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A New and Simple Meshless LBIE-RBF Numerical
Scheme in Linear Elasticity

E.J. Sellountos 1, D. Polyzos2 and S.N. Atluri3,

Abstract: A new meshless Local Boundary Integral Equation (LBIE) method for
solving two-dimensional elastostatic problems is proposed. Randomly distributed
points without any connectivity requirement cover the analyzed domain and Lo-
cal Radial Basis Functions (LRBFs) are employed for the meshless interpolation
of displacements. For each point a circular support domain is centered and a local
integral representation for displacements is considered. At the local circular bound-
aries tractions are eliminated with the aid of companion solution, while at the in-
tersections between the local domains and the global boundary displacements and
tractions are treated as independent variables avoiding thus derivatives of LRBFs.
Stresses are evaluated with high accuracy and without derivatives of LRBFs via a
LBIE valid for stresses. All the integrations are performed quickly and economi-
cally and in a way that renders the extension of the method to three-dimensional
problems straightforward. Six representative numerical examples that demonstrate
the accuracy of the proposed methodology are provided.

Keywords: Local Boundary Integral Equation (LBIE), meshless methods, Local
Radial Basis Functions (LRBF), linear elasticity.

1 Introduction

After the pioneering work of [Zhu, Zhang, and Atluri (1998)], the Local Boundary
Integral Equation (LBIE) method has been established as an excellent alternative
to the Boundary Element Method (BEM), since it circumvents problems associated
with mesh and fully populated matrices as well as with volume integrals when the
fundamental solution of the problem is not available. It is characterized as being
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"truly meshless" since properly distributed nodal points, without any connectiv-
ity requirement, covering the domain of interest as well as the surrounding global
boundary are employed instead of any boundary or finite element discretization. No
background cells are required for the numerical evaluation of the involved integrals
and all fields are interpolated with the aid of meshless Moving Least Squares (MLS)
approximation scheme or via Local Radial Basis Functions (LRBFs) properly de-
fined for the support domain of each point. The local nature of the sub-domains
leads to a final linear system of equations the coefficient matrix of which is sparse
and not fully populated.

In the framework of linear elasticity, the first LBIE methodology is due to [Atluri,
Sladek, Sladek, and Zhu (2000)]. Their work can be considered as a direct ex-
tension of the work of [Zhu, Zhang, and Atluri (1998)] to elastostatic problems.
After that work many papers dealing with meshless LBIE solutions of linear elas-
tic problems have appeared in the literature. Representative are those of [Sladek,
Sladek, and Keer (2000)], [Sladek, Sladek, and Keer (2003)], [Sladek, Sladek, and
Atluri (2002)], [Atluri, Han, and Shen (2003)], [Han and Atluri (2003a)], [Sel-
lountos and Polyzos (2003)], [Sellountos and Polyzos (2005b)], [Sellountos and
Polyzos (2005a)], [Sellountos, Vavourakis, and Polyzos (2005)], [Bodin, Ma, Xin,
and Krishnaswami (2006)], [Vavourakis, Sellountos, and Polyzos (2006)], [Zhu,
Zhang, and Wang (2007)], [Vavourakis and Polyzos (2008)][Vavourakis and Poly-
zos (2007)], [Vavourakis (2008)][Vavourakis (2009)], [Vavourakis, Protopappas,
Fotiadis, and Polyzos (2009)], [Sladek, Sladek, Solek, Tan, and Zhang (2009)],
[Sellountos, Sequeira, and Polyzos (2009)][Sellountos, Sequeira, and Polyzos (2010)],
[Sladek and Sladek (2010)] and [Wen and Aliabadi (2012)] while a comprehensive
presentation of meshless LBIE methods can be found in the books of [Atluri and
Shen (2002)] and [Atluri (2004)].

After the work of [Atluri, Sladek, Sladek, and Zhu (2000)], [Sellountos and Polyzos
(2003)] proposed a new LBIE method for solving frequency domain elastodynamic
problems. The main differences between the two methodologies were that [Sell-
ountos and Polyzos (2003)] treated boundary displacements and tractions as inde-
pendent variables avoiding thus the use of derivatives of MLS approximation func-
tions and moreover made use of a relatively uniform distribution of nodal points so
that the MLS interpolation scheme to posses delta property [Gosz and Liu (1996)]
and the boundary conditions to be imposed directly on the nodal displacements and
tractions. However, although accurate, the requirement of using uniform distribu-
tion of nodal points confines the method to structures with regular only shapes. In
order to avoid that requirement [Sellountos, Vavourakis, and Polyzos (2005)] and
[Vavourakis and Polyzos (2007)] proposed a new LBIE/MLS methodology where
at each nodal point both singular and hypersingular LBIEs were employed for the
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LBIE representation of displacement and traction fields. The problem here is that
the need of treating displacements and stresses as independent variables throughout
the analyzed domain increases drastically the degrees of freedom of the problem,
thus making the method prohibitive for large- scale analysis. Very recently [Sel-
lountos, Sequeira, and Polyzos (2009)] presented the LBIE method of [Selloun-
tos and Polyzos (2003)] with the difference of using an efficient Local Radial Ba-
sis Functions (LRBF) scheme ([Sellountos and Sequeira (2008a)][Sellountos and
Sequeira (2008b)]) instead of MLS approximation functions for the interpolation
of displacements. Although that technique overcomes most of the drawbacks ap-
pearing in [Sellountos and Polyzos (2003)], [Sellountos, Vavourakis, and Polyzos
(2005)] and [Vavourakis and Polyzos (2007)], it utilizes the complicated integra-
tion techniques of [Sellountos and Polyzos (2003)], which actually prevents the
extension of the method to three dimensions. Finally, [Sellountos, Sequeira, and
Polyzos (2010)] proposed a LBIE/RBF technique, completely different to previous
ones and very promising for solving three- dimensional problems. However, its
requirement of using background Finite Element Method type cells confines dras-
tically the meshless nature of the method.

The present paper demonstrates a new LBIE/RBF method for the solution of elas-
tostatic problems. Its philosophy is very simple and its extension to three di-
mensions straightforward. It employs the classical LBIEs for displacements and
stresses as it is explained in the next section. All the integrations at local bound-
aries are performed with the aid of simple BEM- techniques while all the fields
are interpolated via the efficient RBF interpolation scheme of [Sellountos and Se-
queira (2008a)][Sellountos and Sequeira (2008b)] presented in the section after
next. RBFs satisfy delta property and hence boundary conditions are automatically
taken into account. Moreover the inverse matrix utilized in the final RBF interpo-
lation depends only on the relative placement of the nearby nodal points [Atluri
and Shen (2002)] and thus it is computed only once. Both characteristics are very
important and contribute significantly to the efficiency of the method. The numer-
ical implementation of the method is very simple and it is illustrated in detail in
section 4. The main advantages of the method are its simplicity and the evaluation
of displacements, boundary tractions and stresses without the need of RBF deriva-
tives. Six benchmark problems are provided in section 5 as a demonstration of the
accuracy achieved by the proposed LBIE/RBF method.

2 Local integral equations for displacements and stresses

Consider a two-dimensional linear and isotropic elastic domain Ω surrounded by a
surface Γ. Assuming zero body forces, the displacement vector ui defined at any
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Figure 1: Local domains and local boundaries used for the LBIE representation of
displacements at point x(k).

point x of the body satisfies the Navier-Cauchy partial differential equation:

µ∂
2
j ui (x)+(λ +µ)∂i∂ ju j (x) = 0 (1)

where λ ,µ represent the Lam’s constants and ∂i denotes differentiation with respect
to Cartesian coordinate xi. The boundary conditions are assumed to be

ui (x) = ūi (x) ,x ∈ Γu

ti (x) = t̄i (x) ,x ∈ Γt (2)

with ti denoting traction vector, ūi, t̄i prescribed vectors and Γu∪Γt ≡ Γ. The elastic
domain Ω and the boundary Γ are covered by randomly distributed points without
any connectivity requirement. Any point x(k) of the analyzed domain is considered
to be the center of a local circular domain Ωs (with boundary ∂Ωs) called support
domain of x(k) as it is illustrated in Fig. 1. Employing the elastostatic fundamental
solution of Eq. 1 [Polyzos, Tsinopoulos, and Beskos (1998)] and applying Betti’s
reciprocal identity for displacement vector and fundamental solution, one obtains
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the following LBIE for the support domain of any interior or boundary point x(k)

ui

(
x(k)
)
+
∫

∂Ωs

t∗i j

(
x(k),y

)
u j (y) dΓy =

∫
∂Ωs

u∗i j

(
x(k),y

)
t j (y) dΓy (3)

when the support domain is interior to Ω and

cui

(
x(k)
)
+
∫

∂Ωs∪Γs

t∗i j

(
x(k),y

)
u j (y) dΓy =

∫
∂Ωs∪Γs

u∗i j

(
x(k),y

)
t j (y) dΓy (4)

when the support domain intersects the global boundary on Γs ≡ ∂Ωs ∩Γ. The
coefficient c is equal to 1 for internal points and 1/2 for points lying on the global
boundary Γ with smooth tangent. In the present formulation, boundary points are
imposed with the aid of a BEM mesh. At both sides of a corner, partially discon-
tinuous boundary elements are considered. Thus the coefficient c is always equal
to 1/2 for any nodal point belonging to the global boundary Γ. Finally, u∗i j, t

∗
i j rep-

resent the fundamental displacement and traction tensors, respectively, given by
[Polyzos, Tsinopoulos, and Beskos (1998)]

u∗i j =
1

8πµ(1−ν)
[−(3−4ν) lnrδi j +(∂ir)(∂ jr)] (5)

t∗i j =
1

2π

[
1−2ν

2(1−ν)

1
r
[(∂ir)n j− (∂ jr)ni]−

1−2ν

2(1−ν)

1
r
(∂mr)nmδi j−

1
1−ν

1
r
[nm (∂mr)(∂ir)(∂ jr)]

]
(6)

where r = |y−x|,x,y, represent the field and source point, respectively, δi j is Kro-
necker delta and ni the unit vector being normal to the local boundary.

In order to get rid of tractions defined on ∂Ωs the use of the companion solution
uc

i j is made [Atluri, Sladek, Sladek, and Zhu (2000)] and the LBIEs Eq. 3 and Eq. 4
obtain the form, respectively

ui

(
x(k)
)
+
∫

∂Ωs

[
t∗i j

(
x(k),y

)
− tc

i j

(
x(k),y

)]
u j (y) dΓy = 0 (7)

and

cui

(
x(k)
)
+
∫

∂Ωs∪Γs

[
t∗i j

(
x(k),y

)
− tc

i j

(
x(k),y

)]
u j (y) dΓy =∫

Γs

[
u∗i j

(
x(k),y

)
−uc

i j

(
x(k),y

)]
t j (y) dΓy (8)
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where

uc
i j =

1
8πµ(1−ν)

r2

r2
0
(∂ir)(∂ jr)+

1
8πµ(1−ν)

[
5−4ν

2(3−4ν)

(
1− r2

r2
0

)
− (3−4ν) lnr0

]
δi j (9)

tc
i j =

1
4π (1−ν)(3−4ν)r2

0
[3(∂ir)n j− (∂ jr)ni− (∂mr)nmδi j] (10)

and r0 is the radius of the support domain Ωs.

Eq. 7 and Eq. 8 represent the LBIE valid for any interior and boundary point, re-
spectively, of the analyzed domain. Employing a methodology explained in [Sell-
ountos, Vavourakis, and Polyzos (2005)], one can find the LBIE for stresses, i.e.

σik

(
x(k)
)
+
∫

∂Ωs

[
S∗ik j

(
x(k),y

)
−Sc

ik j

(
x(k),y

)]
u j (y) dΓy+∫

Ωs

Fik j

(
x(k),y

)
u j (y) dΩy = 0 (11)

for interior support domains and

cσik

(
x(k)
)
+
∫

∂Ωs∪Γs

[
S∗ik j

(
x(k),y

)
−Sc

ik j

(
x(k),y

)]
u j (y) dΓy+∫

Ωs

Fik j

(
x(k),y

)
u j (y) dΩy = (12)∫

Γs

[
V ∗ik j

(
x(k),y

)
−V c

ik j

(
x(k),y

)]
t j (y) dΓy

for support domains that intersect the global boundary S. The kernels appearing in
Eq. 11 and Eq. 12 have the form:

Fik j =
µ

2π

{
2
(

dR
dr
− R

r

)
(∂ir)(∂kr)(∂ jr)+(

R
r
− dQ

dr

)[
(∂ir)δk j +(∂kr)δi j

]
− (13)[

2ν

1−2ν

(
dQ
dr
− dR

dr
− R

r

)
− 2R

r

]
(∂ jr)δik

}
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where

Q =
2(3−4ν)

1−2ν
A2−

5−4ν

1−2ν
B2−

2(3−2ν)

1−2ν
B3r

R =
9−10ν

1−2ν
B3r (14)

A2 =−
3−4ν

8(1−ν)

1
r2

0
,B2 =−

3
4(1−ν)

1
r2

0
,B3 =

1
2(1−ν)

1
r3

0

and

Vik j =
1

2π

{
2
(

dXa

dr
− Xa

r

)
(∂ir)(∂kr)(∂ jr)+(

Xa

r
− dΨa

dr

)[
(∂ir)δk j +(∂kr)δi j

]
− (15)[

2ν

1−2ν

(
dΨa

dr
− dXa

dr
− Xa

r

)
− 2Xa

r

]
(∂ jr)δik

}

Sik j =
µ

2π

{
β1 [nm (∂mr)] (∂ jr)δik +β2 [nm (∂mr)]

[
(∂ir)δk j +(∂kr)δi j

]
−

β3 [nm (∂mr)] (∂ir)(∂kr)(∂ jr)+β4
[
niδk j +nkδi j

]
+ (16)

β1 (∂ir)(∂kr)n j +β2 [ni (∂kr)(∂ jr)+nk (∂ir)(∂ jr)]−β5δikn j
}

β1 = 4
(

1
r

dXa

dr
− 2Xa

r2

)
+

4ν

1−2ν

(
d2Xa

dr2 −
d2Ψa

dr2 +
1
r

dΨa

dr
− 2Xa

r2

)
β2 =−

d2Ψa

dr2 +
1
r

dΨa

dr
+

3
r

dXa

dr
− 6Xa

r2

β3 =−4
(

d2Xa

dr2 −
5
r

dXa

dr
+

8Xa

r2

)
(17)

β4 = 2
(

Xa

r2 −
1
r

dΨa

dr

)
β5 =

(
2ν

1−2ν

)2(d2Ψa

dr2 −
d2Xa

dr2 −
2
r

dXa

dr
+

1
r

dΨa

dr

)
−

4Xa

r2 −
8ν

1−2ν

(
1
r

dXa

dr
− 1

r
dΨa

dr
+

Xa

r2

)
where the superscript (a) corresponds either to (*) for fundamental solution kernels
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or to (c) for the companion ones, and

Ψ
∗ =− 3−4ν

4(1−ν)
lnr, X∗ =− 1

4(1−ν)

Ψ
c =− 3−4ν

8(1−ν)

r2

r2
0
, Xc =

1
4(1−ν)

r2

r2
0

(
2

r
r0
−3
)

(18)

It should be mentioned here that the LBIE of Eq. 11 is always regular, since the
kernel Fik j is regular with respect to r = |y− x(k)| and in the hypersingular kernel
S∗ik j

(
x(k),y

)
the point of interest x(k) does not coincide the integration point y. How-

ever, this is not the case for LBIE of Eq. 12 where x(k) meets the integration point y
at the part of the global boundary Γs. An elegant way to avoid one the hypersigular
nature of Eq. 12 is to utilize the non-hypersingular LBIE formulation described in
detail in the works of [Okada, Rajiyah, and Atluri (1989a)], [Okada, Rajiyah, and
Atluri (1989b)] and [Han and Atluri (2003b)], [Han and Atluri (2007)]. That could
be the subject of a future work.

3 The Radial Basis Functions interpolation scheme

After the pioneering work of [Hardy (1990)], global RBFs have been extensively
used in meshless and collocation numerical methods either as interpolation func-
tions [Atluri (2004)] or for the transformation of volume integrals to surface ones in
the Dual Reciprocity BEM (DRBEM) [Nardini and Brebbia (1982)] [Agnantiaris,
Polyzos, and Beskos (1996)]. However, the use of globally supported RBFs re-
quires the inversion of ill-conditioned dense matrices with obvious computational
cost. Despite the significant progress, the use of globally supported RBFs leads to
computationally expensive nonlocal formulations that confine their use to relatively
small-scale problems. A solution to that problem is the use of compactly supported
RBFs or Local RBFs (LRBFs). Considering local support domains for their def-
inition, the implementation of LRBFs leads to sparse systems of equations with
apparent gains. In the present work LRBFs based on multiquadric (MQ) functions
are employed for the interpolation of displacements. Their positive definitiveness
is accomplished with the use of an additional polynomial term together with a ho-
mogeneous constraint condition. That regulation in conjunction with the fact that
no derivatives of LRBFs are required renders the present MQ-LRBFs interpolation
scheme robust and efficient. It should be mentioned, however that the optimum
size of the support domains is of crucial importance for the achieved accuracy of
the proposed here LBIE methodology.

In the present section the RBF interpolation scheme employed in the present work
is illustrated.
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Consider an elastic domain Ω surrounded by a boundary Γ covered by arbitrarily
distributed nodal points x(k),k = 1,2, ...N as shown in Fig. 2. As in Fig. 1 each
nodal point is considered as the centre of a small circular domain Ωkof radius rk
called support domain of xk. All support domains of a group of adjacent nodal
points that satisfy the condition∣∣∣x(k)−x( j)

∣∣∣< rk + r j

form a domain called domain of influence of point x(k) (Fig. 2). The nodal points
that contain in their support domain a point x form the domain of definition of point
x.

At any point x of Ω, the interpolation of the unknown dispacement component
uα(x),α = 1 or 2 is accomplished by the relation

uα(x) = BT (x) ·a(α)+PT (x) ·b(α)

or

uα (x) =
[

BT (x) PT (x)
]
·
[

a(α)

b(α)

]
(19)

where

x =
[

x1 x2
]T

a(α) =
[

a(α)
1 a(α)

2 ... a(α)
n

]T

b(α) =
[

b(α)
1 b(α)

2 ... b(α)
m

]T
(20)

B(x) =
[

W (x,x(1)) W (x,x(2)) ... W (x,x(n))
]T

P(x) =
[

P1(x) P2(x) ... Pm(x)
]T

with n representing the total number of nodal points belonging to the domain of
definition of point x and m the number of complete polynomials with m < n. The
vectors a(α) and b(α) stand for unknown coefficient vectors that depend on the
location of the nodal points belonging to the domain of definition of point x. P(x)
is a vector containing the monomial basis, i.e.

P(x) =
[

1 x1 x2
]

for m = 3

P(x) =
[

1 x1 x2 x2
1 x1x2 x2

2
]

for m = 6 (21)
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Figure 2: Domain of influence of the point x( j) and domain of definition of point x.

and W (x,x(n)) are RBFs defined in the present work as multiquadric LRBFs (MQ-
LRBFs)

W (x,x(n)) =
√
(x1− x(n)1 )2 +(x2− x(n)2 )2 +C2 (22)

For the domain of definition of x, C is a constant the value of which is taken as
[Hardy (1990)]

C (x) = 0.815
1
n

n

∑
i=1

di (23)

with di being the distance between every nodal point of the domain of definition of
x and its closest nodal neighbor.

The definition of the unknown vectors a(α) and b(α) is accomplished by imposing
and interpolation passing of Eq. 19 through all nodal points x(n), i.e.

uα(x(e)) =
[

BT (x(e)) PT (x(e))
][ a(α)

b(α)

]
,e = 1,2, ...,n (24)

and considering the extra system of algebraic equations [Wang and Liu (2002a)]
n

∑
e=1

Pl

(
x(e)
)

a(α)
e , l = 1,2, ...,m. (25)
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Thus, the following system of equations is formed:[
B0 P0
PT

0 0

][
a(α)

b(α)

]
=

[
u(e)

α

0

]
(26)

where

B0 =


W
(
x(1),x(1)

)
W
(
x(1),x(2)

)
... W

(
x(1),x(n)

)
W
(
x(2),x(1)

)
W
(
x(2),x(2)

)
... W

(
x(2),x(n)

)
... ... ... ...

W
(
x(n),x(1)

)
W
(
x(n),x(2)

)
... W

(
x(n),x(n)

)
 (27)

P0 =


P1
(
x(1)
)

P2
(
x(1)
)

... Pm
(
x(1)
)

P1
(
x(2)
)

P2
(
x(2)
)

... Pm
(
x(2)
)

... ... ... ...

P1
(
x(n)
)

P2
(
x(n)
)

... Pm
(
x(n)
)
 (28)

and

u(e)
α =

[
u(1)α u(2)α ... u(n)α .

]T
(29)

In view of Eq. 26 the coefficient vector
[
a(α) b(α)

]T
is equal to

[
a(α)

b(α)

]
= A−1

[
u(e)

α

0

]
(30)

where A is the symmetric matrix

A =

[
B0 P0
PT

0 0

]
. (31)

Finally, the interpolation Eq. 19 obtains the form

uα(x) =
[

BT (x) PT (x)
]
·A−1 ·

[
u(e)

α

0

]
= R ·u(e)

α (32)

where

R =
[

R(1) R(2) ... R(n)
]
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R(e) =
n

∑
i=1

Bi(x)A−1
ie +

m

∑
j=1

Pj(x)A−1
(n+ j)e , e = 1,2, ...,n (33)

with A−1
qr representing the (qr)-element of the matrix A−1.

More details on the local LRBFs one can find in the book of [Atluri (2004)] and
in the representative works of [Wang and Liu (2002b)][Wang and Liu (2002a)],
[Gilhooley, Xiao, Batra, McCarthy, and Gillespie (2008)] and [Bourantas, Skouras,
Loukopoulos, and Nikiforidis (2010)].

4 Numerical implementation

In this section the numerical implementation of the proposed LBIE methodology is
presented. Consider the elastic domain Ω surrounded by a boundary Γ, depicted in
Fig. 1 and a set of arbitrarily distributed and without any connectivity requirement
points, called nodal points, that cover the domain Ω. The global boundary Γ is
represented by a group of points imposed by a boundary element mesh. The nodes
of the boundary element mesh are considered also as nodal points of the problem.

As it has been already mentioned in section 2, for points x(k) with non intersected
by the global boundary support domains, the corresponding displacement vector
ui
(
x(k)
)

admits a LBIE of the form

ui

(
x(k)
)
+
∫

∂Ωs

[
t∗i j

(
x(k),y

)
− tc

i j

(
x(k),y

)]
u j (y) dSy = 0 (34)

The key idea of the present LBIE methodology is that the local boundary ∂Ωs of
x(k) is discretized into L quadratic line elements as it is shown in Fig. 3. Therefore
Eq. 34 can be written as

u(k)i +

(
L

∑
e=1

3

∑
n=1

∫ 1

−1

[
t∗i j− tc

i j
]

N jmJ dξ

)
uen

m = 0 (35)

where N jm are shape functions corresponding to quadratic elements, J is the Ja-
cobian of the transformation from the global to the local coordinate system ξ and
uen

m represent displacements at the boundary element nodes. It should be noticed
here that the boundary element nodes at the local boundary (shown as red points in
Fig. 3) have not any relation with the initially considered nodal points.

In the sequel, each boundary element nodal displacement is interpolated via the
RBF scheme illustrated in previous section, i.e.

u(k)i +

(
L

∑
e=1

3

∑
n=1

∫ 1

−1

[
t∗i j− tc

i j
]

N jmJ dξ

)
Rmlu

p
l = 0 (36)
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Figure 3: (a) The local boundary ∂Ωs of point x(k) discretized into quadratic bound-
ary elements. The nodes of those elements are indicated by the red points. (b) The
domain of influence of the nodal point x(k) formed by all the RBF support domains
of the boundary element nodes (red circles). The domain of influence defines the
number of nodal points (blue points) involved in the LBIE of x(k).

or in matrix form

H(k) ·u(k) = 0 (37)

where Rml represents the RBF interpolation matrix with rows illustrated by relations
Eq. 32 and Eq. 33, u(p)

i the nodal values of displacements involved in the support
domains of all local boundary element nodes, shown in Fig. 3, and u(k) a vector
containing all displacement components of u(p)

i .

For a boundary nodal point x(k), the LBIE has the form of Eq. 8 for c = 0.5, i.e.

1
2

ui

(
x(k)
)
+
∫

∂Ωs∪Γs

[
t∗i j

(
x(k),y

)
− tc

i j

(
x(k),y

)]
u j (y) dSy =∫

Γs

[
u∗i j

(
x(k),y

)
−uc

i j

(
x(k),y

)]
t j (y) dSy (38)

It should be mentioned here that at corners discontinuous boundary elements are
utilized. Consequently the LBIE Eq. 38 is employed for all points at the global
boundary of the analyzed domain. Following the previous procedure, the local
boundary ∂Ωs of x(k) is discretized into K quadratic line elements, while the inter-
sected boundary Γs is divided into M line quadratic elements, which are part of the
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Figure 4: (a) The local boundary ∂Ωs ∪Γs corresponding to boundary point x(k)
discretized into quadratic boundary elements. As in Fig. 3, red points represent the
nodes utilized for the mesh of ∂Ωs. Black points indicate nodes corresponding to
line quadratic elements used for the representation of the global boundary Γ. (b)
The domain of influence of the boundary nodal point x(k) formed by all the RBF
support domains of the boundary element nodes (red circles).

boundary element mesh used for the representation of the global boundary Γ. Thus,
displacements and tractions defined at Γs are interpolated as independed variables
through quadratic line elements. Both boundary element nodes and nodal points
are illustrated in Fig. 4. Splitting Eq. 38 into boundary elements one obtains

1
2

u(k)i +
K

∑
e=1

3

∑
n=1

∫ 1

−1

[
t∗i j− tc

i j
]

N jmJ dξ Rmlu
(p)
l +

M

∑
e=1

3

∑
n=1

∫ 1

−1

[
t∗i j− tc

i j
]

N jmJ dξ Rmlu
(s)
l = (39)

M

∑
e=1

3

∑
n=1

∫ 1

−1

[
u∗i j−uc

i j
]

N jmJ dξ t(s)m

where u(p)
i stand for he nodal values of displacements involved in the support do-

mains of all local boundary element nodes at ∂Ωs, while u(s)l , t(s)l represent the
boundary displacements and tractions, respectively, defined at the boundary ele-
ment nodes of Γs. Mml is boundary interpolation functions.
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Applying the boundary conditions and rearranging, Eq. 39 is written in a matrix
form as

H(k) ·u(k)+G(k) · t(k) = b(k) (40)

with the vectors u(k), t(k) containing all the unknown displacements and tractions,
respectively, and b(k) a vector consisting of all the displacements and tractions
known by the boundary conditions.

It is apparent that the final vector equation corresponding to an internal nodal point
the support domain of which intersects the global boundary, is similar to Eq. 40.

In view of Eq. 37 and Eq. 40, the following final system of algebraic equations is
obtained

A · z = b (41)

with the vector z comprising all the unknown nodal displacements and tractions,
while the vector b contains prescribed components of vectors. This system can be
solved easily and efficiently through a typical LU decomposition solver since, due
to the local nature of the method, the matrix A is sparse and banded. As soon as
all the nodal values of displacements and boundary tractions have been calculated,
the stresses at any nodal point x(k) can be evaluated through the LBIE Eq. 11 for
internal points and LBIE Eq. 12 for boundary or nearly to the boundary nodal
points. The evaluation of displacements, boundary tractions and stresses without
using derivatives of the RBF interpolation functions is, among others, a significant
advantage of the proposed method.

5 Numerical examples

5.1 Rectangular plate in tension

The first problem concerns the tension of the 1mx1m rectangular plate depicted in
Fig. 5(a). The Young modulus and the Poisson ratio have been considered to be
equal to E = 100000N/m2 and ν = 0.25, respectively, while the tensional trac-
tion at the free side of the plate is P = 1N/m2. Totally 13 nodal points, shown in
Fig. 5(b), have been used for the solution of the problem and the radius of the sup-
port domains has been selected to be the same for all nodes and equal to 1.132m.
The vertical displacements across the line AB of the plate (Fig. 5(a)) have been
evaluated with the proposed here LBIE methodology and they compared to ana-
lytical ones [Saad (2005)] in Fig. 6. As it is observed the obtained results are in
excellent agreement with the analytical solution of the problem.
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Figure 5: (a) Tension of a square plate of L=1m. (b) Distribution of the used nodal
points.
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Figure 6: Vertical displacements across the line AB depicted in Fig. 5(a).

5.2 Cantilever beam in bending

The beam of Fig. 7(a) with E = 100000N/m2 and ν = 0.25 is subjected to a verti-
cal traction load P = 1N/m2. Utilizing 209 nodal points (Fig. 7(b)) with the same
support domain of radius 0.566m, the vertical displacements along the line AB,
the axial tractions at the clamped side of the beam and the stresses sxx, sxy at the
cross-section CD have been evaluated and compared to the corresponding analyti-
cal solutions [Selvadurai (2000)] in Fig. 8, Fig. 9, Fig. 10 and Fig. 11, respectively.
All comparisons show a very good agreement between numerical and analytical
results.

5.3 Cylinder subjected to an internal pressure

Consider a long cylindrical shell with inner and outer radii ri = 1m and ro = 2m,
respectively, subjected to an internal uniform pressure P = 1N/m2. The material
properties of the cylinder are the same as in the previous two numerical examples
and the analytical solution of the problem is provided in [Polyzos, Tsinopoulos,
and Beskos (1998)]. Due to the symmetry of the problem only one quarter of
the cylinder needs to be considered (Fig. 12(a)), while a distribution of 179 nodal
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Figure 7: (a) Cantilever beam of L=10m and H=1m subjected to a bending loading.
(b) Distribution of the used nodal points.

Figure 8: Vertical displacements across the line AB shown in Fig. 7(a).
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Figure 9: Axial tractions across the clamped side of the beam of Fig. 7.

Figure 10: σx stress along the line CD of the beam of Fig. 7
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Figure 11: σxy stress along the line CD of the beam of Fig. 7

points with support domains of radius 0.37733 is employed. The horizontal dis-
placements, the vertical tractions and the stresses σrr, σθθ at the side θ = 0 have
been evaluated and compared to the corresponding analytical solutions [Polyzos,
Tsinopoulos, and Beskos (1998)] in Fig. 13, Fig. 14, Fig. 15 and Fig. 16, respec-
tively. As it is apparent, the agreement between numerical and analytical results is
very good.

5.4 Rectangular perforated plate in tension

The present benchmark problem deals with a 60mx60m plate with a circular hole
of radius a = 1 at its center, subjected to a uniform tensile load P = 1N/m2. The
material properties are assumed to be E = 100000N/m2 and ν = 0.25 and due to
the symmetry of the problem only the upper right quadrant of the plate is analyzed
(Fig. 17(a)). For the solution of that problem 150 non-uniformly distributed points
are considered (Fig. 17(b)) with their support domains defined in such a way so the
well-defined integration star [Liszka, Duarte, and Tworzydlo (1996)] to be satisfied.
The exact solutions for displacement and stresses in polar coordinates are provided
in [Timoshenko and Goodier (1970)]. Fig. 18 and Fig. 19 demonstrates displace-
ments ux and uy at the sides corresponding to polar angle θ = 0o and θ = 90o,
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Figure 12: (a) One quarter of a cylindrical shell subjected to a uniform internal
pressure. (b) Distribution of the used nodal points.
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Figure 13: Horizontal displacements across the line θ = 0 for the problem depicted
in Fig. 12

Figure 14: Vertical tractions across the line θ = 0 for the problem depicted in
Fig. 12
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Figure 15: σr stress along the line θ = 0 for the problem depicted in Fig. 12

Figure 16: σθ stress along the line θ = 0 for the problem depicted in Fig. 12
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respectively, while Fig. 20 depicts the traction component ty along the side with
θ = 0o. Finally, Fig. 21, Fig. 22, Fig. 23 and Fig. 24 show stresses sθ and σr at
the sides corresponding to polar angle θ = 0o and θ = 900, respectively. All the
obtained results are compared to analytical ones and as it is evident from the figures
the achieved accuracy is very good.

5.5 Rectangular inclusion subjected to a uniform pressure

This example has been taken by the book of [Katsikadelis (2002)] and it is referred
to a rectangular pipe subjected to a uniform internal pressure p = 1MPa. All the
dimensions, the geometry and the boundary conditions of the problem are provided
in Fig. 25. The material properties for the host medium are E = 2x105 kN/m2 and
ν = 0.20, while 592 nodal points have been used for the solution of the problem.
Fig. 26 demonstrates the tractions ty along the line y = 0, while Fig. 27 and Fig. 28
present the distribution of stresses σx along the lines y = 0 and y = 1.5m, respec-
tively. The obtained results are compared to the corresponding ones taken by the
BEM package [ISoBEM (2012)]. With an exception to stresses σx across the line
y = 0, the agreement of the results taken by the two methods is very good.

5.6 Plate with an elliptical hole

The last benchmark problem concerns a 800mmx800mm plate with an elliptical
hole, subjected to a uniform tensile load P = 100MPa as it is shown in Fig. 29. The
two hemi-axis of the elliptical hole are a = 8mm and b = 2mm, while the material
properties of the plate are assumed to be E = 3x106MPa and ν = 0.3. For the so-
lution of the problem 5176 nodal points are considered with their support domains
defined as in previous benchmark problems. The obtained results are compared
to the corresponding ones taken by the BEM package [ISoBEM (2012)]. Fig. 30-
Fig. 33 portray the distribution of stresses σx and σy along the lines AB and CD
(Fig. 29), respectively. From those figures it is apparent that the agreement be-
tween LBIE and BEM solutions is excellent.

6 Conclusions

A new meshless local boundary integral equation (LBIE) method for solving two-
dimensional elastic problems has been proposed. Randomly distributed points
without any connectivity requirement cover the analyzed domain and Local Radial
Basis Functions (LRBFs) are employed for the meshless interpolation of displace-
ments in the interior domain. The boundary of the considered elastic medium is
represented via a mesh consisting of quadratic linear elements like those used in
the Boundary Element Method (BEM). On the global boundary, displacements and
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Figure 17: (a) Perforated plate under tension, (b) discretization of the plate
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Figure 18: ux displacement along the side θ = 0 of the plate of Fig. 17

Figure 19: uy displacement along the side θ = 90o of the plate of Fig. 17
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Figure 20: ty traction along the side θ = 0 of the plate of Fig. 17

Figure 21: σθ stress component along the side θ = 0 of the plate of Fig. 17
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Figure 22: σr stress component along the side θ = 0 of the plate of Fig. 17

Figure 23: σθ stress component along the side θ = 90o of the plate of Fig. 17
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Figure 24: σr stress component along the side θ = 90o of the plate of Fig. 17
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0.5m

0.5m

0.5m

ux = 0

ty = 0

0.75m 1.0m 0.75m
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Figure 25: The plane strain representation of a rectangular pipe subjected to a
uniform pressure.
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Figure 26: Distribution of tractions ty along the boundary y = 0, for the problem of
Fig. 25.

Figure 27: Distribution of stresses σx along the boundary y = 0, of the problem of
Fig. 25.
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Figure 28: Distribution of stresses σx along the boundary y = 1.5 of the problem of
Fig. 25.
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Figure 29: A square plate with an elliptical hole subjected to tensile stress
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Figure 30: Distribution of stresses σx along the AB line of Fig. 29

Figure 31: Distribution of stresses σy along the AB line of Fig. 29
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Figure 32: Distribution of stresses σx along the CD line of Fig. 29

Figure 33: Distribution of stresses σy along the CD line of Fig. 29



A New and Simple Meshless LBIE-RBF Numerical Scheme 547

tractions are treated as independed parameters of the problem. For each internal
nodal point a circular support domain is centered and LBIEs for displacements and
stresses are considered. At the local circular boundaries, the tractions involved in
the aforementioned LBIEs are eliminated with the aid of properly defined compan-
ion solutions. All the integrations at local boundaries are performed quickly and
economically with the aid of simple BEM-type integration techniques while all the
fields are interpolated via RBFs after integrations. Six benchmark problems have
been solved and the obtained results reveal the high accuracy of the method. The
most important features of the proposed LBIE/RBF technique are its simplicity
and efficiency as well as the fact that its extension to three dimensional problems is
straightforward.
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