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An Analysis of the Bottomhole Assembly (BHA) in
Directional Drilling, by Considering the Effects of the

Axial Displacement

Zonglu Guo1 and Deli Gao1

Abstract: The modeling of the bottomhole assembly (BHA) is an essential prob-
lem in directional drilling. Some basic equations for predicting the performance of
the BHA are presented in this paper. These equations take into account the effects
of the axial displacement. The method of weighted residuals and the Newton-
Raphson iterations are used to compute the nonlinear effects of the deformation of
the BHA. A computer program is developed for the analysis of the BHA in order
to quantitatively predict the performance of the BHA in directional drilling. In ad-
dition, a case study is presented to evaluate the effect of the axial displacement in
the governing equation on the performance of the BHA. It is concluded that this
effect is so small, that it can be ignored in actual calculations, and in the design and
operations pertaining to directional drilling.

Keywords: directional drilling; bottomhole assembly; axial displacement; non-
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1 Introduction

Prediction of the performance of a bottomhole assembly (BHA) is an essential
problem in improving the efficiency of directional drilling. So far, there have been
several theories for analyzing the static behavior of the BHA under small deforma-
tion [Rafie, Ho and Chandra (1986); Williamson and Lubinski (1987); Liu, Gao,
and Cui (1988)]. There are also some literatures on methodologies for the analy-
sis of a BHA under large deformation [Ho (1986); Gao and Xu (1995); Wu and
Chen (2006); Chen and Wu (2007)]. However, the formulations which take into
account the effects of large deformation are always simplified, in order to improve
the computational efficiency. The effect of the axial displacement in the governing
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equation, on the side force of the drill bit, is rarely discussed in the earlier litera-
tures. In this paper, the basic equations employed in predicting the performance of
the BHA are presented, and the effects of the large deformation are calculated by
using the method of weighted residuals and Newton-Raphson iterations. The effect
of the axial displacement is also included in the nonlinear governing equation. In
addition, the effect of the axial displacement on the side force of the drill bit is
evaluated through a case study.

The following hypotheses are adopted in the analysis of a BHA [Gao (1993)]:

1. Each section of the BHA remains elastic.

2. The physical & geometrical parameters are constants in each section of the
BHA.

3. The drill bit is always at the center of the bottomhole plane, and there exists
no bending moment at the drill bit.

4. There is a point at which the drillstring is tangential to the well wall, and
above which the drillstring lies on the lower side of the wellbore.

5. The dynamical effects are ignored in the BHA analysis.

2 Coordinate Systems

It is necessary to describe the geometry of well trajectory as the directional drilling
tendency of the BHA is quantified. To facilitate the discussion, three coordinate
systems need to be employed, as shown in figure 1.

(1) Fixed global coordinate system O-NEH

The global system is fixed with respect to the compass-directions, in which the
origin O is located at the center of bottomhole plane, N points to north, E points to
east, and H points to vertically downward. The fixed coordinate system is necessary
to describe the geometry of the well trajectory.

(2) Reference coordinate system O-xyz

The origin O is also located at the center of bottomhole plane as in the fixed global
coordinate system, z is along the tangential direction of the wellbore axis (opposite
to the drilling direction), x is perpendicular to z-axis pointing to the high side of the
wellbore, and the y-axis is perpendicular to the plane in which the x-axis and the z-
axis intersect. The reference coordinate system is needed to describe the geometry
of the drillstring trajectory.

(3) Natural curvilinear coordinate system P-ξ ηζ .
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Figure 1: Coordinate systems

This coordinate system is defined by the well trajectory. With an arbitrary point P
in the wellbore axis as the origin, the coordinate ξ is along the principal normal
direction of the wellbore axis, η points to subnormal direction of the wellbore axis,
and ζ is along the tangential direction of wellbore axis (opposite to the drilling
direction).

To illustrate the relations between the above three coordinate systems clearly, we
set:

A =

cosωp −sinωp 0
sinωp cosωp 0

0 0 1

 (1)

B =

 cosαp cosφp cosαp sinφp −sinαp

sinφp −cosφp 0
−sinαp cosφp −sinαp sinφp −cosαp

 (2)

C =

 cosα0 cosφ0 cosα0 sinφ0 −sinα0
sinφ0 −cosφ0 0

−sinα0 cosφ0 −sinα0 sinφ0 −cosα0

 (3)

where, α0 and φ 0 are the inclination and the azimuth, respectively, at the drill bit
(˚), αP and φ P are the inclination and the azimuth, respectively, at an arbitrary
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point P in the well trajectory (˚), ωP is the angle which is subtended by rotating
clockwise from the high side of the wellbore to the ξ -axis at point P(˚).

Then, the relations between three coordinate systems can be shown as follows:
x
y
z

= [C]


N
E
H

 (4)


ξ

η

ζ

= [T ]


N
E
H

 , [T ] = [A] [B] (5)


x
y
z

= [M]


ξ

η

ζ

 , [M] = [C] [B]−1 [A]−1 (6)

Measured from the drill bit, L is assumed to be the arc length of an arbitrary point
P in the well trajectory (m). To measure curvature of the hole, two coefficients,
namely, the inclination curvature Kα and the azimuth curvature Kφ , are defined as
the measured depth increases (˚/30m). Then, we can obtain:{

dα(L)
dL =−Kα

30
dφ(L)

dL =−Kφ

30

(7)

{
αp (L) = α0 + dα(L)

dL ·L = α0− Kα

30 ·L
φp (L) = φ0 + dφ(L)

dL ·L = φ0−
Kφ

30 ·L
(8)

The location of an arbitrary point P in the well trajectory, in the fixed global co-
ordinate system O-NEH can be defined as (N∗,E∗,H∗), and its displacement com-
ponents in the reference coordinate system O-xyz can be assumed as (x∗,y∗,z∗).
Deducing from equations (4) and (5) we obtain the following relations:

N∗ =
∫ L

0 T31dL =−
∫ L

0 sinαp (L)cosφp (L)dL
E∗ =

∫ L
0 T32dL =−

∫ L
0 sinαp (L)sinφp (L)dL

H∗ =
∫ L

0 T33dL =−
∫ L

0 cosαp (L)dL

(9)


x∗ = cosα0 cosφ0 ·N∗+ cosα0 sinφ0 ·E∗− sinα0H∗

y∗ = sinφ0 ·N∗− cosφ0 ·E∗

z∗ =−sinα0 cosφ0 ·N∗− sinα0 sinφ0 ·E∗− cosα0 ·H∗
(10)
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3 A differential equation and its solution

3.1 Nonlinear governing equation

Measured from the reference coordinate system O-xyz, the displacement −→r (s) and
the load

−→
h (s) per unit length of the drill-string can be expressed as follows:

−→r (s) = u(s)
−→
i + v(s)

−→
j +w(s)

−→
k (11)

−→
h (s) = hx (s)

−→
i +hy (s)

−→
j +hz (s)

−→
k (12)

where s is the arc length measured from the drill bit, (
−→
i ,
−→
j ,
−→
k ) are base vectors in

the reference coordinate system O-xyz, (u, v, w) are the displacement components
in the reference coordinate system O-xyz, (hx, hy, hz) are the load components in
the reference coordinate system O-xyz.

During the drilling process, BHA will be subjected to gravity, buoyancy, weight
on bit (WOB) and torque. With the consideration of the axial displacement, the
nonlinear governing equation for BHA analysis is [Gao (1996)]:EI ·u(4)−EI ·

[
(u′′)2 +(v′′)2 +(w′′)2

]
·u′′+Mt · (v′′′w′− v′w′′′)−T ·u′′−hx = 0

EI · v(4)−EI ·
[
(u′′)2 +(v′′)2 +(w′′)2

]
· v′′+Mt · (u′w′′′−u′′′w′)−T · v′′−hy = 0

(13)
()′ = d()

ds , ()′′ = d2()
ds2 , ()′′′ = d3()

ds3 , ()(4) = d4()
ds4

hx =−q · sinα0

hy = 0
T =−P+q · cosα0 · s

(14)

where, EI is flexural rigidity of the BHA per unit length (kNm2), Mt is the torque
exerted on the BHA per unit length (kNm), T is the axial force in the BHA per unit
length (kN), q is the resultant of gravity and buoyancy on the BHA per unit length
(kN/m), and P is the z-axis force at the end of each section of the BHA (kN).

Assuming that the drillstring is inextensible [Gao (1994)], we obtain:(
u′
)2 +

(
v′
)2 +

(
w′
)2 = 1 (15)

From equation (15), the terms of axial displacement are isolated, as follows:

w′ =
(

1−
(
u′
)2−

(
v′
)2
)0.5

(16)
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w′′ =
1
2

[
1−
(
u′
)2−

(
v′
)2
]−0.5 (

−2u′u′′−2v′v′′
)

(17)

w′′′ =−(u′u′′+ v′v′′)2/
[
1− (u′)2− (v′)2](1.5)

−
[
(u′′)2 +(v′′)2 +u′u′′′+ v′v′′′

]
/
[
1− (u′)2− (v′)2](0.5)

(18)

3.2 Boundary conditions

3.2.1 Condition at the drill bit

From hypothesis (4), the displacement of the BHA at the drill bit is assumed to be
zero. In other words:

u01 = v01 = 0 (19)

where u01 and v01 are the displacement components of BHA at the drill bit in the
reference coordinate system O-xyz (m).

3.2.2 Conditions at the tangency point

The tangency point is defined as the location at which the pipe is tangential to the
wall of the hole. Assuming that the displacement components of well trajectory, at
the tangency point in the reference coordinate system O-xyz are (x∗T , y∗T , z∗T ), and
the pseudo-radius of the wellbore at the tangency point is rT (mm), we have the
boundary conditions at the tangency point:

uT = x∗T −10−3rT

·(cosα0 cosφ0 cosαT cosφT + cosα0 sinφ0 cosαT sinφT + sinα0 sinαT )
vT = y∗T −10−3rT (sinφ0 cosαT cosφT − cosφ0 cosαT sinφT )

(20)


u′T =−cosα0 cosφ0 sinαT cosφT − cosα0 sinφ0 sinαT sinφT + sinα0 cosαT

−10−3rT × (cosα0 cosφ0D+ cosα0 sinφ0C− Kα

30 sinα0 cosαT )
v′T =−sinφ0 sinαT cosφT + cosφ0 sinαT sinφT −10−3rT × (sinφ0D− cosφ0C)

(21)


u′′T =−cosα0 cosφ0A− cosα0 sinφ0B+ Kα

30 sinα0 sinαT −10−3rT

·
[
cosα0 cosφ0(Kα

30 A+ Kφ

30 C)+ cosα0 sinφ0(Kα

30 B− Kφ

30 D)− (Kα

30 )2 sinα0 sinαT

]
v′′T =−sinφ0A+ cosφ0B−10−3rT

[
sinφ0(Kα

30 A+ Kφ

30 C)− cosφ0(Kα

30 B− Kφ

30 D)
]
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(22)
A =−Kα

30 cosαT cosφT + Kφ

30 sinαT sinφT

B =−Kα

30 cosαT sinφT −
Kφ

30 sinαT cosφT

C = Kα

30 sinαT sinφT −
Kφ

30 cosαT cosφT

D = Kα

30 sinαT cosφT + Kφ

30 cosαT sinφT

(23)

where, uT and vT are the displacement components of the drillstring trajectory at
the tangency point in the reference coordinate system O-xyz (m), αT and φ T are
the inclination and the azimuth, respectively, at the tangency point (˚).

3.3 Conditions of continuity

The conditions of continuity can be summarized as follows. Firstly, the charac-
teristic parameters of physics and mechanics governing the problem, within each
section of BHA, are continuous. Secondly, the displacement, the inclination and
the bending moment, are continuous between two adjacent sections of the BHA.
Thirdly, if the BHA contacts with the well wall, the shear force within BHA will
be discontinuous at the contact point.

3.4 Constraint condition of the wellbore

The deformation of the drillstring will definitely be constrained by the wellbore ge-
ometry. Assume that the displacement components along the drillstring trajectory
in the natural curvilinear coordinate system P-ξ ηζ are ( fξ , fη , fζ ), the following
relations are deduced:√

f 2
ξ

+ f 2
η ≤ rc×10−3 (24)


fξ

fη

fζ

= [M]−1


∆x
∆y
∆z

 (25)


∆x = u− x∗

∆y = v− y∗

∆z = w− z∗ ≈ 0
rc = (DH−DS)/2

(26)

where, rc is pseudo-radius of wellbore (mm), DH is diameter of wellbore (mm),
DS is outer diameter of drill-string (mm).
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3.5 Solution

The complicated BHA configuration is divided into independent sections. As is
well known, the general solution for the governing differential equation of beam
deflection is polynomial. Therefore, it is possible to consider polynomials of vari-
ous orders as the trial functions, while employing the method of weighted residuals.
Since the orders of the trial functions determine the accuracy of the solution, here
we arbitrarily set:{

u = C7s6 +C6s5 +C5s4 +C4s3 +C3s2 +C2s+C1

v = C14s6 +C13s5 +C12s4 +C11s3 +C10s2 +C9s+C8
(27)

where C1, C2, C3, . . . , C14 are the parameters in trial functions for each section of
BHA.

Substituting equations (16), (17), (18) and (27) into equation (13), the residuals
within each section of BHA are obtained. To eliminate the residuals, six equations
are deduced by using the method of moment:

L∫
0

Rds = 0

L∫
0

s ·Rds = 0

L∫
0

s2 ·Rds = 0

(28)

where R is the residual within each section of BHA, L is the length of each section
of BHA (m).

As there are fourteen unknown parameters in the trial functions, there are six equa-
tions obtained from equation (28), together with eight boundary conditions afore-
mentioned, the deflection of each section of BHA can be determined.

In detail, the fourteen equations established as above are nonlinear. To solve these
equations, the iterative method of New-Raphson can be employed, in which it is
feasible to set the initial values of all fourteen unknowns as zero. Besides, the
method of numerical integration is required for deducing six equations from equa-
tion (28).

After the deflection of each section of BHA is determined, we need to change the
location of the tangency point until the bending moment at the drill bit is zero:(
u′′01
)2 +

(
v′′01
)2 = 0 (29)
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Finally, the inclination force and azimuth force at the drill bit are obtained:
Fx =−EI1 ·u′′′01−EI1 ·

[
(u′′01)

2 +(v′′01)
2 +(w′′01)

2
]
·u′01

−Mt1 · (v′′01w′01− v′01w′′01)+T1 ·u′01

Fy =−EI1 · v′′′01−EI1 ·
[
(u′′01)

2 +(v′′01)
2 +(w′′01)

2
]
· v′01

−Mt1 · (w′′01u′01−w′01u′′01)+T1 · v′01

(30)

where (u01, v01, w01) are the displacement components of BHA at the drill bit in
the reference coordinate system O-xyz (m), Fx is the inclination force at the drill bit,
which is the component in the vertical plane that contains the drill bit axis (kN),
Fy is the azimuth force at the drill bit which is the component in the horizontal
plane and perpendicular to the wellbore axis (kN), EI1 is the flexural rigidity of
drill-string at the drill bit (kNm2), Mt1 is the torque that suffered by drill-string at
the drill bit (kNm), T1 is the axial force in drill-string at the drill bit (kN).

4 A Case study

Employing the aforementioned method, a program for predicting BHA perfor-
mance is developed. Because the nonlinear effect of the BHA deformation is usu-
ally sensitive to hole curvature, hole curvature is chosen to illustrate the effect of
axial displacement on the side force of the drill bit. Two assemblies are used to
illustrate this effect.

 
 

Stabilizer #1 
Stabilizer #2 

Drill bit
Drill collar 

Bent angle 1°

Figure 2: Steerable BHA with two stabilizers and one bent angle

BHA #1 is a conventional steerable system with a 1 degree bend, called a bent
housing in a positive displacement motor (PDM), as shown in figure 2. It relies
on the bend and stabilizers for a usually precise directional control. This BHA
type has also been widely used in the South China Sea. Figure 3 demonstrates
the effect of hole curvature on drill bit side force for BHA #1. In this analysis,
the BHA consisted mainly of 215.9mm drill bit, 171.45mm PDM, 165.1mm drill
collar, 212.7mm stabilizer #1 and 206.3mm stabilizer #2. The distance between the
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drill bit and the stabilizer #1 is 0.76m. The distance between the drill bit and the
bent angle is 1.55m. The distance between two stabilizers is 7.64m.

BHA #2 is an imaginary assembly for microhole drilling. It can be thought of as
a small-sized BHA #1. Figure 4 illustrates the effect of hole curvature on drill bit
side force for BHA #2. In this analysis, the BHA consisted mainly of 88.9mm
drill bit, 73.0mm PDM, 73.0mm drill collar, 85.73mm stabilizer #1 and 82.55mm
stabilizer #2. The distance between the drill bit and the stabilizer #1 is 0.32m. The
distance between the drill bit and the bent angle is 0.66m. The distance between
two stabilizers is 3.25m.
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Figure 3: The effect of hole curvature on drill bit side force for BHA #1

In figures 3 and 4, the negative drill bit side force means the BHA is predicted to
possess a dropping tendency. As shown in these two figures, the effect of the axial
displacement on the drill bit side force is very small, for both the conventional BHA
and the small-sized BHA. This effect can be ignored to improve the computational
efficiency.
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Figure 4: The effect of hole curvature on drill bit side force for BHA #2

5 Conclusions

1. The method of weighted residuals and the Newton-Raphson iterations are
used to solve the nonlinear governing equation of the BHA deflection. It is
feasible to set the initial values of all unknowns as zero during the iterative
computation for BHA analysis.

2. The effect of the axial displacement in the governing equation on the drill
bit side force is so small, that it can be ignored, in order to improve the
computational efficiency in BHA analysis.
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