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Fracture & Fatigue Analyses: SGBEM-FEM or XFEM?
Part 2: 3D Solids

Leiting Dong1,2, Satya N. Atluri1,3

Abstract: The SGBEM-FEM alternating method is compared with the recently
popularized XFEM, for analyzing mixed-mode fracture and fatigue growth of 3D
nonplanar cracks in complex solid and structural geometries. A large set of 3D
examples with different degrees of complexity is analyzed by the SGBEM-FEM
alternating method, and the numerical results are compared with those obtained by
XFEM available in the open literature. It is clearly shown that: (a) SGBEM-FEM
alternating method gives extremely high accuracy for the stress intensity factors;
but the XFEM gives rather poor computational results, even for the most simple 3D
cracks; (b) while SGBEM-FEM alternating method requires very coarse meshes,
which are independent of each other, for both the uncracked solid as well as the
non-planar crack-surface, XFEM requires, on the other hand, an extremely fine
mesh for 3D solids, which can sometimes be un-usable on a normal PC; (c) the
SGBEM-FEM alternating method requires very minimal computational as well as
human-labor costs for modeling the non-planar fatigue growth of 3D cracks; on
the other hand, fatigue analysis by XFEM requires intensive computational as well
as human-labor costs even for the most simple problems; (d) because of the very
poor accuracy for the stress intensity factors as computed by XFEM, the number
fatigue cycles for crack-growth and failure as predicted by XFEM are meaning-
less for the most part, even for the most simple 3D problems computed even with
extremely fine meshes; (e) with very low computational as well as human-labor
costs, the SGBEM-FEM alternating method can very accurately model complex
3D cracked-solids easily, even for those cases which are too complex to be solved
by XFEM . It is thus concluded that the SGBEM-FEM alternating method, among
the many alternating methods developed in the past 20-30 years by Atluri and his
many collaborators, are far more efficient, far more accurate, and far more reliable
than XFEM for analyzing fracture and 3D non-planar fatigue crack propagation
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in complex structures. The implementation of the SGBEM-related method as pre-
sented in this study, as well as those presented in its companion Part 1 [Dong and
Atluri (2013b)], in general-purpose off-the-shelf commercial software, is greatly
valuable and is thus being pursued by the authors.

Keywords: SGBEM, Alternating Method, XFEM, stress intensity factor, fatigue-
crack-propagation

1 Introduction

In a previous study [Dong and Atluri (2013b)], brief reviews of the historical de-
velopment & the theoretical/algorithmic formulations of XFEM and SGBEM-FEM
coupling/alternating method were given, and a comprehensive evaluation of their
performances in fracture and fatigue analysis of 2D non-collinear cracks was car-
ried out. It was pointed out that, in spite of the current wild-popularity of the Ex-
tended Finite Element Method (XFEM), XFEM differs very little in mathematical
theory from the embedded-singularity elements developed in the 1970s by [Tong,
Pian and Lasry (1973); Atluri, Kobayashi and Nakagaki (1975)], and many others
as summarized in [Atluri (1986)]. Many numerical examples for 2-d problems,
presented in[ Dong and Atluri (2013b)], demonstrated that the XFEM is unsuitable
for fracture and fatigue analyses, due to the following reasons: 1. the low accuracy
for the computed stress intensity factors (and correspondingly the very highly inac-
curate results for crack growth rates and fatigue cycles to failure); 2. the necessity
for very fine high-quality meshes in XFEM; and 3. the complicated procedures
necessary in XFEM for advancing the crack-fronts to simulate crack-propagation.
In contrast, the 2D SGBEM and SGBEM super element based methods [Dong and
Atluri (2012, 2013a)] show great advantages in modeling 2D cracks in complex
structures, and their non-collinear fatigue growth.

In this companion Part 2, a further comparison of XFEM and SGBEM-based meth-
ods is carried out, in the context of fracture and fatigue growth of 3D nonplanar
cracks in complex 3-dimensional solid and structural geometries.

The theory and formulation of the 3D XFEM does not differ much from the 2D
XFEM. As described in [Dong and Atluri (2013b)], XFEM uses the Heaviside
Function to enrich the discontinuous displacement field across the crack surface,
and uses Asymptotic Singular Field to enrich the crack-tip/crack-front displace-
ment field. XFEM uses the primitive field variational principle, or the equivalent
symmetric Galerkin weak form [Atluri (2005a)] to develop finite element equa-
tions. XFEM uses path-independent/ domain-independent integrals as in [Eshelby
(1951); Rice (1968); Atluri (1982); Nishioka and Atluri (1983); Nikishkov and
Atluri (1987a,b)], or their interaction- integral variants [Chen and Shield (1977),
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Figure 1: A local coordinate system at a 3D crack-front

Atluri (1998)], among other techniques, to extract and to evaluate the stress in-
tensity factors from the computed displacement/strain/stress solutions. XFEM re-
quires special techniques, such as Level Set Functions and Fast Marching Meth-
ods, to track the crack-surface and crack-front, when crack-propagation analyses
are carried out. However, it is emphasized that, in the 3D version of XFEM (see
[Sukumar, Moës, Moran, Belytschko (2000)] for example), the enriched fields at
the crack-front are the same as those for 2D cracks:[√
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dinate system as in Fig. 1. While this Singular Enrichment corresponds to the
asymptotic crack-tip fields of the 2D plane stress/strain problems, its validity for
general non-smooth 3D cracks is of questionable validity.

The SGBEM used in this study is based on the weakly-singular BIEs developed
in [Han and Atluri (2003,2007)], using the non-hyper-singular BIEs developed by
[Okada, Rajiyah and Atluri (1988,1989)]. In a procedure similar to those in [Vi-
jayakumar and Atluri (1981), Nishioka and Atluri (1983)], the SGBEM for the
sub-domain containing the crack is coupled with the FEM for the otherwise un-
cracked solid, indirectly, by using the Schwartz-Neumann Alternating Method, in
[Nikishkov, Park and Atluri (2001), Han and Atluri (2002), Atluri (2005b)]. As
shown in Fig. 2, a simple FEM is used to model the global uncracked structure,
and SGBEM is used to model the local cracked subdomain. By imposing resid-
ual stresses at the global and the local boundaries in an alternating procedure, the
solution of the original problem is obtained by superposing the solutions for each
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(a) (b)

(c) (d)
Figure 2: Superposition principle for FEM-SGBEM alternating method: (a) the
uncracked body modeled by simple FEM, (b) the local domain containing cracks
modeled by SGBEM, (c) FEM model subjected to residual loads, (d) alternating
solution for the original problem, taken from [Han and Atluri (2002)]

individual sub-problem. There are several clear advantages of the SGBEM-FEM
alternating method: (a) the SGBEM mesh for the cracked sub-domain is totally
independent of the crude FEM mesh of the un-cracked global structure; (b) the
SGBEM for the local cracked subdomain can capture crack-front stress/strain sin-
gularities very accurately; (c) very complex large-scale structures, such as a Digital
Twin of an Aerospace Vehicle, can be modeled easily by very crude FEM, without
a local mesh-refinement at the crack fronts; (d) the crack-front advancement during
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crack-propagation requires minimal effort, by simply adding a layer of boundary-
elements to the crack-fronts, with an appropriate size, and in the direction as deter-
mined by appropriate crack-growth criteria.

In the present paper, the performance of SGBEM-FEM alternating method is com-
pared to that of XFEM in several 3D examples of fracture and fatigue crack propa-
gation. Various highly-cited papers on 3D crack analyses by XFEM are first chosen.
The same examples as presented in these highly cited XFEM papers are then solved
by the SGBEM-FEM alternating method developed by [Han and Atluri (2002)].
In section 2, the numerical results are demonstrated and discussed in detail. Nu-
merical results clearly show that the SGFEM-FEM alternating method is far more
efficient, far more accurate, and far more reliable than XFEM for analyzing frac-
ture and 3D non-planar fatigue crack propagation in complex structures. For some
complex problems, XFEM gives unacceptably poor results, even with an extremely
fine mesh that is almost unviable for a normal PC.

2 Numerical Examples

In this section, the SGBEM-FEM alternating method is compared to the XFEM,
by analyzing several 3D examples. All the XFEM examples are chosen from the
most-cited papers on XFEM in the open literature, up to the current time (2013).
All the SGBEM-based results are generated by using a simple code as developed
by [Han and Atluri (2002)], on a PC with an Intel Core i5 Processor.

Example 1. An Embedded Penny-shaped Crack

First, we solve the simplest problem of an embedded penny-shaped crack in an
infinite domain. The radius of the crack is a, and far field uniaxial tension σ = 1 is
applied. The stress intensity factor can be computed from the closed-form solution
of [Green and Sneddon (1950)]:

K1 = 2σ

√
a
π

(2)

This problem was solved by XFEM in [Sukumar, Moës, Moran, Belytschko (2000)],
who consider a penny-shaped crack with radius a = 0.1 in a bi-unit cube. Two dif-
ferent meshes were used: (a) Mesh 1 consists of 24×24×24=13824 hexahedral
elements, and (b) Mesh 2 has 24×24×25=14400 hexahedral elements. In the mesh
1, the crack lies on element faces, whereas in mesh 2, the crack is located in the
center of the elements (no intersection with any element faces). Both meshes have
graded refinement towards the center of the cube where the crack is located, see
Fig. 3.
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We also solve this problem by SGBEM-FEM alternating method. Two different
meshes are used, as shown in Fig. 4-5. In mesh A, 8 finite elements are used for the
uncracked global structure, 16 boundary elements are used for the crack surface. In
mesh B, 64 finite elements are used for the uncracked global structure, 24 boundary
elements are used for the crack surface.

For this specific problem, the analytical solution gives K1 = 0.3568. The computed
stress intensity factors for this penny-shaped crack are listed in Tab. 1 for XFEM,
and in table 2 for the SGBEM-FEM alternating method. Relative errors of the
computed stress intensity factors are also shown in Fig. 6. As can be clearly seen,
even for this simplest problem of 3D fracture mechanics, XFEM gives an error up
to 5%, even with a very fine mesh. On the other hand, the SGBEM-FEM alternating
method gives almost the exact solution, even with an extremely coarse mesh.

Figure 3: The XFEM mesh 1 of the embedded circular crack, with
24×24×24=13824 finite elements, taken from [Sukumar, Moës, Moran, and Be-
lytschko (2000)]
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(a) (b)
Figure 4: “Mesh A” for the problem of penny-shaped crack by the SGBEM-FEM
alternating method: (a) the uncracked global structure is modeled with 8 FE; and
(b) the crack surface is modeled independently, using 16 BE

(a) (b)
Figure 5: “Mesh B” for the problem of penny-shaped crack by the SGBEM-FEM
alternating method: (a) the uncracked global structure is modeled with 64 FE; (b)
the crack surface is modeled independently, with 24 BE
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Table 1: The computed SIFs for the penny-shaped crack, Using XFEM: [Sukumar,
Moës, Moran, Belytschko (2000)]

θ (degree)
XFEM with Mesh 1 XFEM with Mesh 2

AnalyticalK1 error K1 error
0 0.3508 -1.68% 0.3617 1.37% 0.3568
10 0.3583 0.42% 0.3503 -1.82% 0.3568
20 0.3592 0.67% 0.3559 -0.25% 0.3568
30 0.3467 -2.83% 0.3595 0.76% 0.3568
40 0.3535 -0.92% 0.3383 -5.19% 0.3568
50 0.3535 -0.92% 0.3383 -5.19% 0.3568
60 0.3467 -2.83% 0.3595 0.76% 0.3568
70 0.3592 0.67% 0.3559 -0.25% 0.3568
80 0.3583 0.42% 0.3503 -1.82% 0.3568
90 0.3508 -1.68% 0.3617 1.37% 0.3568

Table 2: The computed SIFs for the penny-shaped crack, Using the SGBEM-FEM
alternating method

θ (degree)
SGBEM-FEM
with Mesh A

SGBEM-FEM
with Mesh B Analytical

K1 error K1 error
0.0 0.3557 -0.30% 0.3569 0.04% 0.3568
22.5 0.3557 -0.30% 0.3569 0.04% 0.3568
45.0 0.3557 -0.30% 0.3569 0.04% 0.3568
67.5 0.3557 -0.30% 0.3569 0.04% 0.3568
90.0 0.3557 -0.30% 0.3569 0.04% 0.3568
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Figure 6: Computational errors for the penny-shaped crack: A comparison of
XFEM and SGBEM-FEM alternating methods

Example 2. An Embedded Elliptical Crack

The problem of an embedded elliptical crack was solved by XFEM in [Sukumar,
Moës, Moran, Belytschko (2000)]. An elliptical crack with semi-axes a = 0.1,b =
0.05 was considered. A far field uniaxial tension of σ = 1 is applied. The same
mesh of the bi-unit cube, as for the penny-shaped crack was used, as shown in Fig.
3, with 24×24×24=13824 finite elements. In this study, we also use the SGBEM-
FEM alternating method to solve this problem, by using 64 finite elements to model
the un-cracked global structure, and 144 boundary elements to model the crack
surface, independently, as shown in Fig. 7. The computed results are listed in Tab.
3 and are plotted in Fig. 8, showing the high-accuracy of the current SGBEM-based
method.
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(a) (b)
Figure 7: Meshes for the problem of an embedded elliptical crack, as solved by the
SGBEM-FEM alternating method: (a) the uncracked global structure is modeled
with 64 FE; (b) the crack surface is modeled independently with 144 BE

Table 3: The computed results for an embedded elliptical crack, by using XFEM
and SGBEM-FEM alternating methods, respectively

θ (degree)
XFEM SGBEM-FEM

AnalyticalK1 error K1 error
0 0.2358 1.90% 0.2307 -0.29% 0.2314
10 0.2378 0.55% 0.2358 -0.30% 0.2365
20 0.2459 -1.44% 0.2489 -0.26% 0.2495
30 0.2564 -3.68% 0.2657 -0.20% 0.2662
40 0.2776 -1.91% 0.2825 -0.18% 0.2830
50 0.2965 -0.60% 0.2969 -0.46% 0.2983
60 0.3089 -0.58% 0.3083 -0.79% 0.3107
70 0.3163 -1.09% 0.3171 -0.85% 0.3198
80 0.3194 -1.82% 0.3227 -0.80% 0.3253
90 0.3202 -2.17% 0.3246 -0.82% 0.3273
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Figure 8: Relative errors in the computed K-factors, for an embedded elliptical
crack, using the XFEM and SGBEM-FEM alternating methods, respectively.

Example 3. An Embedded Lens-shaped Crack

Now we solve the problem of an embedded lens-shaped crack subjected to far field
hydrostatic tension, see Fig. 9. This problem was solved by [Moës, Gravouil, and
Belytschko (2002)] using XFEM. A finite cube with h/R = 5 was considered. An
embedded lens-shaped crack with α = π/4 was placed in the middle of the cube.
Young’s modulus and Poisson’s ratio were taken to be E = 68.9GPa and v = 0.22.
The mesh was not shown in [Moës, Gravouil, and Belytschko (2002)]. However,
it was stated that 145,000 degrees of freedom were used.
In this study, we also use SGBEM-FEM alternating method to solve this lens-
shaped crack problem. As shown in Fig. 10, 64 finite elements and 80 boundary
elements are used to independently model the un-cracked global structure, and the
crack face, respectively. h = 1,R = 0.2 is used, and σ = 50 is applied to each face
of the cube.

For this mixed mode problem, analytical solution of [Martynenko and Ulitko (1978)]
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Figure 9: The problem of an embedded lens-shaped crack (the crack-surface is in
the shape of a lens) in a cube, subjected to hydrostatic tension

(a) (b)
Figure 10: Meshes for the problem of an embedded lens-shaped crack, as solved by
the SGBEM-FEM alternating method: (a) the uncracked global structure is mod-
eled with 64 FE; (b) the crack surface is modeled independently, using 80 BE
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gives:

K1 = 1.754σ
√ a

π

K2 = 0.470σ
√ a

π

a = Rcosα

(3)

The exact values of computed stress intensity factors were not listed in [Moës,
Gravouil, and Belytschko (2002)]. However, it was reported that the relative er-
rors in the computed results were about 2 % for K1 and 10% for K2, by using
XFEM. Compared to these reported results by XFEM, the SGBEM-BEM alternat-
ing method gives much more accurate solutions of the computed SIFs, as shown in
Tab. 4.

Table 4: Computed SIFs for the embedded lens-shaped crack, by using XFEM and
the SGBEM-FEM alternating method (the computed values for SIFs marked as *
were not given in [Moës, Gravouil, and Belytschko (2002)])

Computed Results for Stress-Intensity Factors
SIFs K1 Error of K1 K2 Error of K2

XFEM * 2% * 10%
SGBEM-FEM 18.627 0.11% 4.997 0.22%

We also study the non-planar fatigue growth of this lens-shaped crack. The crack
is allowed to advance a total length of 0.6 in 15 steps. In each crack-growth step,
after computing stress intensity factors, the corresponding Eshelby-force-vector is
determined by its relation with SIFs, see [Nikishokv, Park and Atluri (2001)]. The
crack-growth direction is taken to be that of the Eshelby-force-vector, which has
the physical meaning of “force on the singularity” [Eshelby (1951)]. The Paris-law
da/dN = 5.6× 10−14K3.5 is used to predict the number of fatigue cycles, for a
specified crack growth increment. It is found that, in 9,866,070 cycles, the lens-
shaped crack grows into a mode 1 dominated crack, as shown in Fig. 11-12.

It should be emphasized that an accurate prediction of fatigue cycles to failure of
a structure, is contingent on an accurate computation of stress intensity factors.
For an error of 10% as in XFEM in the computed stress intensity factors for this
problem, the Paris growth-law as used in this example will give an error about 30%-
40% for the crack-growth-rate, which will cumulatively give a very large error for
the estimated number of loading cycles it takes for the crack to grow to a certain
length or to failure.
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Figure 11: The final shape of the embedded lens-shaped crack, after fatigue growth,
as predicted by the SGBEM-FEM alternating method: a 3D view

Figure 12: The final shape of the embedded lens-shaped crack, after fatigue growth,
as predicted by the SGBEM-FEM alternating method: a plane view
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Example 4. Fatigue Growth of an Inclined Penny Crack, Embedded in a Cube

In [Sukumar, Chopp, Béchet, and Moës, (2008)], the fatigue-growth of an inclined
penny crack, embedded in a cube, was studied. The crack grows from an initially
45˚-inclined crack, to a mode 1 dominated crack, as shown in Fig. 13. Although not
shown in [Sukumar, Chopp, Béchet, and Moës, (2008)], a mesh consisting of 17000
nodes (51,000 dofs) was used to study this problem. Interestingly, the authors did
not report the exact computer-time for this computation, but stated: the time taken
to compute a single crack growth step is between 30 and 45min. Therefore a quick
estimation gives 10-15 hours for a total 20 crack-growth-steps.

Figure 13: The growth of an inclined penny crack, predicted by XFEM, taken from
[Sukumar, Chopp, Béchet, and Moës, (2008)]

We use the SGBEM-FEM alternating method to study this example. As shown in
Fig. 14, 1000 finite elements, and 144 boundary elements, are used to indepen-
dently model the uncracked global structure, and the crack face, respectively. After
fatigue growth, the shape of the crack is shown in Fig. 15. The computer time for
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(a) (b)
Figure 14: Independent Meshes for the problem of inclined penny crack, as solved
by the SGBEM-FEM alternating method: (a) the uncracked global structure with
1000 FE; (b) the crack surface 144 BE

analyzing this problem, by the SGBEM-FEM alternating method, adds up to 7.9
minutes! We thus conclude that the computational efficiency of the SGBEM-FEM
alternating method, roughly measured in computational time, is around 100 times
better than the XFEM.

The crack-growth path predicted by XFEM, for this inclined penny-shaped crack,
is somehow similar to the crack path predicted by the SGBEM-FEM alternating
method. However, in [Sukumar, Chopp, Béchet, and Moës, (2008)] and many
other studies on fatigue crack growth by XFEM, the computed fatigue cycles for
a given amount of crack-growth are not given. As is pointed out in [Dong and
Atluri (2013b)], for power-function type of fatigue laws, such as the Paris Law
used in this example, a 10% error in the computed SIFs can cause 30%-40% error
in predicted fatigue cycles for a given crack increment. This will cumulatively lead
to meaningless predictions of fatigue lives, in XFEM. It is hoped that some more
details will be given on predicted fatigue cycles by XFEM by researchers in the
future, so that a direct comparison of the predicted fatigue cycles by XFEM and
SGBEM-based methods can be made.
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(a) (b)

(c) (d)
Figure 15: The growth of the initially inclined crack by the SGBEM-FEM alternat-
ing method
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Example 5. A Through-Thickness Crack

All the examples presented above are for embedded cracks. In this and several
following examples, we study through-thickness cracks and surface cracks. It is
also found that, surface cracks are rarely studied in the literature published so
far, by using XFEM, which might be due to the fact that surface cracks are more
complicated.
In this example, a through-thickness crack with length 2a , located in a B×W ×H
plate, is studied. Uniform tension is applied to the upper and low surfaces of the
plate, as shown in Fig. 16.

[Levén and Rickert (2012)] studied this problem, by using XFEM. Geometrical
parameters H/a = 10, W/a = 10 are considered. Three different thicknesses are
considered: B/a = 10,20,30 respectively. In each case, half of the structure was
modeled, considering symmetry conditions. Also, 211,050, 422,100, and 634,800
finite elements were used to mesh half of the structure, respectively, for these three
cases. It is expected that, when the thickness is very large, the stress intensity factor
at the middle point should converge to the plane strain solution:

K1 = σ
√

πa
√

sec
(

πa
W

)
= 1.0254σ

√
πa (4)

However, it was found that such an expected convergence was not reached in
XFEM, and a relatively large error is obtained, as shown in Tab. 5.

Table 5: Normalized SIFs computed using XFEM by [Levén and Rickert (2012)]
B/a Number of elements K1/σ

√
πa Error

10 211,050 1.0653 3.89%
20 422,100 1.0679 4.14%
30 634,800 1.0693 4.28%

We also use SGBEM-FEM alternating method to study this simple example. As
shown in Fig. 18, for B = 10a, 125 finite elements and 48 boundary elements are
used to independently model the uncracked global structure, and the crack face,
respectively. For the other two cases with twice and three times of the current
thickness, the element number is doubled and tripled respectively. Computed stress
intensity factors are given in Tab. 6, showing that the SGBEM-FEM alternating
method is much more accurate than XFEM, even with very coarse meshes.
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Figure 16: A through-thickness crack in a tension plate

Figure 17: The mesh of the through-thickness crack considering symmetric condi-
tions, by using XFEM, taken from [Levén and Rickert (2012)].
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Table 6: Normalized SIFs computed by using the SGBEM-FEM alternating method
B/a Number of elements K1/σ

√
πa Error

10 125 FE, 48 BE 1.0284 0.29%
20 250 FE, 96 BE 1.0310 0.55%
30 375 FE, 144 BE 1.0323 0.67%

(a) (b)
Figure 18: Meshes for the problem of a through-thickness crack by using the
SGBEM-FEM alternating method with B = 10a: (a) the uncracked global struc-
ture is modeled with 125 FE; (b) the crack surface is modeled independently with
48 BE
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Example 6. A Semi-Elliptical Surface Crack in A Finite Plate

Figure 19: A semi-elliptical crack

Figure 20: The mesh of the semi-elliptical crack in a finite plate by using XFEM,
taken from [Levén and Rickert (2012)]
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In this example, the problem of a semi-elliptical crack in a finite plate is considered,
as shown in Fig. 19. Geometric parameters are given as: a = 8,c = 3,w = h =
50, t = 21. Uniform tension is applied to the upper and lower surface.

[Levén and Rickert (2012)] studied this problem, by using XFEM. Three different
meshes were considered, with different number of degrees of freedoms. A typical
mesh is shown in Fig. 20. The computed stress intensity factor at the deepest point
are compared to the solutions of [Newman and Raju (1981)], and the errors are
listed in Tab. 7. Even with over 1 million elements in XFEM, the error of the
stress intensity factor is still greater than 2.65%.

Table 7: Computational errors for the problem of a semi-elliptical surface-crack,
by using XFEM in [Levén and Rickert (2012)]

Number of elements Error of SIF
140,950 -4.46%
486,112 -4.77%
1,260,330 -2.65%

(a) (b)
Figure 21: Independent meshes for the problem of semi-elliptical crack in a finite
plate by using the SGBEM-FEM alternating method: (a) the un-cracked global
structure is modeled with 108 FE; (b) the crack surface is modeled with 24 BE
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We also solve this problem by SGBEM-FEM alternating method. As shown in Fig.
21, very coarse meshes are used, with only 108 finite element and 24 boundary
elements, respectively. However, the computed results give an accuracy of 99.19%
of the stress intensity factor at the deepest point, as compared to the Newman-Raju
solution.

Example 7. A Very Small Semi-Elliptical Crack at a U-notch

We now consider a slightly more complicated problem, that of a very small semi-
elliptical crack at the U-notch. As shown in Fig. 22, the geometric parameters of
the U-notch are: W = 1000,H = 400,B = 500,d = 150. The long semi-axis of the
crack is a = 10, and the short semi-axis of the crack is c = 2.

This problem was modeled by XFEM in [Levén and Rickert (2012)]. A very fine
mesh of 686,331 elements was used, as shown in Fig. 23. We also solve this prob-
lem with SGBEM-FEM alternating method, the meshes for which are shown in Fig.
24, with 1,660 finite elements for the uncracked solid, and 80 boundary elements
for the crack, independently. We see in Tab. 8, similar SIFs are obtained by XFEM
and by SGBEM-FEM alternating method. However, the number of elements used
by the SGBEM-FEM alternating method is only 0.25% of the number of ele-
ments used by XFEM; the computational time used by SGBEM-FEM alternating
method is only 33 seconds, which should be significantly less than that of XFEM
with about 0.7 million elements; and of course, the human labor spent on preparing
the crude mesh for SGBEM-FEM is minimal, while the high-end mesh by XFEM,
with graded refinement near the notch and at the crack-front, requires meticulous
preparation with much time and energy, as is pointed out by [Levén and Rickert
(2012)].

Table 8: Normalized SIFs at the deepest point of semi-elliptical crack at U-notch,
by using XFEM, and by using the SGBEM-FEM alternating method, respectively

XFEM SGBEM-FEM
Mesh 686,331 FEs 1,660 FEs, 80 BEs
K1/σ

√
πc 6.52 6.523

We also study the fatigue growth of this semi-elliptical crack. A total of 19 fatigue
growth steps are carried out with a maximum increment of 20. It is shown in Fig.
25-26 that the semi-elliptical crack becomes almost a quasi-circular crack, after
fatigue growth, as modeled by using SGBEM-FEM alternating method.
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Figure 22: A semi-elliptical crack at U-notch

Figure 23: The mesh of the semi-elliptical crack at U-notch, by using XFEM with
686,331 elements, taken from [Levén and Rickert (2012)]

It should be noted that, the total time used for the fatigue analysis of this prob-
lem by SGBEM-FEM alternating method is 18 minutes. On the other hand, it
was pointed out in Example 4, the fatigue analysis of a simple inclined penny
crack with 17,000 nodes takes 15-20 hours. Therefore, for this slightly complex
problem, with about 0.7 million elements (which should add up to more than 1
million nodes), the fatigue analysis becomes almost impossible with reasonable
computational resources.
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(a) (b)
Figure 24: Meshes for the problem of semi-elliptical crack at a U-notch, by using
the SGBEM-FEM alternating method: (a) the uncracked global structure is mod-
eled with 1660 FE; (b) the crack surface is modeled independently with 80 BE

Figure 25: The fatigue growth of the semi-elliptical crack emanating from U-notch,
as predicted by SGBEM-FEM Alternation
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Figure 26: The shape of the semi-elliptical crack at U-notch, after fatigue growth,
predicted by the SGBEM-FEM alternating method

Example 8. Fatigue Growth of a Semi-Circular Surface Crack in a Thin Plate

(a) (b)
Figure 27: Meshes for the problem of semi-circular surface crack in a tension plate,
by the SGBEM-FEM alternating method : (a) the uncracked global structure is
modeled with 300 FE; (b) the crack surface is modeled with 64 BE, independently.
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In this example, we model the fatigue growth of a semi-circular surface crack in
a thin plate. Referring to Fig. 19, the geometric parameters a = c = 0.5,h = w =
10, t = 1 are considered. A uniform tension of σ = 10 is applied to the upper and
lower surfaces of the plate. The meshes for the SGBEM-FEM alternating method
are shown in Fig. 27, with 300 finite elements and 64 boundary elements, respec-
tively. After fatigue growth, we see that the surface crack breaks through the thick-
ness of the plate, and becomes a through-thickness crack. Then, it keeps growing
in the width direction, as shown in Fig. 28-30.

Figure 28: The growth of the semi-circular crack in a thin plate as analyzed by the
SGBEM-FEM Alternating Method: 3D view, Part A
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Figure 29: The growth of the semi-circular crack in a thin plate, as analyzed by the
SGBEM-FEM Alternating Method: 3D view, Part B
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Figure 30: The growth of the semi-circular crack in a thin plate, as analyzed by the
SGBEM-FEM Alternating Method: 2D view, in the plane of the crack

Example 9: A Surface Crack Emanating from a hole in an Attachment Lug

We also solve a more complicated problem, of the propagation under fatigue, of a
semi-circular surface crack emanating from a hole in an attachment lug. No one
has attempted to solve such a simple practical problem by using XFEM, in spite
of its long history, and more than 3500 publications on XFEM. As shown in Fig.
31-32, the meshes for the SGBEM-FEM alternating method consists of 4392 finite
elements and 45 boundary elements. Fatigue analysis of the attachment lug crack
is carried out, giving the final crack shape as shown in Fig. 33.
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Figure 31: A Quarter-Circular Surface crack emanating from the hole in an
Attachment-Lug

(a) (b)
Figure 32: Meshes for the problem of a Quarter-Circular Surface Crack Emanating
from a hole in an attachment lug : (a) the uncracked global structure is modeled
with 4392 FE; (b) the crack surface is modeled independently, with 45 BE
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Figure 33: The growth of attachment lug crack: 2D view
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3 Conclusion

By carefully analyzing several numerical examples, we demonstrated that SGBEM-
FEM alternating method is much more suitable for fracture and fatigue analysis of
3D nonplanar cracks in complex structures, because: (a) the SGBEM-FEM alter-
nating method gives extremely high accuracy for stress intensity factors; but XFEM
gives rather poor computational results, even for the most simple problems of 3D
cracks; (b) while SGBEM-FEM alternating method requires independent and very
coarse meshes for both the uncracked solid and the crack, the XFEM requires ex-
tremely fine and high-quality meshes for 3D solids, which can sometimes be unvi-
able for a normal PC; (c) the SGBEM-FEM alternating method requires minimal
computational as well as human-labor efforts for modeling the non-planar fatigue
growth of 3D cracks; but fatigue analysis by XFEM involves unreasonable compu-
tational and human efforts even for those most simple problems; (d) because of the
low accuracy of computed stress intensity factors by XFEM, the fatigue cycles to
failure, as predicted by XFEM should be far from correct and meaningless, even
for those most simple 3D problems, such as an inclined embedded penny-shaped
crack, as computed in several hours with an extremely fine mesh; (e) with very low
computational and human-labor burden, the SGBEM-FEM alternating method can
accurately solve complex 3D cracked-solid problems easily, even in those cases
which are too complex to be even attempted by XFEM with a reasonable cost.
It is thus concluded that the SGBEM-FEM alternating method, among the many
alternating methods developed in the past 20-30 years by Atluri and his many col-
laborators, are far more efficient, far more accurate, and far more reliable than the
XFEM, for analyzing fracture and 3D non-planar fatigue crack propagation in com-
plex structures. The implementation of the SGBEM-related method as presented
in this study, as well as those presented in its companion Part 1 [Dong and Atluri
(2013b)], in general-purpose, off-the-shelf commercial software, is greatly valuable
and is being pursued by the authors.
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