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A Line Model-Based Fast Boundary Element Method for
the Cathodic Protection Analysis of Pipelines in Layered

Soils

L.Q. Liu1, H.T. Wang1,2

Abstract: A line model-based fast boundary element method (BEM) is pre-
sented for the large-scale cathodic protection (CP) analysis of three-dimensional
pipelines in layered soils. In this approach, pipelines are treated as lines with po-
tentials assumed constant over the cross-section and the boundary integrals happen
on the associated cylindrical surfaces. The advantage of this model is that pipelines
can be meshed with line elements while the boundary integrals are based on the
original shapes. Therefore, the number of unknowns is significantly reduced with
accuracy effectively retained. A unified formulation of the multipole moments is
developed for the mixed boundary element types in the framework of the fast mul-
tipole method in order that large-scale BEM problems by using the line model can
be solved on a common desktop computer. An interface boundary integral equa-
tion is employed to treat the multi-layered soils with a single-domain formulation.
Numerical results demonstrate validity of the proposed method and its potential for
large-scale CP analysis of pipelines in multi-domains.

Keywords: Boundary element, line model, fast multipole, cathodic protection,
pipeline, layered soil.

1 Introduction

Corrosion is one of the most severe problems affecting safety of structures in mod-
ern industries. To prevent structural failures due to corrosion, the cathodic protec-
tion (CP) technique based on galvanic action or impressed current has been widely
applied. In order to design a CP system, knowledge of distributions of the cur-
rent density and the electrochemical potential is required. To achieve this much
effort has been made using various empirical formulae or numerical methods. As a
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boundary-type numerical method, the boundary element method (BEM) is partic-
ularly suitable for modeling a CP system since only the surfaces or interfaces need
to be meshed. This feature significantly reduces the modeling complexity com-
pared with other volume-meshing numerical methods. Applications of the BEM
for the CP analyses have been continuously reported (Druesne, Paumelle and Villon
2000, Miltiadou and Wrobel 2002 and 2003, Wrobel and Miltiadou 2004, Ridha,
Amaya and Aoki 2005, De Lacerda and Da Silva 2006, Kyung, Tae and Lee 2007,
Metwally, Al-Mandhari, Gastli and Al-Bimani 2008, Butler, Kassab, Chopra and
Chaitanya 2010).

Conventionally, the coefficient matrix arising from the BEM is dense with memory
requirement of O

(
N2
)
, where N is the number of unknowns. To solve this equation

system with direct or iterative algorithms O
(
N2
)
∼ O

(
N3
)

operations are needed.
This feature becomes a bottleneck in efficiency to the standard BEM. In order to
achieve large-scale BEM solutions, several fast algorithms have been implemented
in this field. Particularly, the fast multipole method (FMM) proposed by Rokhlin
and Greengard (1985 and 1997) is one of the most reported approach with both
storage and operations reduced to O(N). Formulae and applications of the fast
multipole BEM have been well documented (Yoshida 2001, Nishimura 2002, Chen
and Chen 2004, Liu, Nishimura and Otani 2005, Liu, Nishimura, Otani and col-
leagues 2005, Chen, Chen, Kao and Lee 2009, Dondero, Cisilino and Pablo 2011,
Wang and Yao 2011). For the large-scale CP analysis using the fast multipole BEM,
one can refer to the work of Aoki and his colleagues (Amaya and Aoki 2003, Aoki,
Amaya, Urago and Nakayama 2004).

In the CP systems of the oil & chemical industries, underground pipelines are com-
monly encountered structures. Compared with typical pipe diameters (denoted by
a) in the meter scale, lengths of the pipelines (denoted by l) usually extend in kilo-
meters. To model such structures using standard boundary elements, an extremely
large number of elements will be generated. A natural method to handle this dif-
ficulty is to simplify the pipelines to lines in shape by assuming a� l (Adey and
Niku 1992, Amaya and Aoki 2003). Therefore, line elements can be used and
the number of unknowns is effectively reduced. However, certain loss of accu-
racy might be expected due to this artificially introduced shape degeneration and
the resulting absence of the double layer integral in the standard boundary integral
equation (BIE). Another approach is to use Fourier elements in which the cur-
rent density and potential are approximated by complex Fourier expansion series
(Amaya and Aoki 2003, Aoki, Arnaya and Imamori 2008). Using this method,
the original shape of the pipelines is retained and circumferential variance of the
corrosion field can be identified. In addition, line elements can be used so that the
number of elements is effectively reduced. The only issue seems to be that the num-
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ber of unknowns is not reduced compared with standard boundary elements. As a
tradeoff between these two approximation methods, one can notice that the current
density and potential remain approximately constant over the cross-sectional area
of the pipes compared with their distributions along the pipe axial direction. This
feature may be used for the only simplification of the pipe modeling with number
of unknowns reduced and accuracy reasonably retained at the same time.

In this paper, a line model-based fast BEM is presented for the large-scale CP
analyses of three-dimensional pipelines in layered soils. This line model assumes
the current density and potential remain constant at any cross-section of the pipes
and vary only on the length direction. Therefore, pipelines can be meshed with
line elements. Compared with standard meshing, this simplification can increase
the pipeline scales to be analyzed at least one order of magnitude higher. For each
line element, the boundary integrals happen on the original cylindrical shape of
the corresponding pipe and can be evaluated analytically or by one-dimensional
Gaussian quadrature. This feature assures reasonable accuracy of the line model by
preventing shape degeneration. The BEM is accelerated by the FMM in order that
large-scale CP analyses are performed on a personal desktop computer. In order
to combine multiple boundary element types into the framework of the FMM, a
unified formulation of the multipole moments is established. The advantage is that
the rest expansion and translation formulations of the FMM remain unchanged,
leading to a minimum modification of any in-hand standard FMM code. In order
to effectively treat layered soils, an interface integral BEM initially proposed by
Gao and Wang (2009) is employed herein to govern this multi-domain problem
with a single-domain formulation. In the numerical examples, validity and large-
scale capacity of the proposed method for the CP analysis of pipelines embedded
in multi-domains are demonstrated.

2 Line model-based BEM for pipelines in layered soils

In this section, the interface integral BEM for layered soils embedded with pipelines
is briefly reviewed, followed by a line boundary element model presented for mod-
eling pipelines in the CP analyses. Thirdly, basic expansion formulae of the fast
multipole BEM governing the CP problem are summarized, highlighting a unified
formulation of the multipole moments developed for integrating both standard and
line boundary elements.

2.1 Interface integral BEM for layered soils embedded with pipelines

The CP system in a three-dimensional homogenous domain is governed by the
Laplace equation. The associated boundary integral equation (BIE) is expressed
as,
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c(x)φ (x)+
∫

S

∂Φ∗ (x,y)
∂n

φ (y)dS (y) =
∫

S
Φ
∗ (x,y)

[
−1

k
I (y)

]
dS (y) (1)

where x and y denote the source and field points at the boundary S, respectively; φ

and I are the boundary potential and current density respectively; n is the outward
normal to the boundary S; k is the conductivity; c(x) is 0.5 for smooth boundaries;
Φ∗ (x,y)is the kernel function for the three-dimensional CP problem defined as,

Φ
∗ (x,y) =

1
4πr

(2)

with r being the distance between x and y. For the multi-domain CP systems such
as layered soils embedded with pipelines, an interface integral BEM initially pro-
posed by Gao and Wang (2009) is applied for governing this problem with a single-
domain BIE formulation given by,

k̂ (x)φ (x)+∑
i

∫
S0

i +Sp
i

ki
∂Φ∗(x,y)

∂n φ (y)dS (y)+
i6= j
∑
i, j

∫
S0

i j
∆k ∂Φ∗(x,y)

∂n′ φ (y)dS (y)

=−∑
i

∫
S0

i +Sp
i

Φ∗ (x,y) I (y)dS (y)
(3)

where S0
i is the independent boundary of the i-th soil layer denoted by Vi, Sp

i the
boundary of pipelines in Vi, S0

i jthe interface of the i-th and j-th soil layers, ki the
conductivity of the i-th soil layer, n′ the normal direction to S0

i jpointing from the
i-th to the j-th soil layer. k̂ (x)and ∆kare given by (Gao and Wang 2009),

k̂ (x) =


ki
2 , x ∈ S0

i +Sp
i

ki+k j
2 , x ∈ S0

i j
ki, x ∈Vi

0, x /∈ (V ∪S)

(4)

∆k = ki− k j (5)

provided x is on the smooth boundaries. By defining new variables φ̂and Îas,

φ̂ (x) =
{

kiφ (x) , x ∈ S0
i +Sp

i
(ki− k j)φ (x) , x ∈ S0

i j

Î (x) =
{
−I (x) , x ∈ S0

i +Sp
i

0, x ∈ S0
i j

(6)
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Eq. (3) is rewritten as,

ĉ(x) φ̂ (x)+
∫

∑S0
i +Sp

i +S0
i j

∂Φ∗(x,y)
∂n φ̂ (y)dS (y)

=
∫

∑S0
i +Sp

i +S0
i j

Φ∗ (x,y) Î (y)dS (y)
(7)

where ĉ(x)is defined as,

ĉ(x) =



1
2 , x ∈ S0

i +Sp
i

1
2

ki+k j
ki−k j

, x ∈ S0
i j

0, x /∈ (V ∪S)

(8)

The convenience of Eq. (7) is that a BIE equivalent to the standard single-domain
formulation is established. Therefore, any in-hand BEM solver available for the
single-domain Laplace equation can be applied directly to solve Eq. (7). When
φ̂and Îare obtained, φ and I are readily derived with Eq. (6).

2.2 Line model

In order to discretize Eq. (7) we use collocation method and piece-wise constant
boundary element. For the pipelines, meshing with standard boundary elements
such as triangular or quadrilateral shapes typically generates a large number of un-
knowns, thus having a significant limitation on the pipeline scales to be analyzed.
Consider the fact that current density and potential over the cross-section of a pipe
is approximately constant compared with its distribution along the length direction
of the pipe, it is reasonable to assume the corrosion field at the pipeline surfaces
varies only on the length direction and remains constant circumferentially. There-
fore, pipelines can be meshed with line elements, leading to the associated number
of unknowns significantly reduced. In addition, for each line element, the boundary
integrals in Eq. (7) happen on the origin shape of the corresponding pipe sector in
order to prevent loss of accuracy due to any shape degeneration.

Since the current density and potential have been assumed independent of their cir-
cumferential locations on the pipe, the associated boundary integrals can be evalu-
ated analytically or by one-dimensional Gaussian quadrature. Consider a constant
line element with its cylindrical boundary denoted by Sp,E

i as shown in Fig. 1, the
boundary integrals can be deduced as,
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∫
Sp,E

i

Φ
∗ (x,y) Î (y)dS (y)=

aiÎE
i

4π

∫ 2π

0
ln

R2 (θ)+
Li
2 − zx

R1 (θ)− Li
2 − zx

dθ (9)

∫
Sp,E

i

∂Φ∗(x,y)
∂n φ̂ (y)dS (y)

=
aiφ̂

E
i

4π

∫ 2π

0
ai−ρx sinθ

ρ2
x−2ρxai sinθ+a2

i

[
Li
2 +zx

R1(θ)
+

Li
2 −zx

R2(θ)

]
dθ

(10)

where φ̂ E
i and ÎE

i are values of φ̂and Î at this element; ai and Li are the cross-
sectional radius and length of the element, respectively; ρxand zxare the radial and
azimuth coordinates of x respectively under the local Cylindrical coordinate system
(ρ,θ ,z)(see Fig. 1) originated at the center of the element; R1 (θ)and R2 (θ) as
shown in Fig. 1 represent distances between x and y when y moves on the circular
lines at the two ends of the element. Eqs. (9) and (10) can be evaluated by the
one-dimensional Gaussian quadrature effectively.

Figure 1: Integration scheme of the line element

In the case of ρx = 0, which indicates x is on the extension line of the element, an
analytical result can be derived,
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∫
Sp,E

i

Φ
∗ (x,y) Î (y)dS (y) =

aiÎE
i

2
ln

(
R2 +

Li
2 − zx

R1− Li
2 − zx

)
(11)

∫
Sp,E

i

∂Φ∗ (x,y)
∂n

φ̂ (y)dS (y) =
φ̂ E

i

2

(
Li
2 + zx

R1
+

Li
2 − zx

R2

)
(12)

Specifically, when x and y belong to the same element, a further simplification of
the analytical result can be derived provided x is collocated at the center of the
element,

∫
Sp,E

i

Φ
∗ (x,y) Î (y)dS (y) =

aiÎE
i

2
ln


√

4a2
i +L2

i +Li√
4a2

i +L2
i −Li

 (13)

∫
Sp,E

i

∂Φ∗ (x,y)
∂n

φ̂ (y)dS (y) =
φ̂ E

i Li√
4a2

i +L2
i

(14)

2.3 Fast multipole BEM with mixed boundary elements

Formulae and applications of the fast multipole BEM have been well documented.
The basic idea of the fast multipole BEM is to establish appropriate multipole and
local expansion series of the kernel functions governing the corresponding physical
equation. In this section, a unified formulation of the multipole moments is estab-
lished for treating mixed boundary element types, and the follow-up expansion and
translation formulae of the fast multipole BEM for the Laplace equation governing
CP problems are summarized.

Consider a reference point O close to y and a threshold of
∣∣∣−→Oy
∣∣∣ < ∣∣∣−→Ox

∣∣∣ is satis-
fied, the boundary integrals in Eq. (7) can be expanded around O to the following
compact series according to the literature (Yoshida 2001),

∫
S Φ∗ (x,y) Î (y)dS (y) = 1

4π

∞

∑
n=0

n
∑

m=−n
Snm

(−→
Ox
)

cφ
nm (O)

∫
S

∂Φ∗(x,y)
∂n φ̂ (y)dS (y) = 1

4π

∞

∑
n=0

n
∑

m=−n
Snm

(−→
Ox
)

cI
nm (O)

(15)
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where

cφ
nm (O) =

∫
S Rnm

(−→
Oy
)

Î (y)dS (y)

cI
nm (O) =

∫
S

∂Rnm

(−→
Oy
)

∂n φ̂ (y)dS (y)

(16)

Herein Snm and Rnm are called solid spherical harmonic functions as defined in
the literature (Yoshida 2001), cφ

nm and cI
nm are called the multipole moments. The

essence of Eq. (15) is that the multipole moments are independent of x. Hence they
are calculated once and can be repeatedly used for many source points to evaluate
the boundary integrals.

One can notice that Eq. (16) is independent of the element type. Therefore, in
the case of existences of both surface and line elements, their contributions to the
multipole moments can be evaluated by choosing different strategies and then ac-
cumulated directly in a unified formulation. We take cφ

nm as an example,

cφ
nm (O) = ∑ ÎE

i

∫
S0

i +S0
i j

Rnm

(−→
Oy
)

dS+∑aiÎE
i

∫ Li
2

− Li
2

∫ 2π

0
Rnm

(−−−−−→
Oy(l,θ)

)
dθdl (17)

where the former part is based on the standard surface element integration; the
latter part is based on the line element integration, which can be evaluated by using
standard two-dimensional Gaussian quadrature.

Consider another reference point O′ close to x and a threshold of
∣∣∣−→O′x∣∣∣ < ∣∣∣−→O′y∣∣∣ is

satisfied, the boundary integrals can be expanded around O′ as a ‘local expansion’
form (Yoshida 2001),∫

S Φ∗ (x,y) Î (y)dS (y) = 1
4π

∞

∑
n=0

n
∑

m=−n
Rnm

(−→
O′x
)

dφ
nm (O′)

∫
S

∂Φ∗(x,y)
∂n φ̂ (y)dS (y) = 1

4π

∞

∑
n=0

n
∑

m=−n
Rnm

(−→
O′x
)

dI
nm (O′)

(18)

where dφ
nm and dI

nm are called the local moments. They can be derived by a lin-
ear mapping operator on the multipole moments instead of be evaluated directly
(Yoshida 2001),

dnm
(
O′
)
=

∞

∑
n′=0

n′

∑
m′=−n′

(−1)n Sn+n′,m+m′
(−−→

OO′
)

cn′m′ (O) (19)
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Herein we omit the upper index of the multipole and local moments since the cor-
responding expansions of the two boundary integrals are unified.

In the framework of the fast multipole BEM, an adaptive octal tree will be generated
in terms of locations of the boundary elements. By performing recursive operations
on this tree, an upward stage followed by a downward stage is established in or-
der to calculate and store the multipole and local moments respectively. An entire
operation of the tree, which costs only O(N) in both computational time and mem-
ory, represents one operation of the coefficient matrix-vector multiplication at each
iterative step of the GMRES without explicit storage of the matrix. Therefore, the
fast multipole BEM is O(N) provided the equation system is well preconditioned.

3 Numerical results

A C++-based BEM code has been developed for the three-dimensional CP analysis
of the layered soils embedded with pipelines based on the presented method. In the
code, each entry is calculated and stored as an eight-byte value. Two solvers are em-
ployed in the code, namely 1) the conventional preconditioned GMRES and 2) the
fast multipole BEM. In order to assess the validity and large-scale efficiency of the
presented method, a number of numerical tests have been carried out, highlighting
the modeling of pipelines, multi-layered soils and the associated large-scale calcu-
lations. The code runs on a desktop computer with a processor of AMD 2800+ and
physical memory of 2GB.

In the following, the relative error of convergence in GMRES is taken to be 10−5;
the truncated number of multipole and local expansions of the fast multipole BEM
is taken to be 10; the Newton-Raphson (N-R) method is used to treat the nonlinear
boundary conditions due to the polarization curve.

3.1 Potentials or current densities along the pipelines in a single domain: a
comparison

This test involves the CP analysis of a 30×10×10 homogenous domain containing
2 straight pipelines along its long-axial central line as shown in Fig. 2. Each
pipeline is 12.0 in length and 0.4 in diameter. The conductivity of the domain is
taken to be k = 5.0. The left and right ends of the domain are subjected to given
potentials as φ̄ = 150 and φ̄ = 10 respectively, and the rest of its boundaries are
insulated. Three cases of the boundary conditions applied to the pipelines as listed
in Table. 1 are studied, namely the given potential, current density and nonlinear
potential-current density (φ − I) curve as shown in Fig. 3. Herein the nonlinear
curve is used only for the purpose of testing the accuracy of the N-R method. In
each case, the conventional model meshed with triangular elements and the line
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model are employed respectively for comparison. The meshing makes sure the two
element types have the same mesh size along the length direction of the pipelines.
The associated numbers of unknowns are listed in Table. 1. GMRES is adopted as
the BEM solver. The numerical results are also compared with the finite element
method (FEM) by using the commercial software ABAQUS.

Figure 2: Scheme of a homogenous domain containing pipelines

Table 1: Boundary conditions of the pipelines and the number of unknowns

Case No. 1 2 3
Given boundary condition Potential current density φ− I relation

φ̄ = 80 Ī = 100 see Fig. 3
Number of unknowns Conventional 738
per pipeline Line model 20
Total number of Conventional 12,676
unkowns Line model 11,240
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Figure 3: Nonlinear φ − I relations

Figure 4: A comparison of the pipeline meshed with triangular and line elements
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Fig. 4 show a comparison of the pipeline meshed with triangular and line elements.
In Fig. 5, the results of current densities along each pipeline by using the two BEM
models and the FEM in Case No. 1 are compared. In Figs. 6 and 7, the results of
potentials along each pipeline in Cases No. 2 and 3 are compared, respectively. For
the conventional BEM model and the FEM model, the values come from the line
of θ = 0 (see Fig. 1) at the cylindrical surface of each pipeline.

It is shown that the results of the line model in all the three cases of boundary condi-
tions agree well with those of the conventional BEM and FEM models, demonstrat-
ing validity and high accuracy of the proposed method in modeling pipelines in the
CP analysis. The only small discrepancy is observed at the ends of the pipelines,
which is due to the local geometrically discontinuity at these locations that cannot
be identified by the line model. According to Table.1, the number of unknowns
per pipeline by using the line model is one order of magnitude much less than the
conventional model. Therefore, modeling large-scale pipelines becomes possible
by using the line model.

Figure 5: Current densities along the two pipelines in Case No. 1

3.2 Potentials or current densities along the pipelines in layered domains: a
comparison

This test involves the CP analysis of a 15× 5× 10 layered domain containing
straight pipelines as shown in Fig. 8. The domain consists of three 5×5×10 layers
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Figure 6: Potentials along the two pipelines in Case No. 2

Figure 7: Potentials along the two pipelines in Case No. 3
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along the y direction, each containing a pipeline of 8.0 in length along the z direc-
tion. The conductivities of the three layers are k = 15.0, 10.0 and 5.0, respectively;
the corresponding pipe diameters are 0.2, 0.3 and 0.2, respectively. The bottom
and upper ends of each layer are subjected to given potentials as φ̄ = 70,40,10
and φ̄ = 150,120,90 respectively, and the rest boundaries are insulated. Two cases
of the boundary conditions applied to the pipelines are studied, namely the given
potential (φ̄1 = 100, φ̄2 = 80, φ̄3 = 60on the three pipelines respectively) and the
nonlinear φ − I curve (see Fig. 3). In each case, the line model is employed with
each pipeline meshed with 16 elements. The total number of unknowns is 10,520.
GMRES is adopted as the BEM solver. The numerical results are compared with
the FEM.

Figure 8: Scheme of a layered domain containing pipelines

Fig. 9 shows a translucent view of the potential distributions in Case No. 1 by using
the line model. Figs. 10 and 11 show the results of current densities in Case No.
1 and potentials in Case No. 2 respectively along the pipelines by using the line
model and the FEM. Good agreement is observed in both cases. This comparison
demonstrates that the presented line model in conjunction with the interface integral
BEM is valid for the CP analysis of layered domains containing pipelines with
satisfactory accuracy.
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Figure 9: A translucent view of the potential distributions in Case No. 2

Figure 10: Current densities along the three pipelines in Case No. 1
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Figure 11: Potentials along the three pipelines in Case No. 2

3.3 Potentials along the large-scale pipelines by using fast multipole BEM

This test involves the CP analysis of a 60×60×60 homogenous domain containing
an array of 5×20×20(2000) straight pipelines oriented along the z direction. Each
pipeline is 10.0 in length and 0.5 in diameter. The conductivity of the domain is
taken to be k = 5.0. The bottom and upper ends of the domain are subjected to given
potentials as φ̄ = 0 and 100 respectively, and the rest of its boundaries including
the pipelines are insulated. The state of the domain can be treated as an array of
20× 20 sub-structures with each containing 5× 1 pipelines as shown in Fig. 12.
Due to the geometrical symmetry, theoretically potential distributions along the
5×1 pipelines are the same for all sub-structures.

The line model is employed to the domain with each pipeline meshed with 20
elements. The total number of unknowns is 212,800. The fast multipole BEM
is adopted as the BEM solver. The calculated potentials along the large-scale
pipelines are shown in Fig. 13. The FMM results are compared with a small model
solution with only one sub-domain by using GMRES as shown in Fig. 14. Herein
the FMM results come from a central sub-structure of the entire domain. Good
agreement is observed for all the five pipelines. This comparison demonstrates that
the line model-based fast multipole BEM is capable of performing large-scale CP
analyses of pipelines with satisfactory accuracy.
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Figure 12: A sub-structure of the domain

3.4 Large-scale analysis of a CP system in the oil industry by using fast multi-
pole BEM

This test involves large-scale analysis of a CP system in the oil industry consisting
of an oil tank, layered soils and underground pipelines by using the fast multipole
BEM based on the line model. Fig. 15 shows a representative volume of this CP
system, where the cylindrical soil domain with 90.0m in diameter is divided into
three horizontal layers, each having a thickness of 20.0m; the bottom of an oil tank
above the soil is treated as a circular upper boundary of the first soil layer with
40.0m in diameter; three horizontally parallel pipelines, each with 70.0m in length
and 1.0m in diameter, are positioned in the central area of the second soil layer
with a depth of 30.0m. The gap of the pipelines is 10.0m. The conductivities of the
soil layers are 0.05, 0.10 and 0.15 Ω−1m−1, respectively. A sacrificial anode with
20.0m in height and 7.0m in width is positioned at the side of the second soil layer
as shown in Fig. 15, and the given potential is φ̄ = 7.0V ; the bottom of the oil tank
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Figure 13: Potential distributions along the large-scale pipelines

Figure 14: Potentials along the five pipelines in a sub-structure
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is given a polarization curve as shown in Fig. 16; the rest boundaries including the
pipelines are simply assumed insulated.

The independent boundaries and interfaces of the soil layers are meshed with tri-
angular elements; the pipelines are meshed with line elements. Two mesh densities
of the boundary elements are tested for discretizing the model, and the correspond-
ing numbers of unknowns are 8,434 and 41,961, respectively. Fig. 17 shows the
boundary elements of the layered soils with fine meshes. GMRES is adopted as the
BEM solver for the coarsely meshed model, and the fast multipole BEM is for the
finely meshed model. The numerical results are compared with these two solvers.
Fig. 18 shows a translucent view of the potential distributions in this CP system
with fine meshes. Fig. 19 shows a comparison in the calculated potentials along the
central pipeline. It is clearly shown that the results of the fast multipole BEM agree
well with the conventional BEM solver, indicating that large-scale CP systems can
be solved with satisfactory accuracy by using the fast multipole BEM based on
the line model. One can expect that the number of unknowns of the BEM model
will be much less than that of the FEM model. Therefore, this technique coupling
the boundary-meshing feature of the BEM and the presented method will be com-
petitive with reasonable computer resources in the field of numerical analyses for
large-scale CP systems.

Figure 15: Representative volume of a CP system in the oil industry
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Figure 16: Polarization curve at the bottom of the oil tank

Figure 17: Boundary elements of the layered soils – fine mesh
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Figure 18: A translucent view of the potential distributions in the CP system

Figure 19: Potentials along the central pipeline
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4 Conclusions

A line model-based fast multipole BEM has been developed for the numerical
analyses of large-scale CP systems involving pipelines and layered soils in three-
dimensions. It is assumed in the line model that current densities and potentials
remain constant over any cross-section of the pipelines and vary only along the
length direction. Therefore, pipelines can be meshed with line elements and the
corresponding required number of unknowns is significantly reduced. The bound-
ary integrals of the line element happen on the original cylindrical surface of the
pipeline in order to avoid loss of accuracy due to any shape degeneration. The
fast multipole method was employed to accelerate the BEM solutions with a uni-
fied formulation of the multipole moments presented for treating mixed types of
the boundary elements. An interface integral BEM initially proposed by Gao was
applied to govern this multi-domain CP problem with a single-domain formulation.

The proposed line model was firstly applied for the CP analysis of a homogenous
domain containing two straight pipelines. The calculated current densities and po-
tentials on the pipelines were found to be in good agreement with that of conven-
tional BEM and FEM. In addition, the required number of unknowns for meshing
the pipelines is significantly reduced by using the line model, therefore pipelines
with increased scales can be readily analyzed. The model in conjunction with the
interface integral BEM was then applied for a multi-domain problem containing
pipelines and satisfactory accuracy was observed. Thirdly, the line model-based
fast multipole BEM was applied for the CP analysis of large-scale pipelines. The
calculated potentials along the pipelines were observed to have good accuracy. Fi-
nally, the line model-based fast multipole BEM was applied to analyze a typical
CP system in the oil industry involving an oil tank, layered soils and underground
pipelines. The results are compared with that of a coarsely meshed model by us-
ing the conventional BEM solver and good agreement is observed. In conclusion,
the presented method demonstrated its validity in satisfactory accuracy as well as
large-scale capability for the CP analyses of pipelines in layered soils.
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