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Numerical Solution of Space-Time Fractional
Convection-Diffusion Equations with Variable Coefficients

Using Haar Wavelets

Jinxia Wei1, Yiming Chen1, Baofeng Li2 and Mingxu Yi1

Abstract: In this paper, we present a computational method for solving a class
of space-time fractional convection-diffusion equations with variable coefficients
which is based on the Haar wavelets operational matrix of fractional order differ-
entiation. Haar wavelets method is used because its computation is sample as it
converts the original problem into Sylvester equation. Error analysis is given that
shows efficiency of the method. Finally, a numerical example shows the implemen-
tation and accuracy of the approach.
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1 Introduction

Fractional differential equations are generalized from classical integer order ones,
which are obtained by replacing integer order derivatives by fractional ones. In
the last few decades, fractional calculus and fractional differential equations have
found a wide area of applications in several different fields [Hilfer (2000); He
(1998); Chen, Yi, Chen, and Yu (2012)]. For example, one could mention the prob-
lem of anomalous diffusion [EI-Sayed (1996); Gafiychuk, Datsun, and Meleshko
(2008)], the nonlinear oscillation of earthquake can be modeled with fractional
derivative [Delbosco and Rodino (1996)] and many other [Ryabov and Puzenko
(2002)] recent developments in the description of anomalous transport by frac-
tional dynamics. Though the concepts and the calculus of fractional derivative are
few centuries old, it is realized only recently that these derivatives form an per-
fect framework for modeling real problems. Owing to the increasing applications,
a considerable attention has been given to exact and numerical solutions of frac-
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tional differential equations. They have been solved by means of the numerical and
analytical methods such as variational iteration method [Odibat (2010)], Adomian
decomposition method [EI-Sayed (1998); EI-Kalla (2011)], generalized differen-
tial transform method [Odibat and Momani (2008); Momani and Odibat (2007)],
wavelet method [Yi and Chen (2012)].

In this paper, our study focuses on the following space-time fractional convection-
diffusion equation with variable coefficients:

∂ αu(x, t)
∂ tα

=−b(x)
∂u(x, t)

∂x
+a(x)

∂ β u(x, t)
∂xβ

− c(x)u(x, t)+q(x, t) (1)

0 < x < 1, 0 < t ≤ 1

subject to the initial conditions

u(x,0) = 0, 0≤ x≤ 1 (2)

u(0, t) = u(1, t) = 0, 0 < t ≤ 1 (3)

where ∂ αu(x, t)/∂ tα is fractional derivative of Caputo sense, ∂ β u(x, t)/∂xβ is frac-
tional derivative Riemann-Liouville sense [Podlubny (1999)]. a(x),b(x),c(x),q(x, t)
are the known continuous functions, u(x, t) is the unknown function, 0 < α <
1, 1 < β < 2.

Many scholars have studied the time fractional diffusion equations in recent years.
Lin and Xu [Lin and Xu (2007)] used finite difference method to solve the time frac-
tional diffusion equation. Meerschaert et al.[ Meerschaert, Scheffler, and Tadjeran
(2006)] applied the finite difference methods to solve two-dimensional fractional
dispersion equation. Zhang [Zhang (2009)] discussed a practical implicit method
to solve a class of initial boundary value space-time fractional convection-diffusion
equations with variable coefficients.

Recently, the operational matrices of fractional order integration for the Legen-
dre wavelets [Rehman and Khan (2011)], Chebyshev wavelets [Li (2010)], Haar
wavelets [Li and Zhao (2010)], CAS wavelets [Saeedi, Moghadam, Mollahasani,
and Chuev (2011)] and the second kind Chebyshev wavelets [Wang and Fan (2012)]
have been developed to solve the fractional differential equations. Our purpose is
to proposed Haar wavelets operational matrix method to solve a class of space-time
fractional convection-diffusion equations with variable coefficients.

2 Definitions of fractional derivatives and integrals

In this section, we give some necessary definitions and preliminaries of the frac-
tional calculus theory which will be used in this article [Podlubny (1999)].
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Definition 1. Riemann-Liouville definition of fractional differential operator is
given by

Dα
t u(t) =

{
dru(t)

dtr , α = r ∈ N
1

Γ(r−α)
dr

dtr

∫ t
0

u(T )
(t−T )α−r+1 dT, 0≤ r−1 < α < r

(4)

The Riemann-Liouville fractional integral operator Jα of order α is defined as

Jαu(t) =
1

Γ(α)

∫ t

0
(t−T )α−1u(T )dT , t > 0, J0u(t) = u(t) (5)

Definition 2. The Caputo definition of fractional differential operator is given by

Dα
∗ u(t) =

{dru(t)
dtr , α = r ∈ N;

1
Γ(r−α)

∫ t
0

u(r)(T )
(t−T )α−r+1 dT, 0≤ r−1 < α < r.

(6)

The Caputo fractional derivatives of order α is also defined as Dα
∗ u(t)= Jr−αDru(t),

where Dr is the usual integer differential operator of order r. The relation between
the Riemann- Liouville operator and Caputo operator is given by the following
expressions:

Dα
∗ Jαu(t) = u(t) (7)

JαDα
∗ u(t) = u(t)−

r−1

∑
k=0

u(k)(0+)
tk

k!
, t > 0 (8)

3 Haar wavelets and function approximation

For t ∈ [0,1], Haar wavelets functions are defined as follows [Ray (2012)]:

h0(t) =
1√
m

(9)

hi(t) =
1√
m


2 j/2, k−1

2 j ≤ t < k−1/2
2 j

−2 j/2, k−1/2
2 j ≤ t < k

2 j

0, otherwise

(10)

where i = 0,1,2, . . . ,m−1, m = 2p+1 and p is a positive integer which is called the
maximum level of resolution. j and k represent integer decomposition of the index
i, i.e. i = 2 j + k−1.
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For arbitrary function u(x,t)∈ L2([0,1)× [0,1)), it can be expanded into Haar series
by

u(x,t)∼=
m-1

∑
i=0

m-1

∑
j=0

ui jhi(x)h j(t) (11)

where ui j =
〈
hi(x),

〈
u(x,t),h j(t)

〉〉
are wavelets coefficients,

〈
hi(x),h j(x)

〉
=
∫ 1

0 hi(x)h j(x)dx.

Let Hm(x) = [h0(x),h1(x), . . . ,hm−1(x)]T , Hm(t) = [h0(t),h1(t), . . . ,hm−1(t)]T , then
Eq.(11) will be written as u(x, t)∼= HT

m(x) ·U ·Hm(t).

In this paper, we use wavelet collocation method to determine the coefficients ui j.
These collocation points are shown in the following:

xl=tl = (l−1/2)/m, l = 1,2, . . . ,m. (12)

Discreting Eq.(11) by the step (12), we can obtain the matrix form of Eq.(11)

C = HT ·U ·H (13)

where U = [ui j]m×m and C = [u(xi,t j)]m×m. H is called Haar wavelets matrix of
order m, i.e.

H =


h0(t0) h0(t1) · · · h0(tm−1)
h1(t0) h1(t1) · · · h1(tm−1)

...
...

. . .
...

hm−1(t0) hm−1(t1) · · · hm−1(tm−1)

 .
From the definition of Haar wavelets functions, we may know easily that H is a
orthogonal matrix, then we have

U = H ·C ·HT (14)

4 Haar wavelets operational matrix of fractional order integration and dif-
ferentiation

The integration of the Hm(t)can be approximated by Chen and Hsiao [Chen and
Hsiao (1997)]:∫ t

0
Hm(s)ds∼= PHm(t) (15)

where P is called the Haar wavelets operational matrix of integration.
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Now, we are able to derive the Haar wavelets operational matrix of fractional order
integration. For this purpose, we may make full use of the definition of Riemann-
Liouville fractional integral operator Jα which is given by Definition 1.
The Haar wavelets operational matrix of fractional order integration Pα will be
deduced by

PαHm(t) = JαHm(t)

= [Jαh0(t),Jαh1(t), . . . ,Jαhm−1(t)]T

=

[
1

Γ(α)

∫ t

0
(t−T )α−1h0(T )dT,

1
Γ(α)

∫ t

0
(t−T )α−1h1(T )dT, . . . ,

1
Γ(α)

∫ t

0
(t−T )α−1hm−1(T )dT

]T

= [Ph0(t),Ph1(t), . . . ,Phm−1(t)]T

where

Ph0(t) =
1√
m

tα

Γ(α +1)
t ∈ [0,1) (16)

Phi(t) =
1√
m


0, 0≤ t < k−1

2 j

2 j/2λ1(t), k−1
2 j ≤ t < k−1/2

2 j

2 j/2λ2(t),
k−1/2

2 j ≤ t < k
2 j

2 j/2λ3(t), k
2 j ≤ t < 1

(17)

where

λ1(t) =
1

Γ(α +1)

(
t− k−1

2 j

)α

;

λ2(t) =
1

Γ(α +1)

(
t− k−1

2 j

)α

− 2
Γ(α +1)

(
t− k−1/2

2 j

)α

;

λ3(t)=
1

Γ(α +1)

(
t− k−1

2 j

)α

− 2
Γ(α +1)

(
t− k−1/2

2 j

)α

+
1

Γ(α +1)

(
t− k

2 j

)α

.

The derived Haar wavelets operational matrix of fractional integration is Pα =
(PαH) ·HT .

Let Dα is the Haar wavelets operational matrix of fractional differentiation. Ac-
cording to the property of fractional calculus DαPα = I, we can obtain the matrix
Dα by inverting the matrix Pα .
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For instance, if α = 0.5,m = 8, we have

D1/2=


1.1229 0.4694 0.4589 0.0396 0.6488 0.0568 0.0185 0.0108
−0.4694 2.0678 0.4589 −0.8783 0.6488 0.0568 −1.2790 −0.1028
−0.0396 −0.8783 2.8964 0.4711 0.9175 −1.7547 0.7831 0.0432
−0.4589 0.4589 0 2.8964 0 0 0.9175 −1.7547
−0.0108 −0.1028 −1.7547 0.0432 4.8424 1.5241 0.0671 0.0051
−0.0185 −1.2790 0.9175 0.7831 0 4.8424 1.5241 0.0671
−0.0568 0.0568 0 −1.7547 0 0 4.8424 1.5241
−0.6488 0.6488 0 0.9175 0 0 −0 4.8424


The fractional order differentiation of the function t was selected to verify the cor-
rectness of matrix Dα . The fractional order differentiation of the function u(t) = t
is obtained in the following:

Dα
∗ u(t) =

Γ(2)
Γ(2−α)

t1−α (18)

When α = 0.5,m= 32, the comparison result for fractional differentiation is shown
in Fig. 1.
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Our result
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Figure 1: 0.5-order differentiation of the function u(t) = t.

5 Numerical solution of the fractional partial differential equations

Consider the space-time fractional convection-diffusion equations with variable co-
efficients Eq.(1). If we approximate the function u(x, t)by using Haar wavelets, we
have

u(x, t)∼= HT
m (x) ·U ·Hm(t) (19)
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Then we can get

∂ αu(x, t)
∂ tα

∼=
∂ α(HT

m(x)UHm(t))
∂ tα

= HT
m(x)U

∂ α(Hm(t))
∂ tα

= HT
m(x)UDαHm(t) (20)

∂u(x, t)
∂x

∼=
∂ (HT

m(x)UHm(t))
∂x

=

[
∂Hm(x)

∂x

]T

UHm(t) = HT
m(x)[D

1]TUHm(t) (21)

∂ β u(x, t)
∂xβ

∼=
∂ β (HT

m(x)UHm(t))
∂xβ

=

[
∂ β Hm(x)

∂xβ

]T

UHm(t) = HT
m(x)[D

β ]TUHm(t)

(22)

The function q(x, t) of Eq.(1) can be also expressed as

q(x, t)∼= HT
m(x) ·Q ·Hm(t) (23)

where Q = [qi j]m×m.

Substituting Eq.(19), Eq.(20), Eq.(21), Eq.(22) and Eq.(23) into Eq.(1), we have

HT (x)UDαH(t) =−b(x)HT (x)[D1]TUH(t)+a(x)HT (x)[Dβ ]TUH(t)

− c(x)HT (x)UH(t)+q(x, t)
(24)

Dispersing Eq.(24) by the points (xi, t j), i = 1,2, . . . ,m and j = 1,2, . . . ,m, we can
obtain

HTUDαH =−A1HT [D1]TUH +A2HT [Dβ ]TUH−A3HTUH +HT QH (25)

namely{
HA1HT [D1]T −HA2HT [Dβ ]T +HA3HT

}
U +UDα = Q (26)

where

A1 =


b(x0) 0 · · · 0

0 b(x1) · · · 0
...

...
. . .

...
0 0 · · · b(xm−1)

 , A2 =


a(x0) 0 · · · 0

0 a(x1) · · · 0
...

...
. . .

...
0 0 · · · a(xm−1)

 ,

A3 =


c(x0) 0 · · · 0

0 c(x1) · · · 0
...

...
. . .

...
0 0 · · · c(xm−1)

 .
Eq.(26) is a Sylvester equation. The Sylvester equation can be solved easily by
using Matlab software.
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6 Error analysis

In this section, we assume that ∂u(x,t)
∂x is continuous and bounded on (0,1)× (0,1),

there is

∃M > 0, ∀x, t ∈ (0,1)× (0,1),
∣∣∣∣∂u(x, t)

∂x

∣∣∣∣≤M (27)

Suppose um(x, t) is the following approximation of u(x, t)

um(x, t) =
m−1

∑
n=0

m−1

∑
l=0

unlhn(x)hl(t) (28)

where m = 2p+1, p = 0,1,2, . . .. Then

u(x, t)−um(x, t) =
∞

∑
n=m

∞

∑
l=m

unlhn(x)hl(t) =
∞

∑
n=2p+1

∞

∑
l=2p+1

unlhn(x)hl(t) (29)

Theorem 6.1 Assume u(x, t)∈ L2([0,1)× [0,1)) and um(x, t) be defined by Eq.(28),

then we have ‖u(x, t)−um(x, t)‖≤E M√
3

1
m3 , where ‖u(x, t)‖E =

(∫ 1
0
∫ 1

0 u2(x, t)dxdt
)1/2

.

Proof. The orthonormality of the sequence {hi(t)} on [0,1) implies that

∫ 1

0
hn(x)hn′(x)dx =

{
1/m, n = n′

0, n 6= n′
(30)

Then we have

‖u(x, t)−um(x, t)‖2
E =

∫ 1

0

∫ 1

0
[u(x, t)−um(x, t)]2dxdt

=
∞

∑
n=2p+1

∞

∑
l=2p+1

∞

∑
n′=2p+1

∞

∑
l′=2p+1

unlun′l′

(∫ 1

0
hn(x)hn′(x)dx

)(∫ 1

0
hn(t)hn′(t)dt

)
=

1
m2

∞

∑
n=2p+1

∞

∑
l=2p+1

u2
nl

(31)

where unl = 〈hn(x),〈u(x, t),hl(t)〉〉.
According to Eq.(9) and Eq.(10), we obtain

〈u(x, t),hl(t)〉=
∫ 1

0
u(x, t)hl(t)dt =

2 j/2
√

m

(∫ (k− 1
2 )2
− j

(k−1)2− j
u(x, t)dt−

∫ k2− j

(k− 1
2 )2
− j

u(x, t)dt

)
(32)
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Using mean value theorem of integrals:

∃t1, t2 (k−1) ·2− j ≤ t1 < (k− 1
2
) ·2− j, (k− 1

2
) ·2− j ≤ t2 < k ·2− j

such that

〈u(x, t),hl(t)〉

=
2 j/2
√

m

{
[(k− 1

2
)2− j− (k−1)2− j]u(x, t1)− [k2− j− (k− 1

2
)2− j]u(x, t2)

}
=

2− j/2−1
√

m
(u(x, t1)−u(x, t2))

(33)

hence

unl =

〈
hn(x),

2− j/2−1
√

m
(u(x, t1)−u(x, t2))

〉

=
2− j/2−1
√

m

∫ 1

0
hn(x)(u(x, t1)−u(x, t2))dx

=
2− j/2−1
√

m

(∫ 1

0
hn(x)u(x, t1)dx−

∫ 1

0
hn(x)u(x, t2)dx

)
=

1
2m

(∫ (k− 1
2 )2
− j

(k−1)2− j
u(x, t1)dx−

∫ k2− j

(k− 1
2 )2
− j

u(x, t1)dx−
∫ (k− 1

2 )2
− j

(k−1)2− j
u(x, t2)dx

+
∫ k2− j

(k− 1
2 )2
− j

u(x, t2)dx

)
Using mean value theorem of integrals again:

∃x1,x2,x3,x4 (k−1) ·2− j ≤ x1,x3 < (k− 1
2
) ·2− j, (k− 1

2
) ·2− j ≤ x2,x4 < k ·2− j

such that

unl =
1

2m

{
[(k− 1

2
)2− j− (k−1)2− j]u(x1, t1)− [k2− j− (k− 1

2
)2− j]u(x2, t1)

−[(k− 1
2
)2− j− (k−1)2− j]u(x3, t2)+ [k2− j− (k− 1

2
)2− j]u(x4, t2)

}
=

1
2 j+2m

[(u(x1, t1)−u(x2, t1))− (u(x3, t2)−u(x4, t2))]

(34)

therefore

u2
nl =

1
22 j+4m2 [(u(x1, t1)−u(x2, t1))− (u(x3, t2)−u(x4, t2))]2 (35)
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Using mean value theorem of derivatives:

∃ξ1,ξ2 x1 ≤ ξ1 < x2, x3 ≤ ξ2 < x4

such that

u2
nl =

1
22 j+4m2

[
(x2− x1)

∂u(ξ1, t1)
∂x

− (x4− x3)
∂u(ξ2, t2)

∂x

]2

≤ 1
22 j+4m2

{
(x2− x1)

2
[

∂u(ξ1, t1)
∂x

]2

+(x4− x3)
2
[

∂u(ξ2, t2)
∂x

]2

+2(x2− x1)(x4− x3)

∣∣∣∣∂u(ξ1, t1)
∂x

∣∣∣∣ ∣∣∣∣∂u(ξ2, t2)
∂x

∣∣∣∣}
(36)

Putting Eq.(27) and Eq.(36) together, we get

u2
nl ≤

4M2

24 j+4m2 =
M2

24 j+2m2 (37)

Substituting Eq.(37) into Eq.(31), then we have

‖u(x, t)−um(x, t)‖2
E =

1
m2

∞

∑
n=2p+1

∞

∑
l=2p+1

u2
nl

=
1

m2

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1

∑
l=2 j

u2
nl

)

≤ 1
m2

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1

∑
l=2 j

M2

24 j+2m2

)

=
M2

m4

∞

∑
j=p+1

(
2 j+1−1

∑
n=2 j

2 j+1−1

∑
l=2 j

1
24 j+2

)

=
M2

3m4
1

22(p+1)

=
M2

3
1

m6

(38)

Therefore

‖u(x, t)−um(x, t)‖≤E
M√

3
1

m3 (39)

This theorem is complete.

From the Eq.(39), we can see that ‖u(x, t)−um(x, t)‖E → 0when m→ ∞. A con-
clusion is drawn that Haar wavelets method is convergent when it is used to solve
the numerical solution of fractional differential equations.
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7 A numerical example

In this section, to demonstrate the validity and applicability of the approach, we
consider the space-time fractional convection-diffusion equation with variable co-
efficients Eq.(1).

Let a(x) = Γ(2.8)x/2, b(x) = x0.8, c(x) = x1.5, when α = 0.8,β = 1.5, and q(x, t) =
Γ(3)x2(1−x)t1.2

Γ(2.2) +
[
2x1.8−3x2.8− Γ(2.8)Γ(3)

2Γ(1.5) x1.5 + Γ(2.8)Γ(4)
2Γ(2.5) x2.5 + x3.5− x4.5

]
t2 the ex-

act solution is u(x, t) = x2(1− x)t2. Figs. 2-5 show the numerical solutions for
various m. The absolute error for different m is shown in Table 1.
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Figure 2: Numerical solution of m = 16
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Figure 3: Numerical solution of m = 32
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Figure 4: Numerical solution of m = 64
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Figure 5: Exact solution
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Table 1: The absolute error of different m
(x, t) m = 8 m = 16 m = 32 m = 64
(0,0) 1.356227e-005 8.797021e-007 5.587532e-008 3.517159e-009

(1/8,1/8) 2.251419e-005 1.548394e-005 2.700108e-006 6.962682e-007
(2/8,2/8) 1.451388e-004 2.937151e-005 7.827678e-006 2.057847e-006
(3/8,3/8) 2.330821e-004 4.762675e-005 1.346391e-005 3.758644e-006
(4/8,4/8) 2.607993e-004 6.915614e-005 2.064872e-005 6.122976e-006
(5/8,5/8) 3.335308e-004 1.024516e-004 3.244374e-005 1.017015e-005
(6/8,6/8) 4.942812e-004 1.650434e-004 5.426294e-005 1.760939e-005
(7/8,7/8) 8.335541e-004 2.814749e-004 9.355213e-005 3.074167e-005

From the Figs. 2-5 and Table 1, we can conclude that the numerical solutions are
more and more close to the exact solution when m increases. Compared with the
finite difference method in Ref. [Zhang (2009)], taking advantage of above method
can greatly reduce the computation. Moreover, the method in this paper is easy
implementation.

8 Conclusion

A operational matrix for the Haar wavelets operational matrix of fractional differ-
entiation has been derived. This matrix is used to solve the numerical solutions of
a class of space-time fractional convection-diffusion equations with variable coef-
ficients effectively. We transform the fractional partial differential equation into a
Sylvester equation which is easily to solve. Numerical example illustrates the pow-
erful of the proposed method. The solutions obtained using the suggested method
show that numerical solutions are in very good coincidence with the exact solution.
From Theorem 6.1, we have illustrated the convergence of this algorithm.
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