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SGBEM (Using Non-hyper-singular Traction BIE), and
Super Elements, for Non-Collinear Fatigue-growth

Analyses of Cracks in Stiffened Panels with
Composite-Patch Repairs
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Abstract: Two-dimensional weakly-singular Symmetric Galerkin Boundary El-
ements (SGBEMs) are developed, following the work of [Han and Atluri (2003)],
using non-hypersingular integral equations for tractions. Specifically, the present
2D SGBEM is used to compute the stress intensity factors for arbitrary-shaped line
cracks, including embedded, edge, branching, and intersecting cracks. The com-
puted stress intensity factors show high accuracy, even with very coarse meshes.
The non-collinear mixed-mode fatigue growth analysis of cracks requires a very
minimal effort—simply extending the cracks by adding an element to each crack
tip, in the direction of the crack-growth as determined by a physics-based criterion.
Moreover, by rearranging the symmetric Galerkin boundary integral equations, a
Super Element containing the arbitrarily growing crack is developed. The Super
Element is an arbitrarily-shaped domain with or without cracks inside it. Each
Super Element has a stiffness matrix and a force vector, which have physical mean-
ings similar to those by traditional finite elements.Likewise, the stiffness matrix
of the Super Element is also positive semi-definite and has exactly three rigid body
modes. Super Elements can therefore be directly coupled with traditional finite ele-
ments, using the simple assembly procedure. Super Elements are thus very suitable
for analyzing large-scale structures and complex structures with cracks growing
under fatigue. Fatigue analysis of cracked thin panels with stiffeners and compos-
ite patches are presented, showing the simplicity and efficiency of using SGBEM
Super Elements to model cracked and repaired stiffened aircraft structures.
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1 Introduction

Understanding the mechanical behavior of solids and structures from both top-
down and bottom-up, in various scales, is one of the most important tasks in en-
gineering and science. While some of the behaviors are relatively simple, others
frequently involve displacement/stress/strain fields with discontinuities, high gra-
dients, and singularities. One typical example is to study the fracture and fatigue
behavior of cracks, which remains an important task in the structural integrity as-
sessment and damage tolerance analysis [Atluri(1998)].

Finite element method is one of the most widely-used computational tools, due to
its theoretical simplicity and the many available commercial finite element codes.
When modeling facture mechanics problems, hybrid crack-tip elements by [Tong,
Pian and Lasry (1973); Atluri, Kobayashi and Nakagaki (1975)] and isoperimet-
ric quarter-point elements by [Henshell andShaw (1975)] are frequently used to
capture the crack-tip singularity. Path-independent integrals [Rice (1968); Atluri
(1982); Nishioka and Atluri (1983)], and domain-independent integrals [Nikishkov
and Atluri (1987)] are almost always used together with finite elements, in order
to obtain relatively accurate stress intensity factors. A large number of related
works were recorded in [Atluri (1986)]. However, the need of continuous remesh-
ing makes the fatigue analysis with finite elementsvery difficult.

The later method of XFEM, e.g. [Moes, Dolbow and Belytschko (1999)], while
becoming very popular in the past decade, however, differs very little from the
embedded-singularity elements developed in the 1970s and cited above. Both the
widely popular XFEM of the past decade, and the enriched elements of the 1970s,
use crack-tip singular fields to enrich the trial functions. However, singular en-
richment is limited only to the elements which are immediately adjacent to the
crack-tip/crack-front. Therefore, for elements near the crack tip/ crack-front, but
not immediately adjacent to the crack tip/ crack front, a very fine and good-quality
mesh is still necessary to capture the high gradients of the stress field.

In a totally different way, after the derivation of analytical solutions of elliptical
cracks with arbitrary surface tractions, the first paper on a Finite Element Alternat-
ing Method (FEAM) was published in [Nishioka and Atluri (1983)]. In Nishioka
and Atluri (1983), the analytical solutions for an embedded elliptical crack, the
faces of which are subjected to arbitrary normal and shear tractions in [Vijayaku-
mar and Atluri (1981)] are used.It was later successfully extended to BIE-FE al-
ternating method for arbitrarily curved cracks for two dimensional problems in
[Park and Atluri (1998)], and SGBEM-FE Alternating method for arbitrary three-
dimensional non-planar embedded as well as surface flaws in [Nikishkov, Park
and Atluri (2001), Han and Atluri (2002)]. The SGBEM-FE alternating method
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can compute the stress intensity factors with low computational burden as well as
high accuracy, and can model the fatigue growth of cracks without any re-meshing
whatsoever. The reason why the series of works of Atluri and his coworkers, can
compute stress intensity factors with high accuracy and low burden, is because the
crack-singularities are modeled in the most efficient way—by complex variables,
special functions, and by SGBEMs.

Boundary element methods (BEM) have distinct advantages over finite elements-
for solving linear fracture mechanics problem. This is because BEM avoids us-
ing polynomial trial functions over the whole domain to approximate the singular
fields. Discretization is only necessary at the boundary and crack surfaces. More-
over, the Symmetric Galerkin Boundary Element Methods (SGBEMs) have several
advantages over traditional collocation BEMs, such as a symmetrical coefficient
matrix of the system of equations, and no need to treat sharp corners specially, etc.
Early derivations of SGBEMs involve regularization of hyper-singular integrals,
see [Frangi and Novati (1996); Bonnet, Maier and Polizzotto (1998); Li, Mear and
Xiao (1998); Frangi, Novati, Springhetti, Rovizzi(2002)]. Recently, a systematic
procedure to develop weakly-singular symmetric Galerkin boundary integral equa-
tions was presented by [Han and Atluri (2003)]. The simple formulation derived
in [ Han and Atluri (2003)] involves only the non-hyper singular integral equations
for tractions, based on the original work reported in [Okada, Rajiyah and Atluri
(1988,1989), Atluri (2005)], and it was used to analyze cracked 3D solids with
surface flaws in [Han and Atluri (2002)].

In this study, two-dimensional weakly-singular Symmetric Galerkin Boundary El-
ements (SGBEMs) are developed, following the work of [Han and Atluri (2003)].
Specifically, 2D SGBEMs are combined with some constraint conditions to model
arbitrary shaped 2D cracks. Examples of embedded, edge, branching and inter-
secting cracks show high accuracy of computed stress intensity factors even with
very coarse meshes. Non-collinear mixed-mode fatigue growth of arbitrary shaped
cracks is also modeled. Minimal treatment is needed at each fatigue step—simply
extending the cracks by adding an element to each crack tip, without the need for
any re-meshing whatsoever.

However, because SGBEM always generates a system of equations with fully pop-
ulated coefficient matrices, it is not suitable for modeling large-scale or complex
structures. It is beneficial to model the global structure with finite elements, and
model a local subdomain with SGBEM. This was realized by [Frangi and No-
vati (2003)] using weighted-residual weak-form, and by [Han and Atluri (2002)]
using the alternating method. In this study, we develop a much simpler way to
couple the SGBEM with traditional finite elements, or any other hybrid/mixed el-
ements as by [Pian (1964); Atluri (1975); Dong and Atluri (2011a,b), Bishay and
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Atluri(2012)], or special elements such as Trefftz Voronoi Cells in [Dong and Atluri
(2012a,b,c)].The fundamental difference is that, a “Super Element” representing a
local subdomain with arbitrary cracks within it, is developed, by rearranging the
symmetric Galerkin boundary integral equations. The Super Element has a stiff-
ness matrix and a force vector, which have physical meanings similar to those by
traditional or special finite elements. Likewise, the stiffness matrix of the Super El-
ement is also positive semi-definite and has exactly three rigid body modes. There-
fore, Super Elements can thus be very simply implemented in any general-purpose
finite element routine, using the simple assembly procedure. Super Elements are
thus very suitable for analyzing large-scale structures and complex structures. Ex-
amples of cracked thin panels with stiffeners and composite patches are presented,
showing the simplicity and efficiency of using SGBEM Super Elements to model
cracked aircraft structures with stiffeners and composite patches.

The rest of this paper is organized as follows: in section 2, weakly-singular BIEs
are developed for plane elasticity, while the corresponding kernel functions are
presented in section 3; in section 4, a global SGBEM for 2D cracked structured is
developed; in section 5, some discussion on cavities, edge cracks, branching and
intersecting cracks is given; in section 6, some discussion on evaluating the stress
intensity factors is given; in section 7, we present some numerical examples for
the global SGBEM method; in section 8, we rearrange the weakly-singular BIEs to
develop the Super Element; in section 9, numerical examples of the Super Elements
are presented, with some emphasis on structures patched with composite laminates;
in section 9, we complete this paper with some concluding remarks.

2 2D Weakly Singular BIEs for Plane Elasticity

Consider a linear elastic solid undergoing an infinitesimal elasto-static deforma-
tion. Cartesian coordinates ξi identify material particles in the solid; and Cartesian
coordinates xi identify the source point of the 2D Kelvin’s solution, see Fig. 1.
σi j,εi j,ui are Cartesian components of the stress tensor, strain tensor and displace-
ment vector of the deformable solid, respectively. f̄i are the components of the body
force .We use (),i to denote differentiation with respect to ξi; and use ∂

∂xi
to denote

differentiation with respect to xi. The equations of linear and angular momentum
balance, constitutive equations, and compatibility equations can be written as:

σi j,i + f̄ j = 0 in Ω (1)

σi j = σ ji in Ω (2)

σi j = Ei jklεkl in Ω (3)

εi j =
1
2
(ui, j +u j,i)≡ u(i, j) in Ω (4)
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Figure 1: A solution domain with source point x and target point ξξξ , taken from
[Han and Atluri (2003)]

For isotropic plane elasticity,

Ei jkl = µ
( 2v̄

1−2v̄ δi jδkl +δikδ jl +δilδ jk
)

i, j,k, l = 1,2

v̄ =

{
v for plane strain problems

v
1+v for plane stress problems

(5)

where µ,v are the shear modulus and Possion’s ratio of the isotropic solid.

Equation (1)-(4) can be rewritten in terms of displacements as:[
Ei jkluk,l (ξξξ )

]
,i + f̄ j = 0 (6)

Using u∗p
j (x,ξξξ ), the 2D Kelvin’s solution corresponding to a unit force in direction

ep applied at source point x, as the test function, we have:∫
Ω

{[
Ei jkluk,l (ξξξ )

]
,i + f̄ j (ξξξ )

}
u∗p

j (x,ξξξ )dΩξξξ = 0 (7)

wherethe 2D Kelvin’s solution satisfies the equation:

σ
∗p
i j,i (x,ξξξ ) =

[
Ei jklu

∗p
k,l (x,ξξξ )

]
,i
=−δ jp (x,ξξξ ) (8)
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whereδ jp (x,ξξξ ) = δ jpδ (x,ξξξ ) is a product of Kronecker delta and Dirac delta func-
tion.

Using the divergence theorem twice, we obtain the traditional displacement BIE:

Cup(x) =
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ −

∫
∂Ω

u j(ξξξ )t
∗p
j (x,ξξξ )dSξξξ

+
∫

Ω
f̄ j(ξξξ )u

∗p
j (x,ξξξ )dΩξξξ

(9)

where

C =


1 for x ∈Ω

1
2 for x ∈ ∂Ω

0 else

(10)

Similarly, using the gradient of the fundamental solution, namely u∗p
j,k (x,ξξξ ) as the

test function, we have:∫
Ω

{
[Ei jmnum,n (ξξξ )],i + f̄ j (ξξξ )

}
up

j,k (x,ξξξ )dΩξξξ = 0 (11)

Using divergence theorem three times, we obtain the BIE for up,k(x):

−Cup,k(x) =
∫

∂Ω
t j(ξ )u

∗p
j,k (x,ξξξ )dSξξξ

+
∫

∂Ω
nn(ξξξ )um,k(ξξξ )σ

∗p
nm (x,ξξξ )dSξξξ −

∫
∂Ω

nk(ξξξ )um,n(ξξξ )σ
∗p
nm (x,ξξξ )dSξξξ

+
∫

Ω
f̄ j(ξξξ )u

∗p
j,k (x,ξξξ )dΩξξξ

(12)

Eq. (12) was originally given in [Okada, Rajiyah, and Atluri (1988,1989)], which
is only strongly-singular, as opposed to the hyper-singular BIE obtained by directly
differentiating Eq. (9). For 2D problems, we define a tangential differential opera-
tor D:

D(ξξξ ) = nr (ξξξ )ers
∂

∂ξs

D(x) = nr (x)ers
∂

∂xs

(13)

where the 2D Levi-Civita symbol ers is an analogy to the 3D Levi-Civita symbol:

e11 = e22 = 0; e12 = 1; e21 =−1 (14)

ers has the following properties:

ersenk = δrnδsk−δrkδsn

ersert = δst
(15)

Eq. (12) is thereafter rewritten as:

−Cup,k(x) =
∫

∂Ω
t j(ξ )u

∗p
j,k (x,ξξξ )dSξξξ +

∫
∂Ω

D(ξξξ )um(ξξξ )enkσ
∗p
nm (x,ξξξ )dSξξξ

+
∫

Ω
f̄ j(ξξξ )u

∗p
j,k (x,ξξξ )dΩξξξ

(16)
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Pre-multiplying(16)by Eabpk, and using the inherent property of the Kelvin’s solu-
tion u∗p

j = u∗ j
p , we obtain a BIE for the stress tensor of 2D plane elasticity:

−Cσab(x) =
∫

∂Ω
tp(ξ )σ

∗p
ab (x,ξξξ )dSξξξ +

∫
∂Ω

D(ξξξ )uq(ξξξ )Σ
∗
abq (x,ξξξ )dSξξξ

+
∫

Ω
f̄p(ξξξ )σ

∗p
ab (x,ξξξ )dΩξξξ

(17)

where

Σ
∗
abq (x,ξξξ ) = Eabklenlσ

∗k
nq (x,ξξξ ) (18)

And the traction BIE can be obtained by contracting (17) with na (x):

−Ctb(x) =
∫

∂Ω
tp(ξξξ )na(x)σ∗p

ab (x,ξξξ )dSξξξ +
∫

∂Ω
D(ξξξ )uq(ξ )na(x)Σ∗abq (x,ξξξ )dSξξξ

+
∫

Ω
f̄p(ξξξ )na(x)σ∗p

ab (x,ξξξ )dΩξξξ

(19)

The above traction BIE in Eq (19) is NOT hyper-singular. We would like to point
out that, the 2D Levi-Civita symbol ers is only a speical case of the 3D Levi-Civita
symbol erst . Consider f and g as two 3D vectors which stay in the x1−x2 plane, we
have f×g = ei j fig je3, and ∇× f = ei j f j.ie3. Since the direction is prescribed to be
e3, we simply drop e3, and denote the cross product of two 2D vectors f and g as
ei j fig j, and the curl of f as ei j f j.i.

According to Helmholtz theorem, any vector field (and of course, second order
tensor, third order tensor, etc.) can be decomposed into the summation of an ir-
rotational field and a solenoidal field. Therefore, σ

∗p
i j (x,ξξξ ) can be decomposed

as:

σ
∗p
i j (x,ξξξ ) =−φ

∗p
i j (x,ξξξ )+ψ

∗p
i j (x,ξξξ ) (20)

where

φ
∗p
i j (x,ξξξ ) = M∗p

j,i (x,ξξξ )
ψ
∗p
i j (x,ξξξ ) = eisG

∗p
j,s (x,ξξξ )

(21)

And Σ∗i jq (x,ξξξ ) can be decomposed as:

Σ
∗
i jq (x,ξξξ ) =−Λ

∗
i jq (x,ξξξ )+K∗i jq (x,ξξξ ) (22)

where

Λ∗i jq (x,ξξξ ) = N∗jq,i (x,ξξξ )
K∗i jq (x,ξξξ ) = eisH∗jq,s (x,ξξξ )

(23)
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The decomposition of σ
∗p
i j (x,ξξξ ) and Σ∗i jq (x,ξξξ ) is worked out in detail, and will be

presented in section 3. As opposed to 3D problems, Σ∗i jq (x,ξξξ ) is itself solenoidal
for 2D problems. Therefore Λ∗i jq (x,ξξξ ) vanishes for 2D problems.

As shown in [Han and Atluri (2003)], decomposed kernel functions can be used
to regularize the displacement and traction BIEs. Using the same approach, we
consider the traction BIE (19) and a test function wb(x), and write down the Petrov-
Galerkin weak-form:

−1
2
∫

∂Ω
wb(x)tb(x)dSx =

∫
∂Ω

wb(x)dSx
∫

∂Ω
tq(ξξξ )na(x)σ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
∂Ω

D(ξξξ )uq(ξξξ )na(x)Σ∗abq (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(24)

Substituting (20)-(23) into (24), we have:

−1
2
∫

∂Ω
wb(x)tb(x)dSx

=
∫

∂Ω
wb(x)dSx

∫
∂Ω

tq(ξξξ )na(x)easG
∗q
b,s (x,ξξξ )dSξξξ

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

tq(ξξξ )na(x)φ ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
∂Ω

D(ξξξ )uq(ξξξ )na(x)easH∗bq,s (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(25)

For any function L(x−ξξξ ) which depends only on the relative location of x,ξξξ , such
as u∗qb (x,ξξξ ) ,G∗qb (x,ξξξ ) ,M∗qb (x,ξξξ ) ,H∗bq (x,ξξξ ), we have:

∂L(x−ξξξ )

∂xi
=−∂L(x−ξξξ )

∂ξi
=−L,i(x−ξξξ ) (26)

Therefore, (25) can be rewritten as:

−1
2
∫

∂Ω
wb(x)tb(x)dSx

=−
∫

∂Ω
na(x)easwb(x)dSx

∂

∂xs

∫
∂Ω

tq(ξξξ )G
∗q
b (x,ξξξ )dSξξξ

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

na(x)tq(ξξξ )φ ∗qab (x,ξξξ )dSξξξ

−
∫

∂Ω
na(x)easwb(x)dSx

∂

∂xs

∫
∂Ω

D(ξξξ )uq(ξξξ )H∗bq (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(27)

Using Green’s theorem, we have:

−1
2
∫

∂Ω
wb(x)tb(x)dSx

=
∫

∂Ω
na(x)eas

∂wb(x)
∂xs

dSx
∫

∂Ω
tq(ξξξ )G

∗q
b (x,ξξξ )dSξξξ

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

na(x)tq(ξξξ )φ ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω
na(x)eas

∂wb(x)
∂xs

dSx
∫

∂Ω
D(ξξξ )uq(ξξξ )H∗bq (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(28)
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which is identical to:

−1
2
∫

∂Ω
wb(x)tb(x)dSx

=
∫

∂Ω
D(x)wb(x)dSx

∫
∂Ω

tq(ξξξ )G
∗q
b (x,ξξξ )dSξξξ

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

na(x)tq(ξξξ )φ ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω
D(x)wb(x)dSx

∫
∂Ω

D(ξξξ )uq(ξξξ )H∗bq (x,ξξξ )dSξξξ

+
∫

∂Ω
wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(29)

Similarly, using the displacement BIE in (9), and a test function vb(x), we write
down the Petrov-Galerkin weak-form:

1
2
∫

∂Ω
vp(x)up(x)dSx =

∫
∂Ω

vp(x)dSx
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ

−
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )σ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(30)

Substituting (20)-(23) into (30), we have:

1
2
∫

∂Ω
vp(x)up(x)dSx =

∫
∂Ω

vp(x)dSx
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ

−
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )eisG
∗p
j,s (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )φ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(31)

Using Green’s theorem, we have:

1
2
∫

∂Ω
vp(x)up(x)dSx =

∫
∂Ω

vp(x)dSx
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )eisu j,s(ξξξ )G
∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )φ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(32)

which is identical to:

1
2
∫

∂Ω
vp(x)up(x)dSx =

∫
∂Ω

vp(x)dSx
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

D(ξξξ )u j(ξξξ )G
∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )φ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω
vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(33)

Eqs.(29)-(33) developed here are only weakly singular, because as will be shown in
section 3, kernels u∗qb (x,ξξξ ) ,G∗qb (x,ξξξ ) ,H∗bq (x,ξξξ ) ,ni(ξξξ )φ

∗p
i j (x,ξξξ ) ,ni(x)φ ∗p

i j (x,ξξξ )
are all weakly-singular. Therefore, the implementation of (29)-(33) for SGBEM
can be easily carried out.

It should be noted that,the BIEs developed here for 2D problems, may look slightly
different from those original ones in [Han and Atluri(2003)]. However, they have
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no difference essentially. The 2D Levi-Civita symbol is a special case of the 3D
Levi-Civita symbol. And the Green theorem as used in this derivation is only a spe-
cial case of the 3D Strokes theorem used in [Han and Atluri(2003)]. If one carefully
disinguish the in-plane and out-of-plane components of every tensor in [Han and
Atluri (2003)], all the BIEs and corresponding kernels in their study reduce to the
current ones.

3 Decomposition of the 2D Kelvin’s Solution

The 2D Kelvin’s solution, which corresponds to a concentrated load in an infinite
plane medium, can be expressed in terms of the Boussinesq-Galerkin general solu-
tion:

u∗p
i = b∗p

i,kk−
1

2(1− v̄)
b∗p

k,ki (34)

where the Boussinesq-Galerkin potential is:

b∗p
i = (1− v̄)δipF∗

F∗ = −r2 lnr
8πµ(1−v̄)

(35)

We have:

u∗p
i = (1− v̄)δpiF∗,kk−

1
2

F∗,pi (36)

σ
∗p
i j = µ

[
(1− v̄)δpiF∗,kk j + v̄δi jF∗,pkk−F∗,pi j

]
+µ(1− v̄)δp jF∗,kki

(37)

σ
∗p
i j,i = µ

[
(1− v̄)δpiF∗,kk ji + v̄δi jF∗,pkki−F∗,pi ji

]
+µ(1− v̄)δp jF∗,kkii
= µ(1− v̄)δp jF∗,kkii

(38)

Therefore, the irrotational part of σ
∗p
i j can be easily found as:

φ
∗p
i j =−µ(1− v̄)δp jF∗,kki = M∗p

j,i
M∗p

j =−µ(1− v̄)δp jF∗,kk
(39)

And the solenoidal part is:

Ψ
∗p
i j = σ

∗p
i j +φ

∗p
i j = µ

[
(1− v̄)δpiF∗,kk j + v̄δi jF∗,pkk−F∗,pi j

]
= eisµ

[
(1− v̄)ep jF∗,kk− ek jF∗pk

]
,s
= eisG

∗p
j,s

G∗p
j = µ

[
(1− v̄)ep jF∗,kk− ek jF∗pk

] (40)
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After some manipulation, we can see that:

Σ∗i jq = Ei jklenlσ
∗k
nq

= µ2
( 2v̄

1−2v̄ δi jδkl +δikδ jl +δilδ jk
)

enl[
(1− v̄)

(
δknF∗,bbq +δkqF∗,bbn

)
+ v̄δnqF∗,bbk−F∗,knq

]
= 2µ2 (einF, jqn− einδ jqF,bbn)
= ein2µ2 (F, jq−δ jqF,bb),n
= einH∗jq,n

(41)

where,

H∗jq = 2µ
2 (F, jq−δ jqF,bb) (42)

From (41), we see that Σ∗i jq itself is solenoidal.

Using the definition of F∗, we write down the kernel functions for 2D problems:

u∗p
j = 1

8πµ(1−v̄) [−(3−4v̄) lnrδ jp + r, jr,p]
u∗p

j,k =
1

8πµ(1−v̄)r

[
−(3−4v̄)r,kδ jp−2r, jr,pr,k +δpkr, j +δ jkr,p

]
G∗p

j = 1
8π(1−v̄)

[
ep j [(4v̄−3)+2(2v̄−1) lnr]+2ek jr,kr,p

]
Ψ
∗p
i j = eisG

∗p
j,s =

1
4π(1−v̄)r [(1−2v̄)(δi jr,p−δipr, j)−2r,ir, jr,p +δ jpr,i]

M∗p
j = 1

2π
(1+ lnr)δp j

φ
∗p
i j = M∗p

j,i =
1

2πr δp jr,i
σ
∗p
i j =−φ

∗p
i j +Ψ

∗p
i j = 1

4π(1−v̄)r [(1−2v̄)(δi jr,p−δipr, j−δ jpr,i)−2r,ir, jr,p]
H∗jq =

µ

4π(1−v̄) [δq j (3+2lnr)−2r, jr,q]
Σ∗i jq = einH∗jq,n =

µ

2π(1−v̄)r ein [2r, jr,qr,n +δq jr,n−δqnr, j−δ jnr,q]

(43)

It should be noted that, in the formulae of potentials G∗p
j ,M∗p

j ,Σ∗i jq as shown in
(43), constant terms can be eliminated for simplicity, which have no influence on
their gradient or curl fields.

4 Global SGBEM for 2D Plane Elasticity of an Isotropic Body With Arbi-
trary Shaped Cracks & Cavities

Consider an isotropicsolid body Ω undergoing infinitesimal elasto-static defor-
mations, the whole boundary of which is defined by a number of contours and
lines. One contour S0 defines the outer boundary, and the other contours Si, i =
1,2... are the boundaries of cavities contained in the solid body. The lines Li, i =
1,2...represent the cracks, each of which can be divided to L+

i ,L
−
i , the two oppo-

site surfaces of each crack. The boundary ∂Ω is a summation of all the contours
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Figure 2: A defective solid with arbitrary cavities and cracks

and lines: ∂Ω = ∑
i

Si +∑
i

Li. Based on the types of boundary conditions, the whole

boundary ∂Ω can also be divided to:

Su, the part of ∑
i

Si where displacements are prescribed,

S′t , the part of ∑
i

Si where tractions are prescribed,

Sc, the crack surface defined by smooth lines.

S+c ,S
−
c are the two opposite surfaces of the crack , the displacements and tractions

on which are denoted as u+i ,u
−
i , t

+
i , t−i respectively.

Boundary conditions are:

ui = ūi at Su

ti = t̄i at S′t
t+i =−t−i = t̄i at Sc

(44)

We consider the crack surface to be part of the entire traction-prescribed boundary
St , and we have St = S′t + Sc. At S′t , the tractions ti are prescribed to be t̄i, and ui

are to be determined. At the crack surfaceSc,the tractions t+i are prescribed to be
t̄i, t−i are prescribed to be −t̄i, and ∆ui = u+i − u−i are to be determined. Without
introducing any ambiguity, we still use ui to denote the undetermined displacement
discontinuity at the crack surface, instead of ∆ui. The displacement and traction
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BIEs developed in the last section can still be directly used, where ui and ti should
be interpreted as ∆ui and t̄i respectively at the crack surface.

For SGBRM, test function vp,wp for displacement BIE is assumed as:

vp =

{
δ tp at Su

0 at St

wp =

{
0 at Su

δup at St

(45)

Displacements and tractions are assumed in terms of nodal shape functions:

ui = Nqūq
i at Su

ti = Mqtq
i at Su

ui = Nquq
i at St

ti = Mqt̄q
i at St

(46)

where repeated indices indicate a summation.

Discretized BIEs are therefore expressed as:

−1
2 δ tn

p
∫

Su
Mn(x)Nm(x)dSxūm

p
+δ tn

p
∫

Su
Mn(x)dSx

∫
St

u∗p
j (x,ξξξ )Mm(ξξξ )dSξξξ t̄m

j
+δ tn

p
∫

Su
Mn(x)dSx

∫
Su

G∗p
j (x,ξξξ )D(ξξξ )Nm(ξ )dSξξξ ūm

j
+δ tn

p
∫

Su
Mn(x)dSx

∫
Su

ni(ξξξ )φ
∗p
i j (x,ξξξ )Nm(ξξξ )dSξξξ ūm

j
=−δ tn

p
∫

Su
Mn(x)dSx

∫
Su

u∗p
j (x,ξξξ )Mm(ξξξ )dSξξξ tm

j
−δ tn

p
∫

Su
Mn(x)dSx

∫
St

G∗p
j (x,ξξξ )D(ξξξ )Nm(ξ )dSξξξ um

j
−δ tn

p
∫

Su
Mn(x)dSx

∫
St

ni(ξξξ )φ
∗p
i j (x,ξξξ )Nm(ξξξ )dSξξξ um

j

(47)

1
2 δun

b
∫

St
Nn(x)Mm(x)dSxt̄m

b
+δun

b
∫

St
D(x)Nn(x)dSx

∫
St

G∗qb (x,ξξξ )Mm(ξ )dSξξξ t̄m
q

−δun
b
∫

St
Nn(x)dSx

∫
St

na(x)φ ∗qab (x,ξξξ )Mm(ξξξ )dSξξξ t̄m
q

+δun
b
∫

St
D(x)Nn(x)dSx

∫
Su

H∗bq (x,ξξξ )D(ξ )Nm(ξξξ )dSξξξ ūm
q

=−δun
b
∫

St
D(x)Nn(x)dSx

∫
Su

G∗qb (x,ξξξ )Mm(ξ )dSξξξ tm
q

+δun
b
∫

St
Nn(x)dSx

∫
Su

na(x)φ ∗qab (x,ξξξ )Mm(ξξξ )dSξξξ tm
q

−δun
b
∫

St
D(x)Nn(x)dSx

∫
St

H∗bq (x,ξξξ )D(ξ )Nm(ξξξ )dSξξξ um
q

(48)

Equation (47) and (48) can be written in matrix form:{
δ tu
δut

}T [Auu Aut
Atu Att

]{
tu
ut

}
=

{
δ tu
δut

}T {bu
bt

}
(49)

or:

Ax = b (50)
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tu,ut are undetermined tractions at Su, and undetermined displacements at St re-
spectively. With simple mathematical manipulations, one can show that the coeffi-
cient matrix in (49)is symmetric. However, (49) is not always rank-sufficient. Some
constraints may need to be added to the degrees of freedoms in order to uniquely
solve the unknown tractions and displacements. This will be discussed in next sec-
tion in detail. Once the unknowns are solved using (49), the displacements, strains
and stresses can be determined using the BIEs as shown in (9) and (17), or those
regularized versions as shown in [Han and Atluri (2003)] when x is approaching to
point x̂ on the boundary:

up(x) =
∫

∂Ω
t j(ξξξ )u

∗p
j (x,ξξξ )dSξξξ −

∫
∂Ω

[u j(ξξξ )−u j(x̂)] t∗p
j (x,ξξξ )dSξξξ

+
∫

Ω
f̄ j(ξξξ )u

∗p
j (x,ξξξ )dΩξξξ +up(x̂)

(51)

up,k(x) =−
∫

∂Ω
[t j(ξ )−ni(ξξξ )σi j(x̂)]u∗p

j,k (x,ξξξ )dSξξξ

−
∫

∂Ω
[D(ξξξ )um(ξξξ )−nr (ξξξ )ersum,s(x̂)]enkσ

∗p
nm (x,ξξξ )dSξξξ

−
∫

Ω
f̄ j(ξξξ )u

∗p
j,k (x,ξξξ )dΩξξξ

(52)

σab(x) =−
∫

∂Ω
[tp(ξξξ )−nq(ξξξ )σpq(x̂)]σ∗p

ab (x,ξξξ )dSξξξ

−
∫

∂Ω
[D(ξξξ )uq(ξξξ )−nr (ξξξ )ersuq,s(x̂)]Σ∗abq (x,ξξξ )dSξξξ

−
∫

Ω
f̄p(ξξξ )σ

∗p
ab (x,ξξξ )dΩξξξ +σab(x̂)

(53)

5 Constraints Applied to Cavities, Edge Cracks, Branching Cracks, and In-
tersecting Cracks

The discretized symmetric Galerkin BIEs as shown in last section are valid for do-
mains with arbitrary cavities and arbitrary cracks. But this does not mean they are
sufficient to solve for the unknowns. For example, when traction boundary con-
ditions are applied to the whole domain, i.e. St = ∂Ω,the unknown displacements
cannot be defined because of the arbitrary rigid body modes. In this case, one can
either fix three proper displacement DOFs to constrain the rigid-body modes, or
simply append the constraints that the three rigid-body modes are zero. For a set
of points with coordinates (xk,yk), displacements for each point u(k)i can be divided
into rigid-body and non-rigid-body parts ū(k)i , û(k)i :

u(k) =

{
u(k)1

u(k)2

}
=

{
ū(k)1

ū(k)2

}
+

{
û(k)1

û(k)2

}

=

[
1 0 −yk
0 1 xk

]
α1
α2
α3

+

{
û(k)1

û(k)2

}
= R(k)ααα + û(k)

(54)
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If we put the displacements of all points in one vector u, we correspondingly obtain
the following equation:

u = Rααα + û (55)

Because of the orthogonality of the rigid-body and the non-rigid-body modes,ααα can
be determined by:

ααα =
(
RT R

)−1 RT u (56)

Therefore, when tractions boundary conditions are applied to the whole boundary,
one can apply the equation

(
RT R

)−1 RT u = 0 to constrain the three rigid-body-
modes

A slightly more complex case is when, in addition to St = ∂Ω, there are cavities
present in the domain. From the symmetric Galerkin BIE (27), one can see that
rigid-body-modes of the cavity contribute nothing to the tractions on the boundary.
This is different from FEM. However, similar to what we have just discussed here,
one can easily append the constraints that the rigid-body-modes of each cavity are
equal to the rigid-body modes of the outer boundary. Suppose the displacements of
the outer boundary are u0, and displacements of cavity l are ul, one can obtain the
following constraints:(
RT

0 R0
)−1 RT

0 u0−
(
RT

l Rl
)−1 RT

l ul = 0 (57)

R0,Rl depend on the coordinates of the points in the outer boundary and those of
the cavity, as shown in (54).

One may also encounter the case that some cracks intersect with the outer bound-
ary or some cavities (edge cracks). In this case, some constraints of displacement
compatibility should be applied. In order not to bring any ambiguity, we firstly
define a positive direction of each crack Li. The corresponding L+

i ,L
−
i are defined

as follows: if one is walking along in the positive direction of the crack Li, L+
i is on

his left-hand side, and L−i is on his right-hand side. When modeling the problem
with SGBEM, at the intersecting node k, discontinuous displacement vectors are
assumed on the global boundary of the crack, u(k)+i ,u(k)−i ; thus, ∆u(k)i is assumed
on the crack surface. The compatibility condition which needs to be applied is:

∆u(k)i −u(k)+i +u(k)−i = 0 (58)

Another more interesting problem is that when some cracks are branching or in-
tersecting. As shown in Fig. 4, when some cracks have a common node k, we
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Figure 3: Treatment of edge cracks

 

Figure 4: Treatment of branching/intersecting cracks
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assume ∆u(k)ni ,n = 1,2,3... for each branching/intersecting crack. From the theory
of Somigliana dislocations, one can easily find the compatibility condition:

∑
n

sn∆u(k)ni = 0 (59)

sn is defined as follows: when one walks along crack n, from the intersecting node
to further locations, if one is walking in the positive direction of the crack, then
sn = 1, otherwise sn =−1.

From the discussion of this section, we can see that all the constraints are in the
form of:

Gx = 0 (60)

where x is a vector containing all the unkown displacements and tractions.

One can apply these constraints by using the traditional method of Lagrange mul-
tipliers, leading to a system of well-defined equations:[

A GT

G 0

]{
x
y

}
=

{
b
0

}
(61)

6 Evaluating the Stress Intensity Factors for Cracks, and Modeling Their
Fatigue Growth

For 2D SGBEM, the boundary ∂Ω is discretized by boundary elements. Usual
two-node linear elements and three-node quadratic elements can be used at loca-
tions other than crack tips. Two-node square-root-singular elements as in [Park and
Atluri(1998)], and three-node quarter-point singular element as in many studies,
e.g. [Frangi and Novati (1996)], can be used at crack tips to improve accuracy. In
this study, two-node linear elements and two-node crack-tip elements are used for
demonstration purposes.

Stress intensity factors can be directly evaluated using crack-tip opening displace-
ments:

K1 =
E

8(1−v̄2)
lim
r→0

∆u2

√
2π

r

K2 =
E

8(1−v̄2)
lim
r→0

∆u1

√
2π

r

(62)

where ∆uk is the crack tip opening displacements in the local Cartesian coordinate
system aligned to the crack surface. However, the stress intensity factor of this
method strictly depends on the solution of crack tip displacements, which might
need a fine mesh to obtain an accurate solution.
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In this study, we use path-independent integrals to evaluate the stress intensity fac-
tors and the fatigue growth of cracks. When crack-surface is traction free and
body-force is negligible, the vector J-integral is:

Jl =
∫
Γ

niMildS (63)

where Mil is Eshelby’s energy momentum tensor, see [Eshelby (1951,1975)]:

Mil =Wδil−σi ju j,l (64)

In the crack-tip local Cartesian coordinate system, we calculate the stress intensi-
tyfactors as:

K1 =
δ1
δ

√
J1E

(1−v̄2)

K2 =
δ2
δ

√
J1E

(1−v̄2)

δ1 = lim
r→0

∆u2

√
1
r

δ2 = lim
r→0

∆u1

√
1
r

δ =
√

δ 2
1 +δ 2

2

(65)

For the fatigue growth of the cracks, we consider crack growth rate to be a function
of the effective stress intensity factor:

da
dN

= f (∆K) (66)

Two models are used in this study: the Paris law

da
dN

=C (∆K)n (67)

and the Forman law

da
dN

=
C (∆K)n

(1−R)Kc−∆K
(68)

where Kc is the critical stress intensity factor.

The effective stress intensity factor is determined by the energy relation:

∆K =
√

∆JE
(1−v̄2)

∆J =
√

∆J2
1 +∆J2

2

(69)
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Instead of using maximum stress criteria or minimum strain energy criteria, we
follow the continuum theory of defects, which involve the concept of the energy
momentum tensor of Eshelby. The propagation angle is simply assumed to be the
direction of the vector J-integral:

α = tan−1 J2

J1
.

Some numerical examples will be shown in next section.

7 Numerical Examples for Global SGBEM

7.1 Embedded Cracks

Firstly, we solve the problem of an embedded through-the-thickness crack. A crack
of length 20 cm is located at the center of a plate of 1m width and 2m height.
Normal stress, 50MPa is applied on the upper edge. This is shown in Fig. 5 with
a = 0.1, b = 0.5, d = 0.5, h =1, and σ = 50. This problem will be solved for 2
cases. For the first case, we use only one element for each side of the plate and 2
elements to mesh the crack.For the second case, we use two elements to mesh each
side of the plate and 4 elements to mesh the crack.We compare the computed stress
intensity factor to those in analytical solutions in [Anderson (2005)].

K1 = σ
√

πa

√
2b
πa

tan
πa
2b

(70)

Table 1: Computational results for the center crack in Fig. 5
Mesh SGBEM Analytical Error

K1
1 28.16 28.50 1.19%
2 28.44 28.50 0.21%

We can see that, for this simple problem, we can obtain an accuracy of 1.19% error,
even with a coarse mesh of only 7 nodes (the most coarse mesh possible). And
when 13 nodes is used, the error decreases drastically to 0.21%.

The second problem we solve is a plate with two off-aligned cracks, as shown in
Fig. 6. The plate is 40mm×80mm. The two parallel cracks are with dimensions of
a=1.27mm, e/f=0.3 and 2a/d=0.8. The crack without tip A is located on the center
of the plate. An evenly distributed tensile loading of 400Pa is applied to the upper
and lower edges. 2 elements are used for each edge of the plate, and 10 elements
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Figure 5: An embedded crack and two SGBEM mesh configuration
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 Figure 6: Two off-aligned cracks

 Figure 7: Three parallel cracks
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Table 2: Computational results for the two off-aligned cracks in Fig. 6
SGBEM Handbook Error

K1A 671.220 671.144 0.18%

are used for each crack. Totally 30 nodes are used. K1 for crack tip A are compared
to the Handbook solution [Murakami (1987)] in Tab. 2.

Another example is selected: three parallel cracks aligned normally to the ten-
sile direction. A schematic of the problem is shown below in Fig. 7. The plate
is 40mm×80mm. The three parallel cracks are with dimensions of a=1.27mm,
d=3.175mm the crack B is located at the center of the plate. An evenly distributed
tensile loading of 400Pa is applied to the upper and lower edges. 2 elements are
used for each edge of the plate, and 10 elements are used for each crack. Totally
41 nodes are used. K1 for crack tip A are compared to the Handbook solution
[Murakami (1987)] in Tab. 3.

Table 3: Computationalresults for the three parallel cracks in Fig. 7
SGBEM Handbook Error

K1A 679.029 679.550 0.08%
K1B 600.659 599.235 0.23%

 
Figure 8: An Embedded Slanted Crack
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Figure 9: Final shape of the embedded slant crack shown in Fig. 8, after fatigue-
crack-growth

 
Figure 10: An Edge Crack
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Now we solve the problem of an embedded through-the-thickness slanted crack. A
crack of length 20 cm is located at the center of a plate of 1m width and 2m height.
The slant angle is π/4. Normal stress 50MPa is applied on the upper edge. This is
shown in Fig. 8 with a = 0.1, b = 0.5, d = 0.5, h =1, and σ = 50.Material properties
are E = 205Gpa,v = 0.3. Ten elements are used for each edge of the plate, and 10
elements are used for each crack. Totally 43 nodes are used for the original mesh.
The number of analysis steps used in fatigue-crack-growth analysis is 30. The total
simulated crack growth is equal to 0.3. Thus, in each step the crack increment is
0.3/30 = 0.01. The Paris fatigue crack-growth equation is used. The parameters of
the equation are: C = 6.9 × 10−12and n = 3. Computational results show that after
629398 cycles, the slant crack has grown to a mode 1 dominant crack as shown in
Fig. 9.

7.2 Edge Cracks

An edge crack of length a = 0.2 in a finite plate as shown in Fig.10 having dimen-
sions: b = h = 1 and loaded by a uniform axial stress σ = 50, is considered.We
use 8 elements to mesh each edge of the plate. The edge crack is meshed using 10
elements. Totally 43 nodes are used. The computational results are compared to
the handbook solution in Tab. 4.

Table 4: Computational Results for the edge crack in Fig. 10
SGBEM Handbook Error

K1 54.210 54.418 0.38%

Another example is selected: edge cracks emanating from a circular fastener hole.
A schematic of the problem is shown in Figure 11. The plate is 50.8mm×101.6mm.
A circular hole with R=6.35mm is located at the center of the plate, and cracks
emanate from the hole with a=6.604mm. An evenly distributed tensile loading of
82.74Pa is applied to the upper and lower edge. 4 elements are used to mesh each
edge of the plate. 48 elements are used to mesh the circle. 10 elements are used
to mesh each crack. Totally 86 nodes are used. The computational results are
compared to the handbook solution in Tab. 6.

Table 5: Computational Results for the cracks in Fig. 11
SGBEM Handbook Error

K1 249.55 248.47 0.43%
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 Figure 11: Cracks Emanating from a Circular Fastener Hole

 Figure 12: Slant cracks emanating from loaded fastener holes
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We also model the mixed mode fatigue growth of multiple slanted cracks emanating
from fastener-holes in an aircraft fuselage lap-joint. Fig. 12 shows the geometry of
the plate with the two holes and the cracks emanating from them. The geometric
parameters are as follows:

H = 4 inch, W 1= W3 = 1.5 inch, W2 = 1 inch.

The radius of the holes: R = 0.0805 inch.

The initial crack lengths: a1 = a2 = a3 = a4= 0.03 inch.

Cracks’ angles: θ 1 = θ 2 =30o.

The material is 2024-T3 aluminum alloy whose properties are:

E = 10.6 × 106, and v = 0.33.

The fatigue behavior is expressed by Forman’s equation. Here, Kc= 83,000 psi, C
= 3×10−13 and n = 3. Uniform tension is applied on the upper andlower edges.The
maximum stress is 12 ksi and the stress ratio R = 0.1. The initial mesh configura-
tion has 10 elements for each edge of the plate, 32 elements for each hole, and 5
elements for each crack. Totally 128 nodes are used. We are applying 50 analysis
steps, with varying number of cycles in each step so that the crack growth increment
in any step is equal to 0.014, giving, after the 50 steps, a growth of 0.7. Computa-
tional results show that totally 71218 cycles are needed. And the final results are
shown in Fig. 13.

Figure 13: The final shapes of cracksfrom fastener holes of Fig. 12, after fatigue
growth
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7.3 Branching and Intersecting Cracks

We also show that the SGBEM presented in this study can model branching and
intersecting cracks accurately and efficiently.

 
Figure 14: A branching crack

We firstly study the case of a branching crack, as shown in Fig. 14. The geometrical
parameters are: a=b=0.1, θ = 45˚, and H=w=4. Uniform stress σ = 50 is applied
to the upper and lower edges. Material properties are E = 205Gpa,v = 0.3. 4
elements are used for each side of the plate, and 10 elements are used for each
crack segment. Totally 45 nodes are used for the initial configuration. F1A,F1B,F2B

are defined as:

F1A = K1A
σ
√

πa
F1B = K1B

σ
√

πb
F2B = K2B

σ
√

πb

(71)

Computational results are shown in Tab. 7, and are compared to those of [Chen and
Hasebe (1995)].

We also study the fatigue growth the branching crack. The number of analysis
steps is 30. The total crack growth = 0.3 for each crack tip A. Thus, in each step
the crack increment is 0.3/30 = 0.01. The Paris equation is used. The parameters of
the equation are: C = 6.9 × 10−12and n = 3. Computational results show that after
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Figure 15: The final shape of the branching crack of Fig. 14, after fatigue growth

 

Figure 16: A star crack



SGBEM and Super Elements for Non-Collinear Fatigue-growth Analyses 445

Table 6: Computational Results for the branching crack in Fig. 14
SGBEM Chen and Hasebe (1995) Error

F1A 0.964 0.964 0.00%
F1B 0.456 0.457 0.22%
F2B 0.469 0.467 0.43%

798159 cycles, the branching crack has grown to a final shape as shown in Fig. 15,
as opposed to the single slant crack as shown in Fig. 8-9.

In the last example, we consider a star-shaped crack as shown in Fig. 16.

Table 7: Computational Results for the star crackshown in Fig. 16
SGBEM Chen and Hasebe (1995) Error

F1A 0.659 0.659 0.00%
F1B 0.659 0.659 0.00%

The geometrical parameters are: a=0.1, θ = 45˚, and H=w=4. Uniform stress σ =
50 is applied to each edge. 4 elements are used for each side of the plate, and 10
elements are used for each crack segment. Totally 104 nodes are used. F1A,F1B are
defined as:

F1A = K1A
σ
√

πa
F1B = K1B

σ
√

πa
(72)

Computational results are shown in Tab. 8, and are in good agreement to those of
[Chen and Hasebe (1995)].

7.4 Super Elements Developed by using the Symmetric Galerkin BIEs

Global SGBEM has shown its accuracy and efficiency in solving defective solids
with arbitrary embedded, edge, branching and intersecting cracks. However, be-
cause SGBEM always give a system of equations with fully populated coefficient
matrices, it is not suitable for modeling large-scale structures, e.g. bridges, auto-
mobiles, aircrafts. Therefore, it is beneficial to model a global structure with finite
elements, and model a local subdomain with SGBEM. [Han and Atluri (2003)] use
the Schwartz-Neumann alternating method without a direct coupling of SGBEM
and FEM, and have shown the accuracy and efficiency of their method, in calcu-
lating the stress intensity factors of 3D non-planar cracks, and modeling of their
non-planar fatigue growth. In this section, we develop a “Super Element” of the
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local subdomain, with arbitrary cavities and cracks. The developed super element
has a stiffness matrix and a force vector which corresponds to those of the tradi-
tional FEM. The stiffness matrix is positive semi-definite with the correct number
of rigid body modes. And the developed equations of the “super element” can be
directly coupled with the usual finite element equations using the usual assembly
procedure.

Because the Super Elements with and without cracks are slightly different in their
formulation, they are presented in the following two subsections respectively.

7.5 Super Element without Cracks

In this section, we only consider a subdomain without cracks.

In the global SGBEM as shown in section 4, unknown displacements are expressed
in terms of boundary element shape functions at St , and unknown tractions are
assumed at Su. For the global SGBEM, the displacement BIE is used at Su, and
the traction BIE is used at St . However, for the local subdomain Ω, we firstly
do not distinguish what types of boundary conditions are considered, and assume
displacements as ui= Nqi andtractions as ti= Mpi at the whole boundary ∂Ω of the
local subdomain. By using both displacement BIE (33) and traction BIE (29) for
the whole ∂Ω, we have:

−1
2 δpT

j
∫

∂Ω
MT (x)N(x)dSxq j

=−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

u∗p
j (x,ξξξ )M(ξξξ )dSξξξ p j

−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

G∗p
j (x,ξξξ )D(ξξξ )N(ξ )dSξξξ q j

−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

ni(ξ )φ
∗p
i j (x,ξξξ )N(ξ )dSξξξ q j

(73)

1
2 δqT

b
∫

∂Ω
N(x)T M(x)dSxpb

=−δqT
b
∫

∂Ω
D(x)NT (x)dSx

∫
∂Ω

G∗qb (x,ξξξ )M(ξ )dSξξξ pq

+δqT
b
∫

∂Ω
N(x)T dSx

∫
∂Ω

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δqT
b
∫

∂Ω
D(x)NT (x)dSx

∫
∂Ω

H∗bq (x,ξξξ )D(ξ )N(ξξξ )dSξξξ qq

(74)

Without ambiguity, one can rewrite (73) and (74), as:

−1
2

δpT Uq = δpT PPp+δpT PQq (75)

1
2

δqT Tp = δqT QPp+δqT QQq (76)

where(75) corresponds to (73), and (76) corresponds to (74).
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From the property of SGBEM, or by some trivial math manipulation, one can see
that, if M = N, then:

U = TT

PP = PPT

QQ = QQT

PQ = QPT

(77)

Using a slight manipulation, one can rewrite (75)and (76), as:

0 = δpT PPp+δpT
(

PQ+
1
2

U
)

q (78)

δqT Tp = δqT
(

QP+
1
2

T
)

p+δqT QQq (79)

Because δp is arbitrary (unlike δq), we can use static condensation of (78)(79) to
obtain:

δqT Tp = δqT
[

QQ−
(

QP+
1
2

T
)

PP−1
(

PQ+
1
2

U
)]

q (80)

From the properties in (77), we can see that the matrix in the right-hand side is
symmetric.

One more interesting observation is that:

δqT Tp = δqT
b
∫

∂Ω
N(x)T M(x)dSxpb

= δqT
b
∫

∂Ω
N(x)Ttb(x)dSx

= δqT Q
(81)

where the vector Q has the exact form of the generalized “force vector” in FEM.
Therefore, it is clear that the right hand side of (80) has the physical meaning of the
variation of strain-energy of Ω, and the symmetric matrix can be considered as the
“stiffness matrix” of the local subdomain. (80) can be therefore written as:

δqT Q = δqT Kq (82)

For numerical implementation, one can simply evaluate the stiffness matrix of the
local subdomain as:

K = QQ−
(

QP+
1
2

T
)

PP−1
(

PQ+
1
2

U
)

(83)

One can also evaluate the force vector Q using the usual FEM procedure. Hence,
the local subdomain can be treated as a “super element”, and can be directly cou-
pled with the FEM of the global structure using the usual assembly procedure.
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7.6 SGBEM Super Element with Cracks

The SGBEM Super Element is developed in the previous section for a subdomain
without cracks. However, when cracks are present, some modifications are neces-
sary. This is because of the fact that, the weakly-singular BIEs developed in section
2, can only allow users to consider cracks as part of the traction boundary, where
unkowns are the displacement discontinuity ∆ui at Sc. Crack surface tractions are
considered to be known (equal to 0 for example). When ∆ui are considered as un-
kowns, traction BIE, in a symmetric Galerkin weak form, is applied to the crack
surface. On the other hand, if one consider crack surface tractions as unkowns,
displacement BIE as developed in section 2 are not useful at the crack surface.

Therefore, the following modifications are made. Consider the boundary of domain
Ω which can be divided into Sb and Sc, where Sb is the summation of all the closed
contours representing the outer boundary and the inner cavities. We assume both
unknown displacements ui= Nqi and tractions ti= Mpi at the whole boundary Sb,
and we only assume displacement jumps at the crack surface Sc as ∆ui= Lri. Then
we write down the following equations:

−1
2 δpT

j
∫

Sb
MT (x)N(x)dSxq j

=−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

u∗p
j (x,ξξξ )M(ξξξ )dSξξξ p j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

G∗p
j (x,ξξξ )D(ξ )N(ξξξ )dSξξξ q j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

ni(ξξξ )φ
∗p
i j (x,ξξξ )N(ξξξ )dSξξξ q j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sc

G∗p
j (x,ξξξ )D(ξ )L(ξξξ )dSξξξ r j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sc

ni(ξξξ )φ
∗p
i j (x,ξξξ )L(ξξξ )dSξξξ r j

(84)

1
2 δqT

b
∫

Sb
N(x)T M(x)dSxpb

=−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sb

G∗qb (x,ξξξ )M(ξξξ )dSξξξ pq

+δqT
b
∫

Sb
N(x)T dSx

∫
Sb

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sb

H∗bq (x,ξξξ )D(ξξξ )N(ξξξ )dSξξξ qq

−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sc

H∗bq (x,ξξξ )D(ξξξ )L(ξξξ )dSξξξ rq

(85)

δrT
b
∫

Sc
L(x)T t̄b(x)dSx

=−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sb

G∗qb (x,ξξξ )M(ξξξ )dSξξξ pq

+δrT
b
∫

Sc
L(x)T dSx

∫
Sb

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sb

H∗bq (x,ξξξ )D(ξξξ )N(ξξξ )dSξξξ qq

−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sc

H∗bq (x,ξξξ )D(ξξξ )L(ξξξ )dSξξξ rq

(86)

Without ambiguity, one can rewrite these equations as:

−1
2

δpTUq = δpTPPp+δpTPQq+δpTPRr (87)
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1
2

δqT Tp = δqT QPp+δqT QQq+δqT QRr (88)

δrT R = δrT RPp+δrT RQq+δrT RRr (89)

One can rewrite these equations as:

0 = δpT PPp+δpT
(

PQ+
1
2

U
)

q+δpTPRr (90)

δqT Q = δqT
(

QP+
1
2

T
)

p+δqT QQq+δqT QRr (91)

δrT R = δrT RPp+δrT RQq+δrT RRr

Following the same static condensation procedure, we obtain the following equa-
tions:(

δq
δr

)T [Kqq Kqr
Krq Krr

](
q
r

)
=

(
δq
δr

)T (Q
R

)
(92)

where:

Kqq = QQ−
(
QP+ 1

2 T
)

PP−1 (PQ+ 1
2 U
)

Kqr = QR−
(
QP+ 1

2 T
)

PP−1 (PR)

Krq = RQ− (RP)PP−1 (PQ+ 1
2 U
)

Krr = RR− (RP)PP−1 (PR)

(93)

As described before, the vector Q has the exact form of the generalized “force
vector” in FEM, and δqT Q has the physical meaning of work done by force Q
subjected to the displacement δq at the boundary Sb. We can also see that δrT R has
the physical meaning of work done by force R, which represents the crack surface
tractions, subjected to the crack surface opening displacement δr. If a traction free
condition is considered at crack surfaces, the vector R vanishes and so does δrT R.

8 Numerical Examples for SGBEM Super Element

8.1 Validation of SGBEM Super Elements

In this section, we test the performance of SGBEM Super Elements.

Firstly, we solve the problem of an embedded through-the-thickness crack. The
same problem as in Fig. 5 is considered. One Super Element is used to solve this
problem. The discretization of the Super Element includes 40 nodes at the outer
boundary and 11 nodes at the crack. Computational results are shown in Tab. 9

K1 = σ
√

πa

√
2b
πa

tan
πa
2b

(94)
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Table 8: Computational Results for the center crack in Fig. 5
SGBEM Analytical Error

K1 28.65 28.50 0.53%

We also study the edge crack shown in Fig. 14. One Super Element is used to solve
this problem. The discretization of the Super Element has 50 nodes at the outer
boundary and 11 nodes at the crack. The computational results are compared to the
handbook solution in Tab. 10

Table 9: Computational Results for the edge crack in Fig. 10
SGBEM Handbook Error

K1 54.211 54.418 0.38%

We also study the case of a branching crack, as in Fig. 14. One Super Element is
used to solve this problem. The discretization of the Super Element has 40 nodes
at the outer boundary and 11 nodes at each crack segment.

Computational results are shown in Tab. 6.3, and are compared to those of [Chen
and Hasebe (1995)].

Table 10: Computational Results for the branching crackshown in Fig. 14
SGBEM Chen and Hasebe (1995) Error

F1A 0.964 0.964 0.00%
F1B 0.456 0.457 0.22%
F2B 0.469 0.467 0.43%

8.2 Implementation of the SGBEM Super-Element in to a FEM Code:

In this section, we implement the SGBEM Super Element into a standard finite
element routine, for fracture and fatigue Analysis.

We also solve the problem of an embedded through-the-thickness slant crack as
in Fig. 8. The same geometry and fatigue properties are considered. The mesh
is shown in Fig. 17, with 100 finite elements and 1 Super Element. The Super
Element contains 40 nodes at the outer boundary, and 11 nodes at the crack. The
number of analysis steps is 30. The total crack increment = 0.3. Computation
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results show that after 631138 cycles, the slant has grown to a mode I dominant
crack as shown in Fig. 18. By comparing to the global SGBEM shown in section
7.1, we can see the final crack shape and fatigue cycles are very close. The fatigue
cycle predicted by global SGBEM is 629398, which is slightly less the current
result from Super Element.

 Figure 17: Mesh for the plate with an embedded slanted crack by FEM and Super
Element, where the red color represents the Super Element

8.3 Using the SGBEM Super Element for Fatigue Analysis of Stiffened Aircraft
Panels with Composite-Patches

In this example, we use SGBEM Super Element to analyze the fatigue growth of a
center crack of thin panel with stiffeners and/or composite patches. Four cases are
considered:

Case a: panel without stiffeners or composite patch

Case b: panel with 2 stiffeners only

Case c: panel with 1 composite patch only

Case d: panel with 2 stiffeners and 1 composite patch

A 250mm by 500mm panel is considered. A crack with initial length 25.7mm is
located in the center of the panel.The length of each stiffener is 400 mm, and they
are separated by a distance of 140 mm. The dimensions of the composite patch are
70mm by 100mm. The fibers of the composite patch are laid in the same direction
of the tension applied to the upper and lower edges.
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Figure 18: Final shape of the embedded slant crack, which grew by fatigue, byusing
FEM and Super Element

Material properties are considered as:

Isotropic material for Panel: E=72.4 GPa, v =0.32, t =1mm.

Isotropic material for adhesive layer: E=1.07 GPa, v =0.32, t =0.127mm.

Orthotropic material for patch: E1=210 GPa, E2=25 GPa, G12=7.2 GPa, v12
=0.17, t =0.381mm.

Stiffeners: E=72.4 GPa, A=130 mm2, I =4370mm4.

The meshes of the panel, adhesive, patch and stiffeners are shown in Fig. 19-21.
The panel is modeled with quadrilateral elements and one Super Element. The
adhesive layer and the composite patch are modeled using quadrilateral elements.
And the stiffeners are modeled by beam elements, with both translational and rota-
tional degrees of freedoms.

A maximum uniform tension of 120Mpa is applied to the upper and the lower
edge of the panel. Stress ratio of 0.1 is considered. Paris equation is used. The
parameters of the equation are: C = 5.85 × 10−14 and n = 3.59. The number of
analysis steps is 40. The total crack increment =40mm. So in each step the crack
increment is 1mm. Predicted loading cycles are plotted against crack lengths in
Fig. 22. As shown in the results, the order of the magnitude of fatigue lives for
each case is such that: d>c>b>a, which is as expected.

We would like to point out that, the example in this study demonstrates that it is
very simple and efficient to use the SGBEM super element to conduct fracture and
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   (a)                                                       (b)   
 Figure 19: (a) Mesh for the plate with center crack by quad elements and a Super
Element, (b) a close-up view of the SGBEM Super Element

 Figure 20: Mesh for the composite patch and the adhesive layer by using quad
elements
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 Figure 21: Mesh for the stiffeners by using beam elements

 
Figure 22: Predicted fatigue lives for the crack panel
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fatigue analysis. However, quantitative comparisons of the computational results
with real geometry and material properties, to their corresponding experimental
results, will be carried out in future research.

9 Conclusion

Following the procedure of [Han and Atluri(2003)], 2D weakly-singular Symmetric
Galerkin Boundary Elements (SGBEMs) are developed, and are used to calculate
the stress intensity factors of arbitrary mixed mode, embedded, edge, branching,
and intersecting cracks. Computed stress intensity factors show high accuracy,
and the fatigue growth analysis of cracks requires minimal treatment, and no re-
meshing.

A Super Element is developed by rearranging the symmetric Galerkin boundary
integral equations. The Super Element is an arbitrarily-shaped domain with cracks
inside it. Each Super Element has a stiffness matrix and a force vector, which have
physical meanings similar to those by traditional finite elements. Likewise, the
stiffness matrix of the Super Element is also positive semi-definite and has exactly
three rigid body modes. Super Elements can be directly coupled with traditional
finite elements or special elements, using the simple assembly procedures. This
makes SGBEM Super Elements very suitable for analyzing large-scale structures
and complex structures. Fatigue analysis of cracked thin aircraft panels with stiff-
eners and composite patches are presented, showing the simplicity and efficiency
of using SGBEM Super Elements to model cracked composite structures.

We also would like to point out that, Super Elements can also be used to model
micromechanical behavior of heterogeneous materials, or even the growth of the
micro-cracks inside heterogeneous materials. These challenging studies will be
presented in future.
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