
Copyright © 2013 Tech Science Press CMES, vol.90, no.2, pp.91-146, 2013

Fracture & Fatigue Analyses: SGBEM-FEM or XFEM?
Part 1: 2D Structures

Leiting Dong1,2, Satya N. Atluri1,3

Abstract: In this paper, and its companion Part 2 [Dong and Atluri (2013b)],
the Symmetric Galerkin Boundary Element Method (SGBEM), and the SGBEM-
FEM alternating/coupling methods, are compared with the recently popularized
Extended Finite Element Method (XFEM), for analyzing fracture and fatigue crack
propagation in complex structural geometries. The historical development, and the
theoretical/algorithmic formulations, of each method are succinctly reviewed. The
advantages and disadvantages of each method are critically discussed. A compre-
hensive evaluation of the performances of the SGBEM-based methods, and their
comparison with XFEM, in modeling cracked solid structures undergoing fatigue
crack-growth is carried out. A thorough examination of a large set of numerical ex-
amples of varying degrees of complexity shows that, the SGBEM-based methods:
(a) are far more accurate than XFEM for computing stress intensity factors, and thus
the fatigue-crack-growth-rates; (b) require significantly coarser and lower-quality
meshes than in XFEM, and thus result in significant savings of computational costs,
and more importantly in considerable savings of the human-labor-costs of gener-
ating meshes; (c) require minimal effort for modeling the non-collinear/non-planar
propagation of cracks under fatigue, without using the Level Set or Fast March-
ing methods to track the crack surface; (d) can easily perform fracture and fatigue
analysis of complex structures, such as repaired cracked structures with compos-
ite patches, and damage in heterogeneous materials. It is thus concluded that the
SGBEM-based methods, and alternating methods, which were developed over the
past 20-30 years by Atluri and his many collaborators, are by far the best methods
for analyzing fracture and non-planar fatigue crack propagation in complex struc-
tures, and are thus valuable for inclusion in general-purpose, off-the-shelf commer-
cial software for structural analyses. This objective is pursued by the authors.
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1 Introduction

Modeling the fracture and fatigue behavior of cracked solid structures is an impor-
tant task in the structural integrity assessment and damage tolerance analyses of
civil, mechanical, aerospace, and military structures, see the comprehensive Mono-
graph [Atluri (1998)]. In spite of its wide-spread popularity, the traditional finite
element method, with simple polynomial interpolations, is unsuitable for model-
ing cracks and their propagation, partially due to the high-inefficiency of approx-
imating stress & strain-singularities using polynomial FEM shape functions. In
order to overcome this difficulty, embedded-singularity elements by [Tong, Pian
and Lasry (1973); Atluri, Kobayashi and Nakagaki (1975)], and singular quarter-
point elements by [Henshell and Shaw (1975) and Barsoum (1976)], among others,
were developed in the 1970s, in order to capture the crack-tip/ crack-front singular
field. Many such related developments were summarized in the Monograph [Atluri
(1986)], and they are now widely available in many commercial FEM software,
such as ANSYS and ABAQUS. However, the need for constant remeshing makes
the automatic fatigue-crack-propagation analyses with FEM extremely difficult, if
not impossible.

The later method of the so-called XFEM (Extended Finite element Method), which
was put forward first in [Moës, Dolbow and Belytschko (1999)], became wildly
popular in the past decade. It is interesting to note that, according to ISI’s we-
bofknowledge, the paper by [Moës, Dolbow, and Belytschko (1999)] has so far
(January 2013) already been cited in literature, 1140 times!. Also, a quick search
of “XFEM” on Google Scholar returns more than 3500 results for papers published
so far on the subject of XFEM. Considering the average research cost in writing an
archival research paper (a very modest estimate of about 50,000 US $ per paper),
it can be quickly seen that about 200 Million US $s have so far been spent in de-
veloping the XFEM. Two special issues (Int. J. Numer. Meth. Engng., vol. 86,
issues 4-5,2011), have been devoted to the development and application of XFEM.
Three major international conferences (XFEM 2009, XFEM 2011, XFEM 2013), in
the past few years have been entirely devoted to the discussions of XFEM. How-
ever, XFEM differs very little in theory from the embedded-singularity elements
developed in the 1970s and cited above. Both the widely popular XFEM of the
past decade, and the embedded-singularity elements of the 1970s, use crack-tip
singular fields to enrich the trial functions. Both of them use variational prin-
ciples or symmetric Galerkin weak-forms to develop FEM equations. And both
of them use path-independent/ domain-independent integrals as in [Rice (1968);
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Atluri (1982); Nishioka and Atluri (1983); Nikishkov and Atluri (1987a,b)], or
their interaction-integral variants [Chen and Shield (1977)], among other tech-
niques, to extract and to evaluate the stress intensity factors from the computed
displacement/strain/stress solutions. Moreover, for both the XFEM and the much-
earlier embedded-singularity elements, singular enrichment is confined only to the
elements which are immediately adjacent to the crack-tip/ crack-front. Therefore,
as seen in most XFEM publications in the open literature, an extremely fine and
good-quality mesh is still necessary to capture the high gradients of the stress field,
at locations near to the crack tips/ crack fronts.

In a fundamentally different mathematical way, after the derivation of analytical so-
lution for embedded elliptical cracks whose faces are subjected to arbitrary normal
and shear tractions, the first paper on a highly-accurate Finite Element (Schwartz-
Neumann) Alternating Method (FEAM) was published in [Nishioka and Atluri
(1983)]. The FEAM uses the Schwartz-Neumann alternation between a crude and
simple finite element solution for an uncracked structure, and the analytical solu-
tion for an infinite body containing the crack. The success of this method is mostly
due to the work of [Vijayakumar and Atluri (1981)], in which the analytical solu-
tions for an embedded elliptical crack, the faces of which are subjected to arbitrary
normal and shear tractions, are derived, and they are now popularly named as the
VNA solutions. Subsequent 3D and 2D variants of the finite element alternating
methods were successfully developed and applied to perform structural integrity
and damage tolerance analysis of many practical engineering structures, including:
cracked stiffened panels with/without composite-patch repairs in [Park, Ogiso, and
Atluri (1992)]; multi-site fatigue damage of aging aircraft structural elements in
[Park, Singh, Pyo, and Atluri (1995)]; elastic-plastic wide-spread fatigue damage
in ductile panels [Pyo, Okada and Atluri (1995)]; fatigue growth of cracks in 3D
aircraft components in [O’Donoghue, Atluri, and Pipkins (1995)]; cracks emanat-
ing from fastener holes in [Park and Atluri (1998)] and many many others in the
literature. Very recently, the SGBEM-FEM Alternating method (involving the al-
ternation between the very crude FEM solution of the uncracked structure, and
an SGBEM solution for a small region enveloping the arbitrary non-planar 3-D
crack, was developed for arbitrary three-dimensional non-planar growth of embed-
ded as well as surface cracks in [Nikishkov, Park and Atluri (2001), Han and Atluri
(2002)]. Most recently, in [Dong and Aluri (2012,2013a)], a SGBEM super ele-
ment1 was developed for direct coupling of SGBEM and FEM, for fracture and
fatigue analysis of complex 2D solid structures and materials. The motivation for
this series of works, by Atluri and many of his collaborators since the 1980s, is

1 SGBEM Super Element is named as SGBEM Voronoi Cell (SVC), when it is used to model het-
erogenous materials, in [Dong and Atluri(2013a)]
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to explore the advantageous features of each computational method: model com-
plicated uncracked structures with simple FEMs, and model crack-singularities by
mathematical methods such as complex variables, special functions, BIEs, and by
SGBEMs.

In order to find the simplest and the best method, among the many cited above,
for modeling fracture and fatigue-crack-propagation in solid structures, many nu-
merical examples are computed in the present study. The performance of SGBEM-
based methods is compared to with that of XFEM. Various highly-cited papers on
crack analysis by XFEM are first chosen. The same examples as presented in these
highly cited XFEM papers are solved by the SGBEM-based methods developed by
the authors. The numerical examples for two-dimensional problems are shown in
this paper, and those for three-dimensional problems are presented in a companion
Part 2. Numerical results show that the SGBEM and the SGBEM-FEM alternat-
ing/coupling method are far more accurate than the XFEM in computing stress
intensity factors. SGBEM-related methods require very coarse meshes and very
little computational cost, while XFEM requires very fine meshes and involve very
high computational burdens. Analyses of fatigue-crack-propagation by SGBEM re-
quires a minimal effort, by simply adding an element to each crack tip, but special
methods such as Level Sets and Fast Marching Methods are necessary for XFEM,
to track the growing surfaces of the cracks. Several examples of cracked structures
which are repaired with composite patches, and damaged heterogeneous materi-
als, also demonstrate the power of SGBEM-based methods for modeling complex
structures with stationary or propagating cracks.

The rest of this paper is organized as follows: in section 2, we review the formu-
lation of XFEM; in section 3, we review SGBEM and its coupling with FEM; in
section 4, we compare these two methods in many numerical examples of two-
dimensional problems; in section 5, we complete this paper with some concluding
remarks.

2 XFEM: Theory and Algorithmic Formulations

Consider a linear elastic solid Ω undergoing an infinitesimal elasto-static deforma-
tion, where body forces can be neglected. σi j,εi j,ui are Cartesian components of
the stress tensor, strain tensor and displacement vector respectively. ui, t i are Carte-
sian components of the prescribed displacement at Su and traction at St . We use
( ),i to denote differentiation with respect to xi. The governing differential equa-
tions can be expressed in terms of displacements, which are the Navier’s equations:

(
Ei jkluk,l

)
,i = 0 in Ω (1)
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For isotropic plane elasticity,

Ei jkl = µ
( 2v̄

1−2v̄ δi jδkl +δikδ jl +δilδ jk
)

i, j,k, l = 1,2

v̄ =
{

v for plane strain problems
v

1+v for plane stress problems

(2)

For 3D isotropic elasticity

Ei jkl = µ

(
2v

1−2v
δi jδkl +δikδ jl +δilδ jk

)
i, j,k, l = 1,2,3 (3)

Boundary conditions are:

ui = ūi at Su (4)

ti = t̄i at St (5)

Similar to traditional finite elements, XFEM equations can be developed using the
single-field variational principle, see [Atluri (2005)], which corresponds to the sta-
tionarity of the following scalar functional, which is a function of the trial displace-
ment field uk that is continuous and satisfies (4) a-priori:

π (uk) =
∫
Ω

1
2

Ei jklui, juk,ldΩ−
∫
St

t̄iuidS (6)

Traditional FEM uses polynomial shape functions φ (i) to construct the trial dis-
placement field:

uk = ∑
i∈I

u(i)k φ
(i) (7)

For a cracked solid as shown in Fig.1, XFEM introduces two additional fields to
model the displacement discontinuity across crack surface and the stress singularity
at crack-tips/ crack-fronts:

uk = ∑
i∈I

u(i)k φ
(i)+∑

i∈J
a(i)k φ

(i)H + ∑
i∈K

∑
j

b(i)k j φ
(i)Fj (8)

I is the set of all nodes. J is the set of the nodes which are immediately adjacent
to the crack surface. K is the set of the nodes which are immediately adjacent to
the crack tips or crack fronts. H is a spatial Heaviside function, which equals to
1 at one side of the crack, and 0 at the other side of the crack. Fj is the singu-
larity enrichment for elements directly adjacent to crack-tips or crack-fronts. For
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both two-dimensional and three-dimensional problems, Fj is a function of local po-
lar coordinates, see [Moës, Dolbow and Belytschko (1999), Moës, Gravouil and
Belytschko (2002)]:

F1 =
√

r sin
(

θ

2

)
,F2 =

√
r cos

(
θ

2

)
,

F3 =
√

r sin
(

θ

2

)
sin(θ) ,F4 =

√
r cos

(
θ

2

)
sin(θ)

(9)

Figure 1: Enrichments for XFEM

Substituting the trial displacement fields (8) into (6), stationarity conditions lead to
a system of equations similar to those for traditional FEM: kuu kua kub

kau kaa kab
kbu kba kbb


u
a
b

=


fu
fa
fb

 (10)

u,a,b represent the nodal displacements, Heaviside enrichments, and crack-tip/
crack-front singular enrichments respectively. Once they are solved, spatial dis-
placements and stresses can be computed. The stress-intensity factors can be com-
puted using path-independent or domain independent integrals, or their variants
in an interaction integral form, as in [Eshelby (1951); Rice (1968); Atluri (1982);
Nishioka and Atluri (1983); Nikishkov and Atluri (1987a,b)]. In most of the XFEM



Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? 97

literature, the interaction integral as in [Chen and Shield (1977); Atluri (1998)] is
used to compute the stress intensity factors:

I(ui, ũ
(k)
i ) = J(ui + ũ(k)i )− J(ui)− J(ũ(k)i )

=
∫
C

[
σi jε̃

(k)
i j n1−n jσ̃i j

∂ ũ(k)i
∂x1
−n jσ̃

(k)
i j

∂ui
∂x1

]
dS

(11)

where ũ(k)i , ε̃
(k)
i j , σ̃

(k)
i j denotes the displacements and stresses for an auxiliary pure

mode k crack. Equation (11) can also be evaluated in an equivalent domain integral
method, as shown in [Nikishkov and Atluri (1987a, b); Atluri (1998)].

The stress intensity factors can be determined as:

Kk (ui) = α
I(ui, ũ

(k)
i )

Kk

(
ũ(k)i

) (12)

α is a constant depending on the material properties µ,v, the mode number k, and
whether it is 2D plane stress, plane strain, or 3D problems.

Fatigue growth direction of the crack-tip can be determined using maximum tan-
gential stress or maximum strain energy criteria, see [Atluri (1998)]. Also, the
crack extension distance can be computed using various fatigue laws such as Paris
or Forman equations, once stress intensity factors are correctly computed. How-
ever, for XFEM, a special technique is needed to track the crack surface at each
fatigue step. The most popular one in the XFEM literature is to use the Level Set
function, see [Stolarska, Chopp, Moës, Belytschko (2001); Moës, Gravouil and Be-
lytschko (2002)]. A frequently used Level-Set function for the initial crack surface
is the signed-distance function:

ϕ (x, t0) =±min‖x−x∗‖ , x∗ ∈ Γ (13)

Γ is the surface describing the initial crack, and ‖‖ is the Euclidean distance. There-
fore the magnitude of ϕ is equal to the shortest distance of the point x to the surface
Γ. The sign of ϕ is different on the two opposite sides of the surface Γ. The crack
surface can be described by the equation ϕ = 0. However, because the Level Sets
have to be defined for a closed interface or an infinite interface, Γ has to be extended
beyond the crack fronts. The crack front is defined by the intersection between the
surface Γ and a orthogonal surface S, which is described by another Level Set func-
tion ψ , see Fig. 2.

For XFEM application, ϕ and ψ are stored and computed at each time step in a
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discretized way, using FEM shape functions:

ϕ (x, t) = ∑
i∈I

φ (i) (x)ϕ
(
x(i), t

)
ψ (x, t) = ∑

i∈I
φ (i) (x)ψ

(
x(i), t

) (14)

In order to have a relatively accurate approximation of the Level Set functions, a
fine mesh is again necessary. Computing the Level Set function over the domain is
time-consuming in itself. In addition, the updating of the Level Set function in each
fatigue step adds much more of a computational burden. Methods such as Fast-
Marching-Method have been used to compute and update the Level Set function in
each time step, see [Sukumar, Chopp, and Moran (2002), Sukumar, Chopp, Béchet,
and Moës (2008)] for details.

φ

φ

Figure 2: The two Level Sets defining the crack surface and the crack-front

3 SGBEM and SGBEM Alternating/Coupling Method: Theory and Formu-
lation

The Symmetric Galerkin Boundary Element Method (SGBEM) has several ad-
vantages over collocation/direct and dual BEMs [Rizzo (1967), Hong and Chen
(1988)], such as resulting in a symmetrical coefficient matrix of the system of
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equations, and the avoidance of the need to treat sharp corners specially, etc. Early
derivations of SGBEMs involve regularization of hyper-singular integrals, as in
[Frangi and Novati (1996); Bonnet, Maier and Polizzotto (1998); Li, Mear and
Xiao (1998); Frangi, Novati, Springhetti, Rovizzi (2002)]. A systematic proce-
dure to develop weakly-singular symmetric Galerkin boundary integral equations
was presented by [Han and Atluri (2003,2007)]. The derivation of the this simple
formulation involves only the non-hyper singular integral equations for tractions,
based on the original work reported in [Okada, Rajiyah and Atluri (1988,1989)].
It was used to analyze cracked 3D solids with surface flaws in [Han and Atluri
(2002)], and cracked 2D structures and heterogeneous materials in [Dong and
Atluri (2012,2013a)].

For a domain of interest as in Fig. 3, with source point xand target point ξ , 3D
weakly-singular symmetric Galerkin BIEs for displacements and tractions are de-
veloped in [Han and Atluri(2003)].

Figure 3: A solution domain with source point x and target point ξ , taken from
[Han and Atluri (2002)]

The displacement BIE is:

1
2
∫

∂Ω
vp(x)up(x)dSx

=
∫

∂Ω
vp(x)dSx

∫
∂Ω

t j(ξ )u
∗p
j (x,ξ )dSξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

Di(ξ )u j(ξ )G
∗p
i j (x,ξ )dSξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξ )u j(ξ )φ
∗p
i j (x,ξ )dSξ

(15)
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And the corresponding traction BIE is:

−1
2
∫

∂Ω
wb(x)tb(x)dSx

=
∫

∂Ω
Da(x)wb(x)dSx

∫
∂Ω

tq(ξ )G
∗q
ab (x,ξ )dSξ

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

na(x)tq(ξ )φ ∗qab (x,ξ )dSξ

+
∫

∂Ω
Da(x)wb(x)dSx

∫
∂Ω

Dp(ξ )uq(ξ )H∗abpq (x,ξ )dSξ

(16)

In equation (15) and (16), Da is a surface tangential operator:

Da (ξ ) = nr (ξ )ersa
∂

∂ξs

Da (x) = nr (x)ersa
∂

∂xs

(17)

Figure 4: A defective solid with arbitrary cavities and cracks

Kernels functions u∗p
j ,G∗qab,φ

∗q
ab ,H

∗
abpq can be found in [Han and Atluri (2003)],

which are all weakly-singular, making the implementation of the current BIEs very
simple.

By applying the displacement BIE (15) to Su, where displacements are prescribed,
and applying the traction BIE (16) to St ′ , where tractions are prescribed, and apply-
ing the traction BIE (16) to Sc, which is the crack surface, a symmetric system of
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equations can be obtained. App Apq Apr
Aqp Aqq Aqr
Arp Arq Arr


p
q
r

=


fp
fq
fr

 (18)

where p,q,r denotes the unknown tractions at Su, unknown displacements at St ′ ,
and unknown displacement discontinuities at Sc respectively.

With the displacements and tractions being first determined at the boundary and
crack surface, the displacements, strains and stress at any point in the domain can
be computed using the non-hyper singular BIEs of [Okada, Rajiyah and Atluri
(1988,1989)]. Therefore, the path-independent or domain-independent integrals
can still be used to compute the stress intensity factors. However, with the singu-
lar quarter-point boundary elements at the crack face, stress intensity factors can
also be directly computed using the displacement discontinuity at the crack-front
elements, see [Nikishkov, Park and Atluri (2001)].

For fatigue growth of cracks, there is no-need to use any other special technique to
describe the crack surface, such as the Level Sets used in XFEM. The crack surface
is already efficiently described by boundary elements. In each fatigue step, a min-
imal effort is needed: one can simply extend the crack by adding some additional
elements at the crack-tip/ crack front. This greatly saves the computational time
for fatigue-crack-propagation analyses, as compared to the complicated Level Set
Method, or the Fast Marching Method, and other complicated methods required in
XFEM.

To further explore the advantage of both FEM and SGBEM, [Han and Atluri (2002)]
coupled FEM and SGBEM indirectly, using the Schwartz-Neumann Alternating
Method. As shown in Fig. 5, simple FEM is used to model the global uncracked
structure, and SGBEM is used to model the local cracked subdomain. By imposing
residual stresses at the global and the local boundaries in an alternating procedure,
the solution of the original problem is obtained by superposing the solution of each
individual sub-problem.

The great flexibility of this SGBEM-FEM alternating method is obvious. The
SGBEM mesh of the cracked sub-domain is totally independent of the crude FEM
mesh of the uncracked global structure. Because the SGBEM is used to capture
the stress singularity at crack-tips/ crack fronts, a very coarse mesh can be used for
FEM model of the uncracked global structure. Since FEM is used to model the
uncracked global structure, large-scale structures can be efficiently modeled.

In order to model complicated solid structures, such as cracked stiffened panels
and microcracks in heterogeneous solids, the SGBEM super element is developed
in [Dong and Alturi (2012, 2013a)]. By applying the displacement BIE (15) and the
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(a) (b)

(c) (d)
Figure 5: Superposition principle for FEM-SGBEM alternating method: (a) the
uncracked body for FEM, (b) the local domain containing cracks for SGBEM, (c)
FEM model subjected to residual loads, (d) alternating solution for the original
problem, taken from [Han and Atluri (2002)]

traction BIE (16) to the whole boundary, and rearranging the BIEs by a few mathe-
matical manipulations, a stiffness matrix and a force vector for the local subdomain
is developed:(

δq
δr

)T [ Kqq Kqr
Krq Krr

](
q
r

)
=

(
δq
δr

)T ( Q
R

)
(19)

The super element can contain arbitrary voids, inclusions, and cracks. The stiff-
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Figure 6: A SGBEM super element with arbitrary embedded inclusions/voids, and
cracks.

ness matrix and the force vector have clear physical meanings, similar to those of
traditional displacement FEMs, and are related to strain energy and work done. A
direct coupling of the super element and FEM, and coupling of different super el-
ements, can be achieved by the simple assembly procedure. Therefore, SGBEM
super element can be easily implemented in standard commercial FEM routines.
The fracture and fatigue-crack-propagation analyses of composite structures, and
heterogeneous materials, also demonstrate the power of the SGBEM super ele-
ments.

4 Numerical Examples

In this section, the SGBEM and SGBEM super element- based methods are com-
pared to the XFEM, by analyzing several examples. All the XFEM examples are
chosen from the most-cited papers on XFEM in the open literature, up to the current
time (2013). All the SGBEM-based results are generated by the authors, using a
simple code developed by the authors (which will soon be embedded in an off-the-
shelf commercial FEM software to be used for modeling un-cracked structures), on
a PC with an Intel Core i5 Processor.

Example 1. An Embedded Through-Thickness Crack

First, we solve the very simple problem of an embedded through-thickness crack.
A crack of length 2a is located at the center of a plate of 2b width and 2h height.
Normal stress σ is applied on the upper and lower edges. This is shown in Fig. 7
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Figure 7: An Embedded Through-thickness Crack

with a/b = 0.1, h/b = 1.5. For this problem, [Tada, Paris, and Irwin (2000)] gives
K1

σ
√

πa = 1.006.

This problem was solved by XFEM in [Huang, Sukumar, and Prévost (2003)].
Two mesh configurations were used, see Fig. 8. Even though this is probably the
simplest problem of fracture mechanics, when only a half of the plate is modeled
considering the symmetry condition, 5000 bilinear rectangular elements are used
in the structured mesh, and 3362 triangular elements are used in the unstructured
mesh. The XFEM computed normalized stress intensity factor is listed in Tab. 1 for
the structured mesh, and listed in Tab. 2 for the unstructured mesh. For each mesh,
the stress intensity factor is computed using the domain form of the interaction
integral method as discussed in section 2. The influence of domain radius rd on the
computed stress intensity factors is also shown in Tab.1 and Tab. 2. We can see
that, with a strictly structured mesh, XFEM gives an accurate solution with 0.1%
error, only if a large integration radius is used, (more than 0.5a). But, as is well
known, for curved cracks, using a large radius involves significant error, because
the J-integral is no longer path-independent for curved-cracks. On the other hand,
with an unstructured mesh, even with a very large radius for integration, XFEM
gives a solution with an error of around 1.5%.

This problem is also solved with 2 different SGBEM meshes, see Fig. 9. In the first
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case, we use only one 1 element for each side of the plate and 2 elements to mesh
the crack, with a total of only 7 nodes, the least possible, for this problem!. In the
second case, we use two elements to mesh each side of the plate and 4 elements to
mesh the crack, with a total of only 13 nodes!. The computational results for the
SGBEM-based method are shown in Tab. 3. As can be seen, extremely accurate
results are obtained, even with these very coarse meshes.

Table 1: Normalized SIFs for the center crack problem (structured mesh with 5000
finite elements), Using XFEM: [Huang, Sukumar, and Prévost (2003)].

rd/a K1/σ
√

πa Error
0.283 1.033 2.68%
0.354 1.015 0.90%
0.424 1.004 -0.20%
0.566 1.005 -0.10%
0.707 1.005 -0.10%

Table 2: Normalized SIFs for the center crack problem (unstructured mesh with
3362 finite elements), Using XFEM: [Huang, Sukumar, and Prévost (2003)].

rd/a K1/σ
√

πa Error
0.424 1.0230 1.69%
0.573 1.0000 -0.60%
0.716 0.9920 -1.40%
0.859 0.9940 -1.20%

Table 3: Computational results by using SGBEM, for the center crack of Fig. 9
Mesh Number of Nodes K1/σ

√
πa Error

(a) 7 1.005 0.10%
(b) 12 1.006 0.00%
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Figure 8: XFEM meshes for the center crack problem, taken from [Huang, Suku-
mar, and Prévost (2003)]: (a) structured mesh with 5000 elements; (b) unstructured
mesh with 3362 elements

Example 2. An Edge Crack

An edge crack of length a in a finite plate is shown in Fig. 10 with b = h = 1 and
loaded by a uniform tensile stress σ = 1. [Tada, Paris, Irwin (2000)] gives:

K1

σ
√

πa
= 1.12−0.231

(a
b

)
+10.55

(a
b

)2
−21.72

(a
b

)3
+30.39

(a
b

)4
(20)

This problem was solved by [Stazi, Budyn, Chessa, Belytschko, (2003)], using
XFEM. The mesh of XFEM is shown in Fig. 11, with 484 linear as well as quadratic
triangular elements. In this study, we also solve this problem with SGBEM, the
mesh of which is shown in Fig. 12, with 35 boundary elements and 37 nodes.
Computational results by XFEM, and the SGBEM, are shown and compared in
Tab. 4, from which we see that the SGBEM gives much more accurate results than
XFEM, with a much less computational cost.
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Figure 9: SGBEM meshes for the center crack problem: (a) with 6 elements, and a
total of 7 nodes; (b) with 12 elements, and a total of 13 nodes;

Figure 10: An Edge Crack
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Table 4: Comparison of results by using XFEM [Stazi, Budyn, Chessa, Belytschko,
(2003)], and by the present SGBEM, for the edge crack in Fig. 10,

a
Linear XFEM Quadratic

XFEM
SGBEM

Exact K1

K1 error K1 error K1 error
0.21 1.0616 -6.39% 1.1243 -0.86% 1.1296 -0.40% 1.1341
0.22 1.1000 -6.90% 1.1691 -1.05% 1.1767 -0.41% 1.1816
0.23 1.1321 -7.98% 1.2187 -0.94% 1.2252 -0.41% 1.2303
0.24 1.1558 -9.62% 1.2707 -0.63% 1.2751 -0.29% 1.2788
0.28 1.3783 -7.71% 1.4760 -1.17% 1.4911 -0.16% 1.4935
0.50 3.1299 -11.64% 3.5064 -1.01% 3.5302 -0.34% 3.5423

Figure 11: The XFEM mesh with 384 triangular elements



Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? 109

Figure 12: The present SGBEM mesh for the problem in Fig. 10, by using 35
boundary elements and 37 nodes

Example 3. An Embedded Slanted Crack

Now we solve the problem of an embedded slanted crack in an infinite domain,
see Fig. 13. The coordinates of the two crack tips are (−1,−0.9) and (1,−0.9).
Normal stress σ = 1 is applied in the vertical direction. This problem was solved
by [Stazi, Budyn, Chessa, Belytschko, (2003)] with XFEM. The meshes of XFEM
are similar to those in Fig. 11, but different number of elements were tried for this
problem, by [Stazi, Budyn, Chessa, Belytschko, (2003)]. The results computed
with XFEM for the upper-right crack-tip is shown in Tab. 5. We also solve this
problem with SGBEM. A truncated plate with b = h = 20 is considered. The mesh
of SGBEM is shown in Fig. 14, with 11 nodes for mesh (a), and with 21 nodes
for mesh (b). Computed stress intensity factors with SGBEM are shown in Tab. 6,
showing significantly higher accuracy than XFEM.

Example 4. A Branching Crack

We study the case of a branching crack in an infinite plate, with a=b=1, θ = 45˚, as
shown in Fig. 15. Uniform stress σ = 50 is applied to the upper and lower edges.

This problem was studied by [Daux, Moës, Dolbow, Sukumar, Belytschko (2000)]
with XFEM. Because of the limit of FEM, a truncated plate with w=20, H =16
was considered. The influence of the average element size h at the crack-tip on the
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Figure 13: An Embedded Slanted Crack

Table 5: Results computed, using the XFEM, by [Stazi, Budyn, Chessa, Be-
lytschko, (2003)]for the embedded slanted crack in Fig. 13

Number
of Nodes

Error
of K1

Error
of K2

1661 33.53% 77.95%
2377 30.60% 27.22%
3449 -4.91% -11.72%
4193 -2.88% -6.73%
5293 -2.51% -5.15%

Table 6: The results computed using the present SGBEM for the embedded slanted
crack in Fig. 13

Number
of Nodes

Error
of K1

Error
of K2

11 1.01% 1.03%
21 0.32% 0.33%
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Figure 14: The SGBEM mesh for the slanted crack: (a) 10 boundary elements with
11 nodes; (b) 20 boundary elements with 21 nodes.

Figure 15: A branching crack
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computed stress intensity factors is shown in Tab. 7. In order to obtain an accurate
solution, extremely refined mesh at the crack tip was found to be necessary [Daux,
Moës, Dolbow, Sukumar, Belytschko (2000)]. Therefore, if one wants to study the
fatigue growth of the branching crack, even a finer mesh is necessary at the whole
domain, in XFEM.

In Tab. 7, F1A,F1B,F2B are defined as:

F1A = K1A
σ
√

πc

F1B = K1B
σ
√

πc

F2B = K2B
σ
√

πc

(21)

The XFEM results are compared to the reference solution of [Chen and Hasebe
(1995)], which gives F1A = 1.044,F1B = 0.495,F2B = 0.506.

Figure 16: (a) XFEM mesh of the branching crack, with 1218 nodes, h/a = 1/12;
(b) the close-up view of the mesh near the crack, taken from [Daux, Moës, Dolbow,
Sukumar, Belytschko (2000)]:

This problem was also studied by SGBEM in [Dong and Atluri (2012a)], with
W/a = 40,H/a = 40. The mesh for the SGBEM is shown in Fig. 17, with 46
boundary elements, and 49 nodes. The results computed by using the SGBEM are
given in Tab. 8, showing high accuracy, even though a very coarse mesh is used.
Moreover, the fatigue growth of the branching crack is also studied by SGBEM. In
each crack-growth step, after computing stress intensity factors, the corresponding
Eshelby-vector of force on the crack-tip (front) is determined by using its relation to
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the mixed-mode SIFs, see [Nikishokv, Park and Atluri (2001)]. The crack-growth
direction is taken to be the same as the direction of the Eshelby-vector of force,
which has the physical meaning of “force on the singularity” [Eshelby (1951)].
The Paris equation: da/dN =CKn is used to determine the crack-growth rate, and
the number of fatigue cycles required for a certain crack-length increment. The
parameters of the equation are: C = 6.9 × 10−12and n = 3. A maximum increment
0.3 is considered for crack tips in 30 crack-growth steps. The branching crack has
grown to a final shape as shown in Fig. 18. This would be extremely difficult to
achieve by using XFEM, since as shown in Tab. 7, an extremely refined mesh at
the crack-tip is necessary. In order to perform an accurate fatigue analysis, which is
easily achieved by SGBEM, in contrast, XFEM needs an extremely fine mesh over
the whole domain.

We would like to emphasize that, with power-function types of fatigue laws (for
example da/dN = 6.9× 10−12K3 as used in this example), a 10% error in SIFs
can readily give 30%-40% errors in the number of estimated fatigue cycles. Sur-
prisingly, we find that most of the XFEM studies in the literature do not list the
computed numbers for fatigue cycles for a specified amount of crack-growth, in
their studies. In many fatigue examples in this study, we list the computed num-
bers of fatigue cycles, and hope some comparison with XFEM for fatigue crack
propagation will be provided by other researchers in the future.

Table 7: Results computed by using XFEM [Daux, Moës, Dolbow, Sukumar, Be-
lytschko (2000)], for the branching crack in Fig. 15,

h/a F1A error F1B error F2B error
0.40 0.963 -7.76% 0.460 -7.07% 0.458 -9.49%
0.30 1.009 -3.35% 0.468 -5.45% 0.464 -8.30%
0.22 1.027 -1.63% 0.498 0.60% 0.501 -0.99%
0.18 1.056 1.15% 0.493 -0.40% 0.506 0.00%
0.16 1.038 -0.57% 0.493 -0.40% 0.503 -0.59%
0.14 1.042 -0.19% 0.494 -0.20% 0.505 -0.20%
0.12 1.045 0.10% 0.493 -0.40% 0.504 -0.10%
0.10 1.045 0.10% 0.495 0.00% 0.507 0.20%
0.05 1.044 0.00% 0.496 0.20% 0.508 0.40%
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Table 8: Results computed by using the present SGBEM, for the branching crack
in Fig. 14

SGBEM Chen and Hasebe (1995) Error
F1A 1.044 1.044 0.00%
F1B 0.494 0.495 0.20%
F2B 0.507 0.506 0.20%

Figure 17: (a) The SGBEM mesh for the branching crack with 46 boundary ele-
ments and 49 nodes; (b) the close-up view of the crack
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Figure 18: The shape of the branching crack of Fig. 15, after fatigue growth of
798159 cycles

Example 5. An Embedded Star-Shaped Crack

In this example, we consider a star-shaped crack as shown in Fig. 19. The geometri-
cal parameters are: θ = 60˚, and H=w=4. Uniform stress σ = 50 is applied to each
edge. In [Daux, Moës, Dolbow, Sukumar, Belytschko (2000)], it was found that
the XFEM fails at a/W ≤ 0.1. It was reported in [Daux, Moës, Dolbow, Sukumar,
Belytschko (2000)] as: “The SIF was not computed since the J-integral domain
contained several crack tips”. This is expected, because XFEM needs a very fine
mesh at the crack-tip. When the crack itself is very small compared to the global
structure, it becomes very difficult to accurately compute the stress intensity factors,
unless extremely fine mesh is used. However, SGBEM has no problem to model a
very small crack. In this study, we consider an even smaller crack, a =W/40. The
SGBEM mesh is shown in Fig. 20. A total of 76 elements and 82 nodes are used.
F1A,F1B are defined as:

F1A = K1A
σ
√

πa

F1B = K1B
σ
√

πa
(22)
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The results computed using the present SGBEM are shown in Tab. 9, and are in
good agreement with those of [Chen and Hasebe (1995)].

Figure 19: An embedded star-shaped crack

Figure 20: (a) The SGBEM mesh for the star-shaped crack, with 76 boundary
elements and 82 nodes; (b) the close-up view of the crack
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Table 9: Results computed by using the present SGBEM, for the star-shaped crack
shown in Fig. 17

SGBEM Chen and Hasebe (1995) Error
F1A 0.743 0.743 0.00%
F1B 0.743 0.743 0.00%

Moreover, the fatigue growth of the star crack was also studied by SGBEM. Paris
equation: da/dN = CKn is used. The parameters of the equation are: C = 6.9 ×
10−12and n = 3. And a maximum increment 0.3 is considered for each crack tip,
in a total 30 crack-growth steps. Computational results show that each segment of
the star crack keeps growing in a straight line, and stays with the same shape, after
1,541,977 fatigue cycles, as shown in Fig. 21.

Figure 21: The shape of the star crack of Fig. 19, after growth under 1,541,977
fatigue cycles

Example 6. Two Off-Aligned Embedded Cracks

We solve the problem of a plate with two off-aligned embedded cracks, as shown
in Fig. 22. The plate is 40×80. The two parallel cracks are with dimensions of
a=1.27, e/f=0.3 and 2a/d=0.8. The crack without tip A is located at the center of
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the plate. An evenly distributed tensile loading of 400 is applied to the upper and
lower edges. A total of 50 elements and 52 nodes is used for the SGBEM mesh. K1
for crack tip A is compared to the Handbook solution [Murakami (1987)] in Tab.
10.

Moreover, the fatigue growth of these two off-aligned cracks is also studied by
SGBEM. The Paris equation: da/dN =CKn is used with C = 6.9 × 10−15. Three
different values are used for n: (a) n = 3; (b) n = 1; (c) n = 0. Smaller values of
n indicate a smaller influence of SIFs on the crack-growth rates. In the limit of
n = 0, crack-growth rates are irrelevant to SIFs, and all the crack tips grow at the
same speed. A maximum increment 6 is considered for each crack tip, in a total 30
crack-growth steps. The predicted final crack shape after fatigue growth is shown
in Fig. 24-26. It is interesting to see the influence of n on the final crack shapes.

Figure 22: Two off-aligned embedded cracks

Table 10: Computational results for the two off-aligned cracks in Fig. 22
SGBEM Handbook Error

K1A 673.140 671.144 0.30%
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Figure 23: (a) The SGBEM mesh for the two embedded off-aligned cracks, with
50 boundary elements and 52 nodes; (b) the close-up view of the crack

Figure 24: The shapes of the two off-aligned cracks of Fig. 22, after growth under
4.7×105cycles, considering da/dN = 6.9×10−15K3
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Figure 25: The shapes of the two off-aligned cracks of Fig. 22, after growth under
6.5×1011cycles, considering da/dN = 6.9×10−15K1

Figure 26: The shape of the two off-aligned cracks of Fig. 22, after growth under
8.7×1014cycles, considering da/dN = 6.9×10−15K0
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Example 7. Three Embedded Parallel Cracks

Another example is selected: three parallel cracks are aligned normally to the ten-
sile direction. A schematic of the problem is shown below in Fig. 27. The plate
is 40×80. The three parallel cracks are with dimensions of a=1.27, d=3.175. The
crack B is located at the center of the plate. An evenly distributed tensile loading
of 400 is applied to the upper and lower edges. A total of 60 elements and 63 nodes
is used, as shown in Fig. 28. SIFs for crack tips A and B are compared to the
Handbook solution [Murakami (1987)] in Tab. 11. The fatigue growth of these
three parallel cracks is also studied by SGBEM. Paris equation: da/dN = CKn is
used with C = 6.9 × 10−15 and n = 3. A maximum increment 6 is considered for
each crack tip, in a total 30 crack-growth steps. The predicted final crack shape
after fatigue growth is shown in Fig. 29.

Figure 27: Three parallel cracks

Table 11: Computational results for the three parallel cracks as shown in Fig. 27
SGBEM Handbook Error

K1A 681.802 679.550 0.38%
K1B 602.97 599.235 0.62%
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Figure 28: (a) The SGBEM mesh for the three parallel cracks, with 60 boundary
elements and 62 nodes; (b) the close-up view of the crack

Figure 29: The shapes of the three embedded parallel cracks of Fig. 27, after
growth under 662,872 fatigue cycles
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Example 8. The Merging of Two Embedded Slanted Cracks Under Fatigue

In this example, we demonstrate the merging of two embedded slanted cracks.
The same plate as in Example 4 for a branched crack, as shown in Figure 15, is
used. However, the segments of the branched crack, for x < 0.02, in Fig. 14
are eliminated, so that the remaining parts involve two slanted cracks, as shown
in Fig. 30. Biaxial tension σ=50 is applied. The mesh of the plate with slanted
cracks is shown in Fig. 30, with 36 boundary elements and 38 nodes. The fatigue
growth of these two slanted cracks is also studied by SGBEM. The Paris equation:
da/dN =CKn is used with C = 6.9 × 10−12 and n = 0. A maximum increment of
0.3 is considered for each crack tip, in a total 50 crack-growth steps. The predicted
final crack shapes after fatigue growth are shown in Fig. 31.

Figure 30: (a) The SGBEM mesh for the two slanted cracks, with 36 boundary
elements and 38 nodes; (b) the close-up view of the crack

Example 9. Very Small Cracks near A Fastener Hole

In this example, very small edge cracks emanating from a circular fastener hole
are considered. A schematic of the problem is shown in Figure 32. The plate is
50.8×101.6. A circular hole with R=6.35 is located at the center of the plate, and
cracks emanate from the hole. The length of each small crack is 0.254, which is
only 2% of the diameter of the fastener hole. Thus the summation of the radius
and the crack length is. a = 6.604. An evenly distributed tensile loading of 82.74 is
applied to the upper and lower edge. The SGBEM mesh of this problem is shown in
Fig. 33. A total of 84 boundary elements and 87 nodes are used. The computational
results are compared to the handbook solution of [Murakami (1987)] in Tab. 12.
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Figure 31: The shapes of the two slanted cracks of Fig. 30, after growth under
4.3×1010 cycles

Figure 32: Cracks from a Circular Fastener Hole
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Figure 33: (a) The SGBEM mesh for the problem with two very small cracks near
a fastener hole, with 84 boundary elements and 86 nodes; (b) the close-up view of
the crack

Table 12: Computational Results for the cracks in Fig. 32, obtained through
SGBEM

SGBEM Handbook Error
K1 249.55 248.47 0.43%
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Figure 34: Slanted cracks emanating from loaded fastener holes, taken from [Moës,
Dolbow and Belytschko (1999)]

Figure 35: “The Coarse mesh” used by XFEM, taken from [Moës, Dolbow and
Belytschko (1999)], for the problem in Fig. 34
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Example 10. Fatigue Growth of Cracks Emanating from Fastener Holes

We also model the mixed mode fatigue growth of multiple slanted cracks emanating
from fastener-holes in an aircraft fuselage lap-joint. Fig. 34 shows the geometry
of the plate with the two holes and the cracks emanating from them. In the initial
configuration, both the cracks have a length of 0.1 in and are oriented at angles θ =
45˚ and -45˚ for the left and right holes, respectively.

The fatigue growth of the cracks emanating fastener holes was studied by [Moës,
Dolbow and Belytschko (1999)] using XFEM. Two meshes were used in XFEM:
a “coarse mesh” with 2650 finite elements as shown in Fig. 35, and a “fine mesh”
which was not shown in their original paper and thus not shown here. The crack
shape after fatigue growth is shown in Fig. 36. Some discrepancies of the results
by the “coarse mesh” and the “fine mesh” can be observed, where some obvious
kinks are present in the crack path obtained by using the “coarse mesh”.

Figure 36: The final shapes of cracks emanating from fastener holes after fatigue
growth by XFEM, taken from [Moës, Dolbow and Belytschko (1999)]

This problem is also modeled by SGBEM in this study. The SGBEM mesh is
shown in Fig. 37, with 102 elements and 106 nodes. The predicted crack paths are
shown in Fig. 38, which are very smooth without kinks, as compared to those by
XFEM.

Example 11. Growth and Intersection of Densely Distributed Cracks

In this section, we study the growth and intersection of 25 densely distributed small
cracks, under remote tension. A 0.5×0.5 plate is considered. A close-up view of
a 0.05×0.05 region with distributed cracks is shown in Fig. 39. Uniform tension
is applied to each edge of the plate. When cracks grow, some tend to grow into
others. When one crack grows into another crack (see Fig. 40), we consider that it
does not go any further, and the intersection-point is specially treated by appending
a constraint of balance of dislocations, as discussed in [Dong and Atluri (2012)].
The crack pattern after fatigue growth is shown in Fig. 41. We should point out
that, in [Huang, Sukumar, and Prévost (2003)], a similar analysis was performed.
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Figure 37: (a) The present SGBEM mesh for the cracks emanating from fastener
holes, with 102 boundary elements and 106 nodes; (b) the close-up view of the
crack

Figure 38: The final shapes of cracks emanating from fastener holes after fatigue
growth, solved by the present SGBEM
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However, in their study, if one crack grows very close to another, it is forced to stop
growing and the crack-tip stays stationary at a location very close to the surface of
another crack. This assumption is physically unrealistic; a branch-shaped pattern
is expected to be formed, and should be specially treated, as shown in Fig.38. We
also would like to point out that, the computation of this complex example by
SGBEM only takes 78 seconds on the PC mentioned before, showing the very
high efficiency of the present SGBEM-based methods.

Figure 39: Treatment of the intersection point by appending the constraint ∆u(k)1i +

∆u(k)2i +∆u(k)3i = 0

Figure 40: The initial configuration of 25 densely distributed small cracks
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Figure 41: The final pattern after fatigue growth of cracks (Using the present
SGBEM-based method)

Example 12. Fatigue Analysis of Stiffened Aircraft Panels with Composite-Patches

In this example, we use SGBEM in combination with FEM to analyze the fatigue
growth of a center crack in a thin panel, with/without stiffeners and/or composite
patches. And as far as the authors know, the XFEM approach was never found to
be able to perform such an analysis.

Four cases are considered:

Case (a): panel without stiffeners or any composite patch

Case (b): panel with 2 stiffeners only

Case (c): panel with 1 composite patch only

Case (d): panel with 2 stiffeners and 1 composite patch

A 250mm by 500mm panel is considered. A crack with initial length 25.7mm is
located in the center of the panel. The length of each stiffener is 400 mm, and they
are separated by a distance of 140 mm. The dimensions of the composite patch are
70mm by 100mm. The fibers of the composite patch are laid in the same direction
of the tension applied to the upper and lower edges.

Material properties are considered as:

Isotropic material for Panel: E=72.4 GPa, v=0.32, t =1mm.
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Isotropic material for adhesive layer: E=1.07 GPa, v=0.32, t =0.127mm.

Orthotropic material for patch: E1=210 GPa, E2=25 GPa, G12=7.2 GPa, v12=0.17,
t=0.381mm.

Stiffeners: E=72.4 GPa, A=130 mm2, I =4370mm4.

Figure 42: (a) Mesh for the plate with center crack by using quadrilateral elements
and a Super Element, (b) a close-up view of the SGBEM Super Element

The meshes of the panel, adhesive, patch and stiffeners are shown in Fig. 42-44.
The panel is modeled with quadrilateral elements and one Super Element. The
adhesive layer and the composite patch are modeled using quadrilateral elements.
And the stiffeners are modeled by beam elements, with both translational and rota-
tional degrees of freedoms.

A maximum uniform tension of 120Mpa is applied to the upper and the lower
edge of the panel. Stress ratio of 0.1 is considered. Paris equation: da/dN =
CKn is used. The parameters of the equation are: C = 5.85 × 10−14and n = 3.59
(with Newton−mm units). The number of analysis steps is 40. The total crack
increment =40mm (for each tip). So in each step the crack increment is 1mm.
Predicted loading cycles are plotted against crack lengths in Fig. 45. As shown in
the results, the order of the magnitude of fatigue lives for each case is such that:
(d)>(c)>(b)>(a), which is as expected.
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Figure 43: Mesh for the composite patch and the adhesive layer by using quadrilat-
eral elements

Figure 44: Mesh for the stiffeners by using beam elements
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Figure 45: Predicted fatigue lives for the crack panel

Example 13. Interaction of A Microcrack with Inclusions and Voids

In this section, the interactions between a microcrack and inclusions/voids are stud-
ied by SGBEM.

To the best knowledge of the authors, there has not been any quantitative analysis of
the stress intensity factors of a microcrack near an inclusion. Therefore, we firstly
model this problem, see Fig. 46. A truncated 200×200 finite plate is considered.
The radius of the inclusion is rv = 5. The length of the crack is 2av = 10. The
properties of the matrix material are Em = 1,vm = 0.35. The properties of the
inclusion are Ec = 22.15,vc = 0.3. The center point of the crack is at (2.5, 10). A
single SGBEM Super Element is used to solve this problem. This example has
been studied by [Hwu, Liang and Yen (1995), Williams, Phan, Tippur, Kaplan and
Gray (2007)]. In Tab. 13, we compare the presently computed normalized stress
intensity factor, to the analytical solution in [Hwu, Liang and Yen (1995)] :

F =
K

σ
√

πav
(23)

In the next example, we model the fatigue growth of a crack passing an inclusion.
The geometry of this problem is shown in Fig. 47. A 4×4 plate is considered. A
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Table 13: The stress intensity factors of the micro-crack near an inclusion, for the
problem in Fig. 46

SGBEM Analytical
F1A 0.833 0.834
F2A -0.062 -0.062
F1B 0.916 0.915
F2B -0.052 -0.052

Figure 46: Crack / inclusion interaction in an infinite plate, analyzed by the present
SGBEM-based SVC

circular inclusion with radius 0.25 is placed in the center. An edge crack with initial
length 1.5 is considered. The material properties of the matrix are Em = 1,vm = 0.3.
The material properties of the inclusion are Ec = 3,vc = 0.3. A uniform tension is
applied to the upper and lower edges of the plate. A single SGBEM super element
with an inclusion and a crack is used to solve this problem. After fatigue growth,
the crack is deflected by the inclusion, and then continues to grow into a mode 1
dominated crack, as shown in Fig. 48.

In a companion example, the same geometry in Fig. 47 is considered. However,
this time a hole is considered instead of an inclusion. The material properties are
E = 1,v = 0.3. Unlike the shielding effect of stiffer inclusion, the crack in this
example eventually grows into the hole and stops, as can be seen in Fig. 49.

We also model the growth of a microcrack near two inclusions or two holes. The
geometry of this problem is shown in Fig. 50. A 4×4 plate is considered. Two
circular inclusions or holes with radius 0.25 are placed symmetrically in the upper
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Figure 47: Initial crack near the inclusion or hole, analyzed by the present SGBEM-
based SVC

Figure 48: The final shape of the microcrack, after growing in fatigue, and after
being deflected by the inclusion, analyzed by the present SGBEM-based SVC
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Figure 49: Final shape of the micro-crack, after fatigue: Crack grows into the void
(analyzed by the present SGBEM-based SVC)

Figure 50: slightly eccentric micro crack near two inclusions or two voids (analyzed
by the present SGBEM-based SVC)
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Figure 51: final shape of the micro-crack, after growing under fatigue, and after
passing through the two inclusions (analyzed by the present SGBEM-based SVC)

Figure 52: Final shape of the micro crack, after growing under fatigue, and after
growing into one of the two holes (analyzed by the present SGBEM-based SVC)
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and lower part of the plate. The distance between the two inclusions is 0.2. An
edge crack with initial length 1.5 is considered. The crack is slightly closer to the
lower hole or inclusion. The distance between the initial crack and the mid-line
of the plane is 0.02. The material properties of the matrix are Em = 1,vm = 0.3.
The material properties of the inclusion are Ec = 3,vc = 0.3. A uniform tension is
applied to the upper and lower edges of the plate.

After fatigue growth, the final crack shapes are shown in Fig. 51-52. As can be
seen clearly, the two stiffer inclusions push the crack back closer to the mid-line,
and the crack successfully passes through the two inclusions. On the other hand,
although the crack is only slightly eccentric, it grows into the nearer hole and stops.

Example 14. Microcracks in Composite Material

(a) (b)
Figure 53: A RVE of Al/SiC material with 10% SiC, with: (a) horizontal microc-
racks; (b) inclined microcracks (analyzed by the present SGBEM-based SVC)

For the last example, we study the microcrack growth in Al/SiC material. A RVE
of Al/SiC, with 10% SiC is used. Some microcracks are randomly generated in
the RVE. As shown in Fig. 53, two cases are considered: (a), all microcracks
are perpendicular to the loading direction; (b) microcracks are randomly inclined.
The fatigue growth of these microcracks is considered, with a simple Paris Law:
da/dN = 6.9×10−12K3, with Newton−mm units. After fatigue growth of micro-
cracks, the final crack shapes and the principal stress/strain energy density of case
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(a) and case (b) are presented in Fig. 54-59. We see that, the fatigue growth of
microcracks is clearly affected by the micro-structure: some cracks growth much
faster than others. On the other hand, since the initial microcracks are very small,
the inclination angle does not significantly affect the crack path.

Figure 54: Final shapes of initially horizontal microcracks in Al/SiC material, after
fatigue growth (analysed by the present SGBEM-based SVC)

Figure 55: The final crack-shapes of initially inclined microcracks in Al/SiC mate-
rial, after fatigue growth (analyzed by the present SGBEM-based SVC)



140 Copyright © 2013 Tech Science Press CMES, vol.90, no.2, pp.91-146, 2013

Figure 56: The distribution of maximum principal stress in an Al/SiC material
with initially horizontal microcracks, after fatigue growth (analyzed by the present
SGBEM-based SVC)

Figure 57: Distribution of strain energy density in Al/SiC material with initially
horizontal microcracks, after fatigue growth (analyzed by the present SGBEM-
based SVC)
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Figure 58: The distribution of maximum principal stress in an Al/SiC material
with initially inclined microcracks, after fatigue growth (analyzed by the present
SGBEM-based SVC)

Figure 59: The distribution of strain energy density in an Al/SiC material with
initially inclined microcracks, after their fatigue growth (analyzed by the present
SGBEM-based SVC)
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5 Conclusion

After a brief review of the historical developments, and the theoretical as well as al-
gorithmic formulations, of both the XFEM and SGBEM-based methods, a careful
and comprehensive examination of their suitability in fracture and fatigue analy-
ses is presented. The many numerical examples presented in this paper show that,
the SGBEM-based methods: (a) are far more accurate than XFEM, for comput-
ing stress intensity factors, and hence the fatigue crack-growth rates and fatigue
lives; (b) require significantly coarser and lower-quality meshes than XFEM, and
thus require significantly less computational cost and human labor costs; (c) require
very minimal efforts for carrying out fatigue growth analyses of non-collinear/non-
planar cracks, without having to use Level Set or Fast Marching method as is com-
monly done in XFEM, to track the crack surface; (d) can easily perform fracture
and fatigue analysis of complex structures, such as cracked stiffened metallic pan-
els with composite patch repairs, and microcracks in heterogeneous materials. It
is thus concluded that the SGBEM-based methods, and alternating methods, which
were developed over the last 20-30 years by Atluri and his many collaborators, are
still by far the best methods for analyzing fracture and non-planar fatigue crack
propagation in complex structures, and are thus valuable for inclusion in general-
purpose, off-the-shelf commercial software for structural analyses. This objective
is pursued by the authors.
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