1

∑
p=i

hp+1[L
N(u−χ − U)]p = ε([D−u]i−u′i +

hi

2
u′′i )− ε([D−u]N−u′N

+
hN

2
u′′N)+

∫ 1

xi

(
f (x)−h(x) f ′(x)

)
dx−

N−1

∑
p=i

hp+1 fp +

ε([D−χ]N−χ
′
N)− ε([D−χ]i−χ

′
i ). (13)

From the above equality, it can be noted that the expressions involving u(x) and
f (x) appearing in the right-hand side of (13) are of second-order. Third expression
involving χ(x) is also of second-order, as the leading error χ(x) itself is first-order.

Now, we shall analyze each term of the error expression appearing in (13) sepa-
rately. This will give us an insight to the place, where the monitor functions and the
given boundary-value problem (BVP) (1) are used. Observe that, the given equa-
tion (1) implies that |u′| ≤C(1+ ε|u′′|). Again, differentiating equation (1) we get
εu′′′ =− f ′−a′′u−2a′u′−au′′, which implies that |εu′′′| ≤C(1+ |u′′|).
Now, consider the first term of the right-hand side expression in (13). Noting the
above observations, Taylor series expansion with integral form of remainder yields

ε

(
[D−u]i−u′i +

hi

2
u′′i

)
=

ε

2hi

∣∣∣∣∫ xi

xi−1

(x− xi−1)
2u′′′(x)dx

∣∣∣∣
≤ C

2hi

∫ xi

xi−1

(x− xi−1)
2[1+ |u′′(x)|]dx

≤ C max
[xi−1,xi]

h2
i [1+ |u′′(x)|]

≤ C max
[xi−1,xi]

h2
i [1+ |w′′(x)|]

≤ C max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2, (14)

where Lemma 2.2 is used. Again Taylor series expansion yields

f (s) = fi−1 +(s− xi−1) f ′(s)−
∫ s

xi−1

(x− xi−1) f ′′(x)dx.

Integrating the above expression over (xi−1,xi) leads to∫ xi

xi−1

( f (x)− (x− xi−1) f ′(x))dx−hi fi−1 =−
∫ xi

xi−1

∫ s

xi−1

(x− xi−1) f ′′(x)dxds.
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Since f (x) ∈ C2(Ω), we have∣∣∣∣∫ xi

xi−1

( f (x)− (x− xi−1) f ′(x))dx−hi fi−1

∣∣∣∣ ≤ ∫ xi

xi−1

∫ s

xi−1

(x− xi−1)| f ′′(x)|dxds

≤ Ch3
i . (15)

Hence,∣∣∣∣ ∫ 1

xi

(
f (x)−h(x) f ′(x)

)
dx−

N

∑
p=i+1

hp fp−1

∣∣∣∣
≤

N

∑
p=i+1

∣∣∣∣∫ xp

xp−1

( f (x)− (x− xp−1) f ′(x))dx−hp fp−1

∣∣∣∣
≤ C

N

∑
p=i+1

h3
p ≤C max

p
h2

p

N

∑
p=i+1

hp ≤C max
i

h2
i

≤ C max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2. (16)

To bound the fifth term of the right-hand side expression in (13), we need the deriva-
tive bound of the leading error term χ(x). The following technical lemma is very
useful to derive the derivative bounds of χ(x).

Lemma 4.2 Let x ∈ (xi−1,xi). Then, we have

h(x)(1+ ε
−1 exp(−ax/2ε))≤

∫ x

xi−1

(
1+ ε

−1 exp(−at/2ε)

)
dt.

Proof. It is easy to check that the difference between the two functions appearing
in either sides of the above inequality is monotonic in the interval (xi−1,xi).

The following lemma provides the derivative estimates of χ(x).

Lemma 4.3 Assume that a(x), f (x) ∈ C2(Ω). Then the solution of (12) and its
derivatives satisfy

|χ(p)(x)| ≤C
(
1+ ε

−p exp(−ax/2ε)
)

max
i=1,··· ,N

∫ xi

xi−1

(
1+ ε

−1 exp(−at/2ε)

)
dt,

for p = 0,1, and

ε|χ ′′(x)| ≤ C
(
1+ ε

−1 exp(−ax/2ε)
)

max
i=1,··· ,N

∫ xi

xi−1

(
1+ ε

−1 exp(−at/2ε)

)
dt

+h(x)(1+ ε
−1 exp(−ax/ε)), for x ∈Ω\ΩN . (17)
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Proof. The proof of this lemma is given by Linß (2004).

Now, the first derivative bound of χ(x) and the mean-value theorem yield

ε([D−χ]i−χ
′
i ) = ε

∣∣∣∣χi−χi−1

hi
−χ

′
i

∣∣∣∣
≤ ε max

(xi−1,xi)
|χ ′(x)|

≤ C max
i=1,··· ,N

∫ xi

xi−1

(
1+ ε

−1 exp(−ax/2ε)

)
dx

≤ C max
i=1,··· ,N

∫ xi

xi−1

(
1+ |w′′(x)|1/2

)
dx.

This implies that the proposed technique will lead to first-order convergence if the
function M(x,w(x)) is equidistributed as a monitor function. Nevertheless, we can
improve the convergence rate by using the second-order derivative bound of χ(x)
from Lemma 4.3. Again, Taylor series expansion with integral form of the remain-
der leads to

ε([D−χ]i−χ
′
i ) =

ε

hi

∣∣∣∣∫ xi

xi−1

(x− xi−1)χ
′′(x)dx

∣∣∣∣
≤ C

hi

∫ xi

xi−1

h2(x)
(

1+ ε
−1 exp(−ax/ε)

)
dx

+
C
hi

max
i=1,··· ,N

∫ xi

xi−1

(
1+ ε

−1 exp(−ax/2ε)

)
dx×

∫ xi

xi−1

(x− xi−1)

(
1+ ε

−2 exp(−ax/2ε)

)
dx

= I1 + I2.

Here

I1 =
C
hi

∫ xi

xi−1

h2(x)
(

1+ ε
−1 exp(−ax/ε)

)
dx

≤C
∫ xi

xi−1

(x− xi−1)dx+
∫ xi

xi−1

(x− xi−1)ε
−2 exp(−ax/ε)dx.

Now, we shall use the following identity from Pereyra and Sewell (1975): For
any positive monotonically decreasing function ψ(x) defined on [a,b] and arbitrary
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k ∈ N+, we have

∫ b

a
ψ(t)(t−a)(k−1)dt ≤ 1

k

[∫ b

a
ψ(t)1/kdt

]k

.

Hence, the above identity for k = 2 implies that

I1 ≤Ch2
i +C

[∫ xi

xi−1

(
ε
−1 exp(−ax/2ε)

)
dx
]2

≤Ch2
i +C

[∫ xi

xi−1

(
1+ ε

−1 exp(−ax/2ε)

)
dx
]2

≤Ch2
i +C

[
max

i=1,··· ,N

∫ xi

xi−1

(
1+ |w′′(x)|1/2

)
dx
]2

.

A similar technique used to derive the bound for I1 can be applied to get

I2 =
C
hi

max
i=1,··· ,N

∫ xi

xi−1

(
1+ ε

−1 exp(−ax/2ε)

)
dx×

∫ xi

xi−1

(x− xi−1)

(
1+ ε

−1 exp(−ax/2ε)

)
dx

≤ C
[

max
i=1,··· ,N

∫ xi

xi−1

(
1+ |w′′(x)|1/2

)
dx
]2

.

It should be noted that max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2 is the discrete analogue of

continuous form of the error estimate
[

max
i=1,··· ,N

∫ xi

xi−1

(
1+ |w′′(x)|1/2

)
dx
]2

. From

these two expressions, it is clear that the monitor function which is being equidis-
tributed to obtain the error estimate is M

(
x,w(x)

)
= 1+ |w′′(x)|1/2, where w(x) is

the singular component of the solution u(x).

Henceforth, combining all these above estimates, it is clear from the equality (13)
that

||LN(u−χ−U)||∗,ΩN ≤C max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2. (18)

Hence, the stability estimate (7) implies that

||u−χ−U ||∗,ΩN ≤C max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2. (19)
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The key idea of Richardson extrapolation is to provide better numerical approx-
imation of the exact solution, by considering an average of the numerical solu-
tions in two embedded meshes. To explain this method, let us define a mesh
Ω̄N ≡ {0 = x̄0 < x̄1 < · · · < x̄2N = 1}, which is obtained by bisecting the original
mesh ΩN with the step size h̄i = x̄i− x̄i−1.

Now consider the discrete problem{
[L̄NŪ ]i ≡−ε[D+D−Ū ]i− [D+(āŪ)]i = f̄i, for i = 1, · · · ,2N−1,

Ū0 = ŪN = 0.
(20)

Extrapolation technique will be used to improve the solutions at the points xi ∈ΩN ,
with the help of Ū . As like (7), the stability estimate of the solution Ū implies that

||v||∞,ΩN ≤ 2a−1 max
i=1,··· ,N−1

∣∣∣∣ 2N−1

∑
p=2i

h̄p+1[L̄
Nv]p

∣∣∣∣, where v ∈ R2N+1
0 . (21)

Hence, following the technique of obtaining the expression (13), we deduce that

2N−1

∑
p=2i

h̄p+1[L̄
N(u− χ

2
− Ū)]p = ε([D−u]2i−u′2i +

hi

4
u′′i )− ε([D−u]2N−u′2N

+
hN

4
u′′N)+

∫ 1

xi

(
f (x)− h(x)

2
f ′(x)

)
dx−

2N−1

∑
p=2i

h̄p+1 f̄p

+
ε

2

(
[D−χ]2N− χ̄

′
2N

)
− ε

2

(
[D−χ]2i−χ

′
2i

)
, (22)

where h̄2i = hi/2 for i = 1, · · · ,N−1. The procedure of bounding the first and fifth
terms of (13) can be extended to find the bounds of the corresponding terms in (22).
Hence, we shall be considering only the expressions involving f (x).

Denoting fp+1/2 = f (xp + xp+1)/2, observe that

∫ xp+1

xp

(
f (x)− h(x)

2
f ′(x)

)
dx− h̄2p+1 f̄2p− h̄2p+2 f̄2p+1

=
∫ xp+1

xp

(
f (x)− h(x)

2
f ′(x)

)
dx−

hp+1

2
( fp + fp+1/2)

=
1
2

[∫ xp+1

xp

( f (x)−h(x) f ′(x))dx−hp+1 fp

]
+

1
2

[∫ xp+1

xp

f (x)dx−hp+1 fp+1/2

]
.

(23)
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The first term of the above expression is bounded from (15), i.e.,∣∣∣∣∫ xp+1

xp

( f (x)−h(x) f ′(x))dx−hp+1 fp

∣∣∣∣≤Ch3
p+1.

To bound the second term, the Taylor series expansion of f (x) with respect to the
point xp+1/2, up to second-order derivative implies that∣∣∣∣∫ xp+1

xp

f (x)dx−hp+1 fp+1/2

∣∣∣∣≤Ch3
p+1.

By combining the above two inequalities, we get

∫ 1

xi

(
f (x)− h(x)

2
f ′(x)

)
dx−

2N−1

∑
p=2i

h̄p+1 f̄p ≤C max
i

h2
i

≤C max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2.

(24)

Hence, the stability estimate for the discrete operator (20) leads to

||u− χ

2
−Ū ||∞,ΩN ≤C max

i
max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2. (25)

Now, we are in a position to define the extrapolated solution. Let Uext p be the
solution obtained through Richardson extrapolation, which is defined as

Ui,ext p = 2Ū2i−Ui, for i = 0, · · · ,N. (26)

Then, from the triangle inequality, we have

‖u−Uext p‖∞,ΩN = ‖(2u−χ−2Ū)− (u−χ−U)‖∞,ΩN

≤ 2‖u− 1
2

χ−Ū‖∞,ΩN +‖u−χ−U‖∞,ΩN .
(27)

Therefore, by combining (19) and (25) in (27), we get

‖u−Uext p‖∞,ΩN ≤C max
i

max
[xi−1,xi]

h2
i [1+ |w′′(x)|1/2]2. (28)

Note that the error estimator appearing in the right-hand side of the above expres-
sion depends on the singular component w(x) of the solution u(x). In reality, from
the apriori analysis, it is observed that the boundary layer phenomena occurs actu-
ally from the singular component of the solution. Assuming sufficient smoothness
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of the given data a(x) and f (x), it should also be noted that the derivatives of the
decomposed solution’s smooth component v(x) can be uniformly bounded irre-
spective of the perturbation parameter ε from Lemma 2.2. This fact can be used
to get a proper error estimator to improve the numerical solution, which can avoid
of finding the singular component of the solution at the time of generating a new
mesh through equidistribution. Now observe that the solution decomposition and
Lemma 2.2 lead to

|w′′(x)| ≤ |u′′(x)|+ |v′′(x)| ≤C[1+ |u′′(x)|].

Hence the expression (28) reduces to

‖u−Uext p‖∞,ΩN ≤C max
i

max
[xi−1,xi]

h2
i [1+ |u′′(x)|1/2]2. (29)

Therefore, we can state the main theorem of this chapter as follows.

Theorem 4.4 If u is the solution of the convection-diffusion problem (1) and Uext p

is the extrapolated solution obtained through Richardson extrapolation formula
(26), then we have

‖u−Uext p‖∞,ΩN ≤C max
i

max
[xi−1,xi]

h2
i [1+ |u′′(x)|1/2]2, (30)

where C is independent of the perturbation parameter ε and the number of mesh
intervals N.

5 Numerical Computation

This section computationally verifies the theoretical findings with the proposed
monitor functions. The generation of the finite difference solution using adaptive
technique requires two steps; firstly the adaptive mesh has to be determined by a
mesh generation algorithm and thereafter, the finite difference solution will be com-
puted on that mesh. We consider the well-known de Boor algorithm to generate the
adaptive mesh.

5.1 Adaptive mesh generation algorithm

The following iterative algorithm will be used for equidistributing the proposed
monitor functions (4). Here, we have stated the algorithm by considering M(x,w(x))
as a monitor function. This algorithm is applied by Kopteva and Stynes (2001)
for convection-diffusion problems and by Das and Natesan (2012) for Robin type
reaction-diffusion problems. Our main aim is to construct a mesh that solves
the equidistribution problem (3). Observe that instead of solving the discretized
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equidistribution problem (3) for (1) exactly, it is sufficient that this algorithm can
be stopped when the weakly equidistribution principle

M̂ihi ≤
C0

N

N

∑
j=1

M̂ jh j, for i = 1(1)N, (31)

is satisfied with a user chosen constant C0 > 1. C0 will be chosen larger enough to
get fewer iterations for the convergence of the algorithm. As C0 approaches to 1,
this algorithm produces more accurate solution with several iterations.

5.1.1 Algorithm-

Step 1: Define the initial uniform mesh {x(0)i : 0≤ i≤ N, x(0)i = i/N} and go to Step
2 with p = 0.

Step 2: Solve the discretized problem [LNU (p)]i = f (p)
i with U (p)

0 = U (p)
N = 0 at the

mesh {x(p)
i : 0≤ i≤ N} for (U (p)

0 , · · · , U (p)
N ) and define h(p)

i = x(p)
i −x(p)

i−1 for
i = 1, · · · ,N.

Step 3: Find the smooth part V (p)
i of the numerical solution U (p)

i , by solving the dis-
cretized problem (6) for ε = 0. Denote the discrete layer part of the solution
U (p)

i as W (p)
i , which is defined by W (p)

i = U (p)
i −V (p)

i . Define D2 = D+D−.
Find the discretized monitor function

ψ
(p)
i =

[
1+ |D2W (p)

i |
1/2] for i = 1, · · · ,N, (32)

by defining D2Wi = (D2Wi +D2Wi−1)/2 with D2W1 = D2W1 and D2WN =
D2WN−1. Compute

Ψ
(p)
j =

j

∑
i=1

h(p)
i ψ

(p)
i .

Step 4: Choose a constant C0 ≥ 1. The stopping criteria for the iterative technique is

max
i=1,...,N

h(p)
i ψ

(p)
i

Ψ
(p)
N

≤ C0

N
. (33)

If it holds true, then go to Step 6, else continue with Step 5.

Step 5: Generate a new mesh by equidistributing the proposed monitor function us-
ing current computed solution from Step 2 and Ψ

(p)
j from Step 3: Set Y (p)

i =

iΨ(p)
N /N for i = 0, · · · ,N. Now interpolate (Y (p)

i ,x(p+1)
i ) to (Ψ

(p)
i ,x(p)

i ) using
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piecewise linear interpolation. Generate a new mesh x(p+1)
i = {0 = x(p+1)

0 <

x(p+1)
1 < · · ·< x(p+1)

N = 1} and return to Step 2.

Step 6: Set x∗ = {0 = x∗0 < x∗1 < · · ·< x∗N = 1}= x(p+1)
i and U∗ =U (p+1), where U∗

is our desired solution. Stop.

It is easy to observe that this technique is also used for the numerical experiments
provided in Beckett and Mackenzie (2000).

5.2 Numerical results

Here, two numerical examples are presented to confirm the theoretical findings. For
these two text problems, layer-adapted meshes are obtained by the equidistribution
of two monitor functions stated in (4).

Example 5.1 Consider the following singularly perturbed two-point BVP:{
−εu′′(x)−u′(x)+2u(x) = exp(x−1), x ∈Ω,

u(0) = 0, u(1) = 0.

The exact solution of this problem is

u(x) = c1 exp(m1x)+ c2 exp(m2x)− exp(x−1)/(ε(1−m1)(1−m2)),

where

c2 =
1− exp(−1+m1)

(1−m1)(1−m2)ε(exp(m2)− exp(m1))
, and

c1 =−c2 +
exp(−1)

ε(1−m1)(1−m2)
,

with m1 = (−1+
√

1+8ε)/2ε, m2 = (−1−
√

1+8ε)/2ε.

The maximum point-wise errors and the corresponding rates of convergence are
calculated by using the exact solution. The maximum point-wise errors are ob-
tained by

EN
ε = max

0≤i≤N
|UN

i −ui|,

where ui denotes the exact solution at xi and UN
i denotes the numerically approxi-

mated solution at the point xi with N number of mesh intervals.
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Example 5.2 Consider the singularly perturbed convection-diffusion BVP:{
εu′′(x)+((1+ x(1− x))u(x))′ = exp(x), x ∈Ω,

u(0) = 0, u(1) = 0.

As the exact solution for the Example 5.2 is not available, so the accuracy of its
numerical solution will be computed using double mesh principle. This principle
is defined as follows: For any fixed value of N, the maximum point-wise error EN

ε

of the numerical solution before and after extrapolation will be calculated by

max
0≤i≤N

|UN
i −Ū2N

2i |, and max
0≤i≤N

|UN
ext p,i−Ū2N

ext p,2i|,

where UN
i is the computed solution at xi with N number of intervals, Ū2N

2i is the
numerical solution at xi, on a mesh obtained by bisecting the original mesh with
2N number of mesh intervals and UN

ext p is the extrapolated solution at ΩN obtained
by the formula UN

ext p = 2Ū2N−UN . In a similar way, Ū2N
ext p can be defined at ΩN .

For both problem, the uniform errors for each fixed N and the corresponding pa-
rameter uniform rates of convergence are calculated by the following formulas

EN = max
ε∈S

EN
ε , and pN = log2

(
EN

E2N

)
.

For these two problems, we take ε from the set S defined as

S =
{

ε|ε = 2−2, · · · ,2−30} ,
and for the numerical computation, the adaptively generated meshes are constructed
using the constant C0 = 1.6 in the adaptive algorithm.

Table 1: Improved uniform errors and orders of convergence using the monitor
function M(x,w(x)) for Example 5.1.

Extrapolation Number of intervals N
64 128 256 512 1024 2048 4096

Before 9.38e-3 4.72e-3 2.35e-3 1.18e-3 5.50e-4 2.98e-4 1.48e-4
0.99069 1.0088 0.9903 1.1011 0.8857 1.0081 -

After 2.64e-4 6.95e-5 1.78e-5 4.59e-6 9.64e-7 3.02e-7 6.98e-8
1.9229 1.9670 1.9547 2.2508 1.6740 2.1130 -

For Examples 5.1 and 5.2, we displayed the maximum uniform errors and the cor-
responding rates of convergence row-wise respectively, using maximum norm. In
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Table 2: Improved uniform errors and orders of convergence using the monitor
function M(x,u(x)) for Example 5.1.

Extrapolation Number of intervals N
64 128 256 512 1024 2048 4096

Before 1.04e-2 4.55e-3 2.21e-3 1.11e-3 5.23e-4 2.82e-4 1.34e-4
1.1951 1.0439 0.99127 1.0858 0.88872 1.0711 -

After 3.04e-4 5.88e-5 1.50e-5 3.95e-6 8.35e-7 2.59e-7 5.37e-8
2.3706 1.9744 1.9209 2.2418 1.6882 2.2706 -

Table 1, we presented the uniform errors for Example 5.1 before and after extrap-
olation where the mesh is obtained by the equidistribution of the monitor function
M(x,w(x)). From Table 2, one can see that there is strong correlation between the
two monitor functions M(x,w(x)) and M(x,u(x)). In fact, Table 2 suggests that one
can use M(x,u(x)) as a monitor function to get better convergence rate, in order
to avoid the reduced problem (i.e., by taking ε = 0) solving each time. It should
also be noted that the derivatives of the smooth component of the solution u(x)
are uniformly bounded from Lemma 2.2. A similar observation is noticed for Ex-
ample 5.2, where the uniform errors and the corresponding rates of convergence
are displayed in Table 3 and Table 4 for the two monitor functions M(x,w(x)) and
M(x,u(x)) respectively.

For the above two examples, extrapolation technique has improved the order of
convergence from first-order to second-order. A rapidly decreasing behavior of
ε-uniform errors after extrapolation can be noticed for these two problems, as N in-
creases. Some variations in the numerical results from actual theoretical findings is
expected, since instead of solving the equidistribution problem (3) exactly, we have
solved the weakly equidistribution problem (31) for C0 = 1.6. Although the errors
are more uniform for smaller values of C0, but the improvements are insignificant.
Observe that a similar result with weakly equidistribution principle (31) is obtained
by Kopteva and Stynes (2001) and also by Das and Natesan (2012).

The proposed improvement can be compared with the results obtained by Natividad
and Stynes (2003), where a second-order up to a logarithmic factor is achieved
through the extrapolation technique on Shishkin meshes. As like us, Linß (2004)
obtained a similar result with apriori chosen Shishkin and Bakhvalov meshes for
Example 5.1. But the plus point of adaptive technique with the monitor function
M(x,u(x)) is that it does not need any apriori information about the location and
width of the boundary layer.

In Figure 1 and Figure 2, we have plotted the maximum point-wise errors versus
number of mesh intervals for Example 5.1 with the monitor functions M(x,w(x))
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and M(x,u(x)) respectively. These figures are drawn in logarithmic scale for ε =
2−30. Graphically these also suggest that the computed errors are decreasing with
the rate of O(N−1) and O(N−2) approximately before and after extrapolation. Fig-
ure 3 and Figure 4 show the similar behavior for the Example 5.2.
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Figure 1: Loglog plot of the maximum point-wise errors before and after extrapo-
lation for Example 5.1 for ε = 2−30 with the monitor function M(x,w(x)).

Table 3: Improved uniform errors and orders of convergence using the monitor
function M(x,w(x)) for Example 5.2.

Extrapolation Number of intervals N
64 128 256 512 1024 2048 4096

Before 3.17e-2 1.55e-2 7.54e-3 3.74e-3 1.87e-3 9.35e-4 4.67e-4
1.0285 1.0422 1.0098 1.0010 1.0009 1.0005 -

After 5.89e-4 1.31e-4 3.06e-5 8.06e-6 1.87e-6 5.35e-7 1.32e-7
2.1684 2.1003 1.9236 2.1044 1.8073 2.0170 -
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Table 4: Improved uniform errors and orders of convergence using the monitor
function M(x,u(x)) for Example 5.2.

Extrapolation Number of intervals N
64 128 256 512 1024 2048 4096

Before 2.60e-2 1.28e-2 6.39e-3 3.19e-3 1.56e-3 7.82e-4 3.97e-4
1.0213 1.0036 1.0009 1.0306 1.0001 0.97830 -

After 6.02e-4 1.43e-4 3.70e-5 1.02e-5 2.18e-6 5.95e-7 1.43e-7
2.0675 1.9576 1.8587 2.2219 1.8751 2.0533 -
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Figure 2: Loglog plot of the maximum point-wise errors before and after extrapo-
lation for Example 5.1 for ε = 2−30 with the monitor function M(x,u(x)).
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Figure 3: Loglog plot of the maximum point-wise errors before and after extrapo-
lation for Example 5.2 for ε = 2−30 with the monitor function M(x,w(x)).
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Figure 4: Loglog plot of the maximum point-wise errors before and after extrapo-
lation for Example 5.2 for ε = 2−30 with the monitor function M(x,u(x)).



484 Copyright © 2013 Tech Science Press CMES, vol.90, no.6, pp.463-485, 2013

6 Conclusion

In this paper, a post-processing technique is considered to obtain higher-order con-
vergent numerical approximate solution for convection-diffusion singular perturba-
tion problems on adaptively generated mesh. First, a monitor function is generated
from the error analysis, which provides first-order convergence for the discrete so-
lution. This monitor function is a variant of the monitor function proposed by
Beckett and Mackenzie (2000). Using this monitor function, it is shown that the
Richardson extrapolation technique can be used to obtain higher-order (in this case
second-order) convergence on equidistributed nonuniform mesh. Though the anal-
ysis provided here is for a simple model problem, it gives us a useful insight about
one possible way (using post-processing technique) to obtain a higher-order con-
vergent solution.
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