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Nonlinear Elastic-Plastic Analysis of Composite Members
of High-Strength Steel and Geopolymer Concrete

Mark Andrew Bradford1 and Yong-Lin Pi1

Abstract: This paper is devoted to the development of a finite composite beam
element for the nonlinear elastic-plastic analysis of composite high strength steel
and geopolymer concrete members. For this, geometric nonlinearity is derived
using a special orthogonal rotation matrix, so that scalar product of vectors is pre-
served during rotation from the initial configuration to a deformed configuration
and rigid body movements are excluded from the finite strains. The material non-
linearities of the geopolymer concrete are based on constitutive models in associa-
tion with its axial stress-strain relationship that is consistent with the experimental
results. To consider the slip due to possible partial shear connection of the bolts, the
slip displacement between the high strength steel and geopolymer concrete compo-
nents is treated as an independent degree-of-freedom. The effects of the nonlinear-
ities and slip on the deformations, strains, stress resultants, and stiffness are thus
combined together in the finite element formulation. The comparisons with exper-
imental results demonstrate that the finite composite beam element is efficient, ef-
fective, and accurate. The finite composite beam element provides the much needed
computer modeling of the structural mechanics and behaviour of high strength steel
and geopolymer concrete members with bolted shear connectors, which are envi-
ronmentally sustainable because they reduce the greenhouse emissions and can be
deconstructed and recycled at the end of their service life.

Keywords: composite member, elastic-plastic analysis, finite element, geopoly-
mer concrete, high strength steel, nonlinear, slip, interface.

1 Introduction

This paper is concerned with the development of a finite composite beam element
for the nonlinear elastic-plastic analysis of innovative composite high strength steel
(HSS) and geopolymer concrete (GPC) members (Fig. 1), whose merits in terms
of sustainable construction are threefold. Firstly, high-strength steel with yield
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stresses exceeding 600 MPa is used to resist the tension produced by bending action
in a composite HSS-GPC member, so that the quantity of steel is reduced and
subsequently less material and smaller foundations will be needed.

Figure 1: Cross-Section.

In addition, because the top flange of the I-section contributes little strength and
stiffness to a composite member, its thickness and width can be chosen to accom-
modate the shear connection to the slab only, which further reduces the quantity of
steel. Secondly, geopolymer concrete is used for the slab to resist the compression
produced by bending action. It has been reported that the production of ordinary
Portland cement currently contributes 7% to the world’s carbon dioxides emissions
[Davidovits (2008)] and so a reduction of this is important for environmental sus-
tainability. Hence, it is desirable to use alternative low-emission binding agents to
replace ordinary Portland cement for concrete. Geopolymers such as fly ash are an
ideal replacement of the ordinary Portland cement because they are not manufac-
tured and are ’waste’ products having very good binding properties, and GPC using
geopolymer as its binding agent has high compressive strength, little drying shrink-
age and low creep. Applications of geopolymer concrete in composite HSS-GPC
members will therefore help the reduction of carbon dioxide emissions. Thirdly,
composite HSS-GPC members can be deconstructed and recycled using precast
GPC planks that are post-tensioned with bars and connected to the top flange of
a HSS beam by shear connection bolts (Fig. 1). This allows for potential de-
constructability and recycling at the end of the life of the structure. These three
attributes therefore result in a composite HSS-GPC member that is environment-
friendly and which lead to a sustainable structure. However, current knowledge of
the structural mechanics of composite HSS-GPC members is very limited and little
research of their structural behaviour has been reported. Therefore, studies of the
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structural behaviour of composite HSS-GPC members are desired for this member
type to be introduced into sustainable building construction.

For this, computer modeling for the nonlinear elastic-plastic large deformation
analysis of composite HSS-GPC members is needed. To meet this need, a non-
linear finite composite beam element is developed fo the modeling. In the devel-
opment of the nonlinear finite composite beam element, three major problems have
to be solved: geometric nonlinearity, material nonlinearity, and slip between HSS
and GPC components. If the geometric nonlinearity is not treated properly, the
rigid body movement may be introduced to deformations, which may lead to over-
stiff responses [Pi, Bradford, and Uy (2007a); Tangaramvong and Tin-Loi (2009)].
Hence, in this paper, the geometric nonlinearity is derived based on the group the-
ory by using a special orthogonal rotation matrix to preserve scalar product of vec-
tors, which will exclude the rigid body movements during deformation. The exper-
imental studies of material properties of GPC reported by Hardjito, Wallah, Suma-
jouw, and Rangan (2005a,b), Fernandez-Jimenez, Palomo, and Lopez-Hombrados
(2004), and Sofi, van Deventer, and Mendis (2007) will be used to model the ma-
terial nonlinearity of GPC, while the rounded stress and strain curve proposed by
Ramberg and Osgood [Lemaitre and Chaboche (1994)] will be associated with the
constitutive laws of HSS. The slip between HSS and GPC components may influ-
ence the structural behavour of HSS and GPC composite members significant [He,
Li, and Shang (2011)]. In addition, in the nonlinear range, the interaction between
the slip and in-plane bending will produce additional shear strains and stresses at
both the interface and the cross section. These shear strains and stresses associated
with bolted shear connections have not been addressed numerically in the open lit-
erature. The shear stresses play a role in the local yield of the steel and concrete.
Therefore, the constitutive model for the slips will be based on the slip test results of
bolt connectors of Dallam (1968) and the slip will be considered as an independent
degree-of-freedom in the beam element. The purpose of this paper is to combine
these three essential aspects together to develop a nonlinear finite composite beam
element for HSS and GPC composite members with bolted shear connections to
predict their elastic-plastic large deformation behaviour, load carrying capacities
and the slip between the GPC slab and the HSS beam. Th element is to be verified
by comparisons with test results reported in the open literature.

2 Geometric Nonlinearity

To facilitate the development of geometric nonlinearity for the analysis of a com-
posite HSS-GPC member, it is assumed that its deformation satisfies the Bernoulli
hypothesis, i.e. its cross-sectional plane remains plane and perpendicular to the
member axis during the deformation, except for slip at the interface between the
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GPC slab and the HSS beam. Two axis systems are used to describe the deforma-
tion of a composite HSS-GPC member as shown in Fig. 2. The first set is a body
attached (material) right-handed orthogonal axis system, which is in the position
oyz in the undeformed configuration (Fig. 2) and with the axis oz being the cen-
troidal axis of the undeformed member and the axis oy the minor principal axis of
the cross-section. A unit vector pz in the direction of the centroidal axis oz, and
a unit vector py in the direction of the axis oy, form a right-handed orthonormal
basis vector system in the axes oxyz (Fig. 2). During deformation, the centroid o
displaces v,w to the position o∗, the axis oz deforms into a curve, and so the body
attached axis system moves and rotates to a new position o∗y∗s∗ as shown in Fig.
2. In a deformed configuration, a unit vector qz along the tangent direction of the
deformed centroidal axis o∗s∗, and the unit vector qy in the direction of the minor
principal axis o∗y∗ of the rotated cross-section, also form an orthonormal basis vec-
tor system in the axes o∗x∗y∗s∗. The basis vectors qy, qz attach to the member and
move with the member during the deformation with the vector qz remaining normal
to the cross-section at all times.

Figure 2: Position vectors.

The second set axis OXY is a space-fixed (space) right-handed rectangular coordi-
nate system as also shown in Fig. 2. The axes OY and OZ are parallel to the axes
oy and oz of the axes oyz in the undeformed configuration. The positions of the
member in the undeformed and deformed configurations can be defined in the axis
system OY Z.
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The finite strain tensor at a material point P can be expressed as[
εyy

1
2 γyz

1
2 γzy εzz

]
=

1
2
(FT F−FT

0 F0), (1)

where the gradient tensor F0 of the material point P before deformation is given by

F0 =

[
∂a0

∂y
,
∂a0

∂ z

]
(2)

while the deformation gradient tensor F of the material point P after the deforma-
tion is given by

F =

[
∂a
∂y

,
∂a
∂ z

]
=

[
∂a
∂y

,(1+ ε)
∂a
∂ s

]
, (3)

where a0 and a are the position vectors of the point P before and after deformation.

Figure 3: Slips and deformations.

The position vector a0 can be expressed as (Fig. 3)

a0 = r0 + ypy. (4)

To consider the slip between the HSS beam and the GPC slab of a composite mem-
ber, the total deformation of a material point P at a cross-section of the member
results from two successive motions: translation and finite rotation of the cross-
section, and a superimposed relative slip displacement between the HSS beam and
the GPC slab along the unit vector qz in the deformed configuration as shown in
Fig. 3. Because the slip displacement wsp(z) is a relative axial displacement be-
tween the HSS beam and the GPC slab, its sign should be opposite for the HSS
beam and the GPC slab. Under these two assumptions, the position vector a and ,
can be expressed as (Fig. 3)

a = r+ yqy∓wsp(z)qz (5)
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in which the sign before the term wsp(z)qz is negative (−) for the material point in
the GPC slab and is positive (+) for the material point in the HSS beam.

It is known [Pi, Bradford, and Uy (2006a, 2007a); Pi, Bradford, Tin-Loi, and
Gilbert (2007b)] that for nonlinear large deformation analysis, an improper treat-
ment of the relationship between the nonlinear strains and the displacements may
lead to rigid body movements being superimposed into the finite strains, which will
cause over-stiff solutions from the nonlinear analysis. From Eq. (1), it can be seen
that the derivation of the finite strain tensor consists of scalar products of vectors
and that to derive the finite strain tensor, the position vector a after deformation
needs to be transformed into the two dimensional vector space formed by base vec-
tors py and pz. Because any vector in the deformed configuration can be expressed
by the base vectors qy and qz, the transformation of vectors in the two dimensional
vector space of deformed configuration into the two dimensional vector space of
undeformed configuration reduces to the transformation from base vectors qy and
qz to base vectors py and pz as

pi = Ri jq j i, j = y,z. (6)

Group theory [Burn (2001)] shows that using the rotation matrix R that satisfies the
orthogonal and unimodular conditions

RT R = I (R jiRi j = δi j) and detR =+1, (δi j is the Kronecker deltas) (7)

from Eq. (6), q j = R jipi and the the scalar product of vectors can be preserved
during rotation and so the rigid body movement can be excluded from the finite
strain tensor. In fact, under the special orthogonal rotation R, the scalar product of
the vector q j can be expressed as

q j ·q j = qT
j q j = (Rpi)

T Rpi = pT
i RT Rpi = pT

i pi =+1 (8)

which indicates that the scalar product of vectors is preserved during the special
orthogonal rotation R.

To express the finite strain tensor as function of deformations, the special orthogo-
nal rotation matrix R needs to be derived in terms of deformations. In the deformed
configuration, the position vector of the centroid o∗ in the fixed axis system OY Z
is r as shown in Fig. 3, and so the vector qz can be obtained by differentiating the
position vector r of the centroid o∗ with respect to the arc length s∗ of the axis o∗s∗

as

qz =
dr
ds∗

=
1

1+ ε

dr
dz

, (9)
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where ds∗ = (1+ ε)dz is used, with ε being the longitudinal normal strain at the
centroid defined by

1+ ε =

√
(1+w′)2 + v′2 with ( )′ ≡ d( )/dz. (10)

In the deformed configuration, the position vector r of the centroid o∗ can be ex-
pressed as (Fig. 3)

r = r0 + vpy +wpz. (11)

Substituting Eq. (11) into Eq. (9) and considering dr0/dz = pz leads to

qz =
1

1+ ε

dr
dz

=
1

1+ ε
[v′py +(1+w′)pz] = v̂′py + ŵ′pz (12)

where v̂′ = v′/(1+ ε), and ŵ′ = (1+w′)/(1+ ε), from which v̂′2 + ŵ′2 = 1.

The rotation matrix R can then be expressed as

R =

[
ŵ′ v̂′

−v̂′ ŵ′

]
, (13)

which can be shown to satisfy the orthogonality condition RT R = I and the uni-
modular condition detR = +1. Hence, using the matrix R given by Eq. (13) to
derive the finite strain tensor can exclude the rigid body movement from the finite
strain tensor.

In the axis system o∗y∗s∗, the Frenet-Serret formula of differential geometry de-
fines the relationship between the curvature κ and the unit vectors qy and qz in the
deformed configuration as

dqy

ds∗
= κqz and

dqz

ds∗
=−κqy, (14)

from which the curvature κ in the deformed configuration can be obtained as

κ =
dqy

ds∗
qz =

1
(1+ ε)

dqy

dz
qz, or κ =−dqz

ds∗
qy =−

1
(1+ ε)

dqz

dz
qy. (15)

Substituting Eq. (6) and (13) into either equation of Eq. (15) leads to the expression
for the curvature in the deformed configuration as

κ =− 1
(1+ ε)

(v̂′′py + ŵ′′pz)(ŵ′py− v̂′pz) =
v̂′ŵ′′− ŵ′v̂′′

1+ ε
. (16)
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The finite strains can be obtained by substituting Eqs. (4) and (5) into Eq. (1) as

εyy = 0, (17)

εzz =
1
2
{
[(1+ ε)(1+ yκ)∓ w̃′sp]

2 +[(1+ ε)κw̃sp]
2−1

}
, (18)

and the shear strains γzy and γyz are given as

γzy = γyz =∓(1+ ε)κw̃sp, (19)

which are induced by the interaction between the slip and the in-plane bending. If
the geometric nonlinearity is not considered, these shear strains γzy and γyz in the
HSS beam and GPC slab would vanish.

3 Material Nonlinearities

3.1 Constitutive Models for Geopolymer Concrete

A finite element model for the nonlinear elastic-plastic analysis of a composite
HSS-GPC member has to include the material nonlinearity of the geopolymer con-
crete and high strength steel. The previously formulated geometric nonlinear anal-
ysis shows that when the HSS beam and the GPC slab have partial interaction at
their interface, the composite member will deform in the transverse and axial direc-
tions and that slip between the HSS beam and the GPC slab will occur. Because of
this, the composite member is subjected to both bending and shear actions. Hence,
the uniaxial stress-strain relationship for the GPC and HSS cannot be used directly
in the nonlinear elastic-plastic analysis. Proper constitutive models for the GPC
and HSS have to be established, and this section is devoted to establishing appro-
priate constitutive models for the GPC. In the most cases, the slab is subjected to
compressive action when it forms part of a composite beam. The yield criterion for
plain concrete in compression is adopted for GPC and is used in association with
the uniaxial stress-strain curve of GPC; the yield criterion being expressed as [Pi,
Bradford, and Uy (2006a)]

Fc(σ ,λ ) = σ
c
e −
√

3a0 pc−
√

3τc = 0 with σ
c
e =

√
σ2

zz +3τ2
zy, (20)

where pc =−σzz/3 and the parameter a0 is given by a0 =
√

3(1− rσ

bc)/(1−2rσ

bc),
the ratio rσ

bc is given by rσ

bc = σu
bc/σu

b , with σu
bc being the ultimate stress in biaxial

compression and σu
b being the ultimate stress in uniaxial compression, the typical

value rσ

bc = 1.16 is usually assumed, τc is a hardening parameter (τc is the size of
the yield surface on the σe axis at pc = 0) and in the uniaxial compression

τc =

(
1− a0√

3

)
σc, (21)
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where σc is the magnitude of σzz.

The constitutive equation for compression of GPC can be written in an incremental
form as

dσ = Eepdε, (22)

where the tangent material modulus matrix E(ep) can be obtained as

E(ep) =

[
Ec 0
0 Gc

]
− 1

αc

[
E(ep)

11 E(ep)
12

E(ep)
21 E(ep)

22

]
(23)

with

E(ep)
11 = (σzz +a0σe/

√
3)2E2

c , E(ep)
12 = E(ep)

21 = 3(σzz +a0σe/
√

3)τzyEcGc (24)

E(ep)
22 = 9τ

2
zyG2

c , and αc = τcσ
2
e +Ec(σzz +a0σe/

√
3)2 +9Gcτ

2
zy. (25)

Although the GPC component is often located in the compressive zone in a com-
posite HSS-GPC member, it may be subjected to tension in some cases such as in
negative bending. Therefore, a proper model for the detection of cracking of the
geopolymer concrete and a constitutive model for its tension are required. Based on
plain concrete, the crack detection surface for GPC can be defined by [Pi, Bradford,
and Uy (2006a)]

Ft = σ
t
e−
(

3−b0
σt

σu
t

)
pt −

(
2− b0

3
σt

σu
t

)
σt = 0 with σ

t
e =

√
σ2

zz +3τ2
zy, (26)

where pt = −σzz/3 ; σt(λt) is a hardening parameter (i.e. the equivalent uniaxial
tensile stress), and b0 is a constant and its value can be obtained as

b0 = 3
1+(2− f )rσ

t −
√

1+( f rσ
t )

2 + f rσ
t

1+ f rσ
t (1− f )

(27)

where rσ
t is the ratio of the ultimate stress in uniaxial tension to the ultimate stress

in uniaxial compression and given by rσ
t = σu

t /σu
c , and f is the ratio of the ultimate

stress in uniaxial tension to the nonzero principal stress σ2 at the occurrence of
cracking when one principal stress has the value σ1 = σu

c in a plane stress test, i.e.
f = σu

t /σ2. Typical compressive yield surface defined by Eq. (20) and the crack
detection surface defined by Eq. (26) are plotted together in Fig. 4.

Before cracking, the response of GPC under tensile longitudinal normal and shear
stresses is assumed to be linear, and the constitutive equation can be written in an
incremental form as

dσ = Ectdε with Ect =

[
Ec 0
0 Gc

]
, (28)
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Figure 4: Proposed failure surfaces for geopolymer concrete.

in which Ec is the Young’s modulus of elasticity of the concrete, Gc is the shear
modulus of elasticity of the concrete and given by Gc = Ec/[2(1+ νc)], and νc is
the Poisson’s ratio of the concrete.

After cracking, tensile stresses are generated in the cracked GPC as a result of the
transfer, via shear and bond, of the stresses from the reinforcement and steel com-
ponent. The Gauss point models the crack (or cracks) and the adjacent concrete and
consequently its response should be stiffer than it would be for a purely brittle fail-
ure. This phenomenon is called "tension stiffening" [Gilbert and Warner (1978)].
To consider the tension stiffening, the modulus matrix Ect in Eq. (28) is replaced
by a damaged tangent material matrix Ecr given by

Ecr =

[
Ecr 0
0 Gcr

]
, (29)

where Ecr and Gcr are the reduced normal and shear moduli. The reduced normal
modulus can be determined by (Fig. 5)

Ecr =
0−σu

t

εmax
t − εu

t
, (30)

while the shear modulus is given by

Gcr = ρGc, ρ = 1− εt

εmax
t

, (31)

where εt is the normal tensile strain and εmax
t is the assumed maximum value of the

normal tensile strain.

When the external load is sufficiently large, it may cause the GPC in the compres-
sive zone to crush, and hence the constitutive model for this crushed state needs to
be established. To facilitate computation after "crushing", the GPC is assumed to
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Figure 5: Tension stiffening model.

lose some, but not all, of its strength and rigidity due to the transfer of stresses from
the reinforcement and the adjacent uncrushed concrete. The constitutive equation
for the "crushed" concrete may be expressed as

dσ = Ecrdε with Ecr =

[
K 0
0 0

]
and K =

Ec

3(1−2νc)
(32)

where K is the bulk modulus of concrete.

4 Constitutive Model for High Strength Steel

The constitutive model for the nonlinearity of high strength steel is also important
for the nonlinear elastic-plastic analysis of composite HSS-GPC members. Uniax-
ial stress-strain experiments have shown that the HSS has no typical yield stress
[Lemaitre and Chaboche (1994)]. Because of this, the value of 0.2% proof stress
of the uniaxial stress-strain curve of HSS is usually taken as the reference uniaxial
initial yield stress. In association with the uniaxial stress-strain behaviour of HSS,
the von Mises yield criterion, associated flow rule and isotropic hardening law can
be used to establish the constitutive model for HSS. In this case, the von Mises
yield criterion can be used to describe the change of the yield surface of HSS as

F = σe−σy = 0 with σe =
√

σ2
zz +3τ2

zy and σy = σ0.2 +
∫

ε
(p)
e

0
H ′sdε

(p)
e , (33)

where σy is the reference uniaxial yield stress, H ′ is the hardening parameter, dε
(p)
e

is the equivalent plastic strain rate, and σ0.2 is the reference uniaxial initial yield
stress.
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Based on the associated flow rule and isotropic hardening law, an incremental con-
stitutive equation for the steel can be derived as [Pi, Bradford, and Uy (2006a,b)]

dσ = E(ep)dε (34)

where the stress and strain increments are dσ = {dσzz,dτzy}T and dε = {dεz,dγzy}T ,
and the tangent material modulus matrix E(ep) is given by

E(ep) =

[
Es 0
0 Gs

]
− 1

α

[
σ2

zzE
2
s 3σzzτzyEsGs

3σzzτzyEsGs 9τ2
zyG2

s

]
(35)

in which the coefficient α is given by α = σ2
e H ′s +σ2

zzEs +9τ2
zyGs, Es is the Young’

modulus of elasticity, and Gs is the shear modulus of elasticity given by Gs =
Es/[2(1+νs)] with νs being the Poisson ratio of the steel.

It can also be shown [Pi, Bradford, and Uy (2007a)] that the equivalent plastic strain
rate dε

p
e in Eq. (33) is given by

dε
(p)
e = cT dε =

σe(Esσzzdεzz +3Gsτzydγzy)

σ2
e H ′s +σ2

zzEs +9τ2
zyGs

. (36)

5 Nonlinear Shear Force and Slip Relationship

To account for the nonlinear shear force and slip relationship, the present FE model
provides a facility for the incremental relationship between the slip wsp and shear
force Qint at the interface between the HSS beam and the GPC slab. To input the
correct incremental relationship between the slip wsp and shear force Qint at the in-
terface, the nonlinear shear force-slip characteristics at the interface can be obtained
by push-out tests. Based on the test results, several idealized force-slip relationships
such as bi-linear elastic-full plastic characteristics and rigid-plastic characteristics
proposed for the design of composite members [Oehlers and Bradford (1995)] can
be modified based on the push-out tests and be used for the composite GPC and
HSS members. However, for the nonlinear analysis, the accuracy of the bi-linear
slip and shear force relationship is not sufficient. Yam and Chapman (1968) pro-
posed a nonlinear empirical relationship between the slip wsp and the shear force
Qint as

Qint = a[1− exp(−bwsp)], (37)

where a and b are constants and they can be obtained from two points wsp2 = 2wsp1
of an experimental curve as

a =
Q2

1
2Q1−Q2

and b =
1

wsp1
ln

Q1

Q2−Q1
(38)
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where Q1 and Q2 are the shear forces corresponding to the slips wsp1 and wsp2
respectively.

In composite HSS and GPC members, the bolt shear connectors are proposed to
connect the GPC slab to the HSS beam. Dallam (1968) performed 12 push-out
tests using high strength bolts with ordinary Portland concrete slabs and mild steel
joists. A typical empirical curve between the slip and shear force given by Eq.
(37) is compared with the push-out test results of Dallam (1968) in Fig. 6. It can
be seen when the slip is small, the empirical curve agrees with the experimental
results very well, but when the slip becomes large the empirical curve is somewhat
conservative.
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Figure 6: Nonlinear relationship between shear force and slip at interface.

For a better correlation, the new empirical relationship between the slip wsp and
shear force Qint for the bolt shear connectors is proposed based on the test results
of Dallam (1968) as

wsp =
Qint

Kl
+

p
10

(
Qint

Qn

)c

, (39)

where Kl is the linear shear stiffness at the interface obtained from a push-out test;
Qn is the shear force at which the relationship between the slip displacement and
the shear force at the interface becomes nonlinear, and which can be obtained from
experiments; and the parameters p and c are chosen to match the experimental
data. The empirical relationship between the slip and shear force given by Eq. (39)
is also shown in Fig. 6, where c = 10 and p = 10. It can be seen that it has very
good correlation with the test results of Dallam (1968).
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The tangent relationship between the slip increment and the shear force increment
can be obtained from Eq. (37) or Eq. (39) as

dQint = abexp(−bwsp)dwsp (40)

or

dwsp =

(
1
Kl

+
cpQc−1

int
10Qc

n

)
dQint . (41)

To facilitate the slip displacement with the beam element, it is assumed that the
shear connection between the HSS beam and the GPC slab is assumed acts as a
continuous medium along the length of an element, and that the shear connectors
are uniformly distributed along the length of a composite member. Hence, the shear
force per unit length (shear flow force) qsh can be expressed as

qint =
Qint

s
(42)

where s is the spacing between the adjacent connectors.

Finally, the incremental relationship between the shear force per unit length qint

and the slip wsp can be obtained from Eqs (37) (or (41)) and (42) as

dqint = Kintdwsp (43)

where Kint is the tangent stiffness for the slip deformation and it can be obtained
from Eq. (40) as

Kint =
abexp(−bwsp)

s
, (44)

or from Eq. (41) as

Kint =
10klq

q
n

s(10Qc
n + cpKlQc−1

int )
. (45)

The incremental relationship between the shear force per unit length qint and the
slip wsp given by Eq. (45) is used in this paper.

6 Nonlinear Equilibrium

With the nonlinear relationships for strain, displacements and slips, and the non-
linear constitutive models for the GPC and HSS, and the nonlinear slip-shear force
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relationship being established, the nonlinear equilibrium equations for the elastic-
plastic analysis of a composite HSS and GPC element can be derived from the
principle of virtual work, which requires that

δU =
∫

V
δε

T
σdV +

∫ `

0
δwspqshdz−

∫ `

0
δuT qdz− ∑

k=1,2
δuT Qk = 0 (46)

for all admissible sets of infinitesimal virtual displacements {δv,δw,δwsp} where
` is the length of the element; σ is the stress vector given by σ = {σzz,τzy}T ; qsh is
the shear force per unit length; δwsp is the corresponding virtual slip at the interface
between the HSS and GPC components; q and Qk are the vectors of the external
distributed and concentrated loads, respectively and are given by

q = {qy,qz,m}T and Qk = {Qy,Qz,M}T
k (k = 1,2); (47)

and δu = {δv,δw,−δv′}T is the vector of the virtual displacements conjugate to
the load vectors q and Qk; and the virtual strain δε = {δεzz,δγzy}T can be ex-
pressed as

δε = SBδd (48)

with the matrix S being given by

S =

[
1 y 0
0 0 1

]
, (49)

the vector of general displacements given by

d = {v,v′,v′′,w,w′,w′′,wsp,w′sp}T , (50)

and the matrix B given by

B =

 0 v′ 0 0 1+w′ 0 0 wsp∓1
0 w′′ −(1+w′∓w′sp) 0 −v′′ v′ 0 ±v′′

0 0 ∓wsp 0 0 0 ∓v′′ 0

 . (51)

By substituting Eq. (48) into the virtual work given by Eq. (46) and expressing
the general displacement vector as d = Nr, where N is the shape function matrix
whose elements are functions of z, and r is the nodal displacement vector given by

rT = {v1,v′1,w1,w′1,wsp1,w′sp1,v2,v′2,w2,w′2,wsp2,w′sp2}, (52)

the nonlinear equilibrium equations can be derived as

pin = p, (53)
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where pin =
∫ `

0 NT (BT R+qsh)dz and p= [
∫ `

0 NT AT qdz +∑k=1,2 NT AT Qk] are vec-
tors of the internal and external forces respectively, in which R is the vector of the
stress resultants given by R =

∫
A ST σdA, qsh is an 8× 1 vector of the unit shear

force acting at the interface between steel and concrete components and given by
qsh = {0,0,0,0,0,0,qsh,0}T with qsh being given by Eq. (43), and A is a 3× 8
matrix and its non-zero elements are given by A11 = 1, A22 =−1 and A33 = 1.

7 Incremental Equilibrium

Applying the principle of virtual work to successive equilibrium states defined by
(q, Q δ ), and (q+∆q, Q+∆Q,δ +∆δ ) leads to{

d(δU)

dδ

}T

∆δ +

{
d(δU)

dq

}T

∆q+ ∑
k=1,2

{
d(δU)

dQk

}T

∆Qk = 0. (54)

Substituting Eq. (46) into Eq. (54) and considering that the elements of the matrix
A are constants and so dA = 0 leads to the incremental equations of equilibrium as

kT ∆r = ∆p, (55)

where the tangent stiffness matrix kT is given by

kT =
∫ `

0
NT (BT DB+Mσ +Msh)Ndz, (56)

and the vector of equivalent external incremental loads ∆p is given by

∆p =
∫ `

0
NT AT

∆qdz+ ∑
i=1,2

NT AT
∆Qk. (57)

In Eq. (56), the matrix Mσ is an 8× 8 symmetric matrix that accounts for the
nonlinear effects of the stress resultants on the tangent stiffness matrix, the matrix
Msh is an 8× 8 matrix with elements Msh(i, j) = δ7, jδi,7Ksh in which δi, j is the
Kronecker delta (δi, j = 1 when i = j and δi, j = 0 when i 6= j) and Ksh is given by
Eq. (43), and the matrix D is given by

D =
∫

A
STEepSdA. (58)

8 Incremental-Iterative Analysis

A Newton-Raphson method is used in conjunction with the incremental equilibrium
equations given by Eq. (55) to solve the nonlinear equilibrium equations (53). In
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the incremental-iterative implementation, each load step consists of the application
of an increment of the external loads and subsequent iterations to correct the errors
until the nonlinear equilibrium governed by Eq. (53) is restored within a specified
admissible tolerance. Before the restoration, the internal and external forces are
not in equilibrium and hence the incremental-iterative equilibrium equations can
be written from Eq. (55) as

ki∆r j
i = ∆pi−∆p j−1

i , (59)

where i and j denote the load step and the iteration within the load step, respec-
tively, and ∆p j−1

i is the unbalanced force in the last iteration ( j− 1) that can be
calculated using Eq. (53) as

∆p j−1
i = [pin−p] j−1

i . (60)

The arc-length method is used as the iterative strategy, with an automatic incre-
ment of the arc-length being used [Pi, Bradford, and Uy (2007a)]. The sign of the
determinant of the tangent stiffness matrix is used for the sign of the load incre-
ment. The maximum norm of the incremental displacements is used for testing the
convergence, so that

||ε||= maxk|
∆rk

rk,re f
|< ζ (61)

where ∆rk is the change in the displacement component k during the current itera-
tion cycle, rk,re f is the largest displacement component of the corresponding type,
and ζ is in the range 10−2 to 10−5, depending on the desired accuracy.

During the incremental-iterative solution, the incremental general displacements
instead of the iterative general displacements are used to calculate the strain incre-
ments and strain updating, so that "spurious unloading" can be avoided. The elastic
predictor and radial return technique [Zienkiewicz and Taylor (1989)] is adopted in
the strain-stress incremental calculation.

9 Applications

9.1 General

In the implementation of the FE program, the constitutive models for the geopoly-
mer concrete and high strength steel need to be used in association with their uniax-
ial stress-strain curves. The stress-strain curve for GPC is somewhat different from
that of ordinary Portland concrete, as found by Davidovits (2008), and Hardjito,
Wallah, Sumajouw, and Rangan (2005a). They used uniaxial stress-strain curve as

σ =
σmax

εmax

nε

n−1+(ε/εmax)nk (62)
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where σmax and εmax are the peak stress and the strain corresponding to the peak
stress, the parameter n is defined as n = 0.8 + (σc/12), and the parameter k is
defined as

k =
{

0.67+(σmax/62) ε/εmax > 1
1 ε/εmax ≤ 1

. (63)

The formula for the elastic modulus of geopolymer concrete was also proposed by
Davidovits (2008) and Hardjito, Wallah, Sumajouw, and Rangan (2005a) as

Ec = (5300+2707
√

f ′c)(MPa). (64)

Eq. (62) and (64) are used in this paper for GPC and a typical stress-strain curve
for GPC is shown in Fig. 7.
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Figure 7: Stress-strain curve for geopolymer concrete.

For the HSS, the rounded stress and strain curve proposed by Ramberg and Osgood
[Lemaitre and Chaboche (1994)] is used, which is expressed as

ε =
σ

Es
+

p
100

(
σ

σp

)n

, (65)

where Es is the Young’s modulus of elasticity, σp is a reference stress and usually
takes the value of the 0.2% proof stress, i.e., σp = σ0.2, and the parameters p and n
are chosen to match the test data. A typical stress-strain curve is shown in Fig. 8.

The FE model of this paper can also be used for the nonlinear elastic-plastic anal-
ysis of the conventional composite steel and concrete members. In this case, the
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Figure 8: Stress-strain curve for high strength steel.

tri-linear stress-strain curve is used for the mild steel, while the following stress-
strain curve is used for the normal concrete [Pi, Bradford, and Uy (2006a)]

σ =
Ecε

1+[Ec/(σc/εc)−2]ε/εc +(ε/εc)2 (66)

where σc is the maximum compressive stress and εc is the strain corresponding to
σc.

The accuracy of the incremental-iterative plastic analysis is related not only to the
algorithm used, but also to the sampling point scheme over the cross-section that
should be chosen in the most appropriate way. In order to determine the correct
stress state over the entire cross-section and to detect the cracking and crushing
of the concrete correctly, a composite cross-section needs to be divided into sev-
eral components so as to use the corresponding material properties and constitutive
models. Each of the components of the composite cross-section are further divided
into a number of areas. The non-bias Gaussian numerical integration technique
[Zienkiewicz and Taylor (1989)] is used in the present FE model. The number of
areas and the number of Gaussian points in each area can be determined in accor-
dance to the problem in hand.

9.2 Composite beams tested by Dallam (1968)

Because the use of composite HSS-GPC members in construction is relatively new
proposal, the analytical, numerical and experimental studies on their structural be-
haviour do not appear to have been reported in the open literature. Hence, the
finite beam element developed in this paper is used to analyze the bolted compos-
ite steel and concrete beams tested by Dallam (1968) at the University of Missouri
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in 1968. They carried out static tests of six full-scale simply-supported compos-
ite beams using high-strength bolts as shear connectors. The bolts were placed
through pre-drilled holes in the top flange of the steel beam and were tensioned
after the concrete had cured. The six full-scale composite beams were tested in two
series and each series consists of three beams. The dimensions, the cross-section,
and the loadings of the first and second series are shown in Figs. 9( a) and 9(b)
respectively. Eight beam elements were used to model the composite beams. The

Figure 9: Composite beam tested by Dallam (1968).

strength and Young’s modulus of the steel beams obtained from the experiments are
shown in Table 1, while the compressive strength, unit weight, and Young’s mod-
ulus of the concrete slab are shown in Table 2. In the FE computation, the shear
force-slip relationships given by Eq. (43) with appropriate parameters obtained
from the push-out test results of Dallam and Harpster (1968) were used.

Table 1: Young’s modulus and strength of steel

Specimen Young’s Modulus Strength σs

Es Web Flange
Psi×106 MPa Psi×103 MPa Psi×103 MPa

NFB4B2 29.0 199,955 38.0 262.01 36.6 252.36
NFB6B2 29.1 200,644 38.2 263.39 37.2 256.49

The FE results of variations of the central deflection vc with the load per jack P
are compared with test results of Dallam and Harpster (1968) in Fig. 10(a) for the
composite beams NFB6B2 of the first series, and in Fig. 10(b) for NFB4B2 of the
second series, respectively. For the beam NFB6B2 (Fig. 10(a)), the nonlinear be-
haviour starts at the load P = 140 kN. As the load increases, the yielding increases
and spreads to other section of the beam. As the load increases above P = 205kN,
the composite beam fails by crushing the concrete of the slab at the centre of the
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Table 2: Young’s modulus, strength and unit weight of concrete

Specimen Young’s Modulus Ec Compressive Strength σ ′c Unit Weight
Psi×106 MPa Psi×103 MPa Pcf kg/m3

NFB4B2 4.19 28,890 6.89 47.51 137.5 2195
NFB6B2 4.57 31,510 7.13 49.16 144.0 2307

1 Psi×103=1kip/in2 = 6.895MPa, 1 Pcf = 16.0187kg/m3

beam. For the beam NFB4B2 (Fig. 10(b)), the steel beam began to yield at the load
P = 150 kN. As the load increases above P = 210kN, the composite beam fails by
crushing the concrete of the slab at the centre of the beam. It can be seen that the
agreement of the FE results with the test results is very good.
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Figure 10: Comparison with test results for mid-deflection of beams NFB6B2 and
NFB4B2 [Dallam (1968)].

The FE results for the end slips are also compared with the test results as the varia-
tions of the end slip with the load per jack in Fig. 11(a) for the beam NFB6B2, and
in Fig. 11(b) for the beam NFB4B2. It can be seen that the agreement of the FE
results with the test results is also very good.

9.3 Geopolymer reinforced concrete columns tested by Sumajouw, Hardjito,
Wallah, and Rangan (2007)

To verify that the material properties of GPC are properly formulated in the FE pro-
gram developed in this paper, the FE program was used to perform the nonlinear
elastic-plastic analysis of geopolymer reinforced concrete columns tested by Suma-
jouw, Hardjito, Wallah, and Rangan (2007), who performed tests of 12 geopolymer
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Figure 11: Comparison with test results for end slip of beams NFB6B2 and
NFB4B2 [Dallam (1968)].

reinforced columns. The cross-section of the columns is shown in Fig. 12. The lon-
gitudinal reinforcement of the columns consists of 4 or 8 Australian N12 deformed
steel bars. The nominal cross-sectional area of an N12 bar is 110mm2 and the yield
stress was obtained in the tensile test as 519 MPa. The lateral closed ties consist
of 6 mm diameter (W6) hard-drawn steel wires at 100 mm spacing. The cylinder
strength of each tested column obtained from the cylinder crushing test is listed in
Table 3.

Figure 12: GPC columns tested by Sumajouw, Hardjito, Wallah, and Rangan
(2007).

However, the strength of concrete in a column differs from that in the cylinder test
due to their differences in size, vibration during casting, curing, loading rate etc.
To take these differences into account, a factor k3 is applied to the cylinder stress
to obtain the concrete strength for the corresponding column. ACI Committee 263
(1984) recommended k3 = 0.85. Ibrahim and MacGregor (1997) showed the value
of k3 varies from 0.82 to 1.12 for the concrete with σc of 40-120 MPa. MacGregor
and Wight (2006) proposed k3 = 0.9. The value of k3 = 0.9 is used in the FE
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Table 3: Details of GPC columns

Specimen Cylinder Strength f ′c (MPa) Longitudinal reinforcement e (mm)
GCI-1 42 4B12 15
GCI-2 42 4N12 35
GCI-3 42 4N12 50
GCI-4 43 8N12 15
GCI-5 43 8N12 35
GCI-6 43 8N12 50
GCII-1 66 4N12 15
GCII-2 66 4N12 30
GCII-3 66 4N12 50
GCII-4 59 8N12 15
GCII-5 59 8N12 30
GCII-6 59 8N12 50

analysis for these geopolymer reinforced columns to account for the difference
between the GPC strength of the columns and the GPC cylinder strength.

The stress-strain relationship given by Eq. (62) is used in association with the tested
properties of the GPC given in Table 3. Since the elastic modulus of the GPC was
not reported, the formula proposed by Hardjito, Wallah, Sumajouw, and Rangan
(2005a) and given by Eq. (64) was used for calculation of the elastic modulus.
Eight elements were used for each column.

The FE results for typical variations of the mid-height deflection with the external
load are shown in Fig. 13 for the GPC reinforced columns GCI1-1, GCI1-5 and
GCI1-6. It can be been the FE results agree with the test results very well.

The FE results for the ultimate load and the corresponding mid-height deflection of
all tested columns are compared with the test results in Table 4. The mean value
of the ratio of the FE and test results for the ultimate loads of the 12 columns is
1.015, while the mean value of the ratio of the FE and test results for mid-height
deflections at the ultimate loads of the 12 columns is 1.017.

9.4 Continuous composite beam tested by Ansourian (1981)

Six continuous composite steel-concrete beams using ordinary concrete were tested
by Ansourian (1981) and are widely-used for benchmark data. The tested beams
CTB2 and CTB5 (Fig. 14) are herein used to demonstrate the ability of the present
FE model in analyzing the nonlinear elastic-plastic behaviour of the continuous
composite steel-concrete beams.
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Figure 13: Comparison with test results for mid-deflection of GPC columns.

Table 4: Comparison with test results of Sumajouw, Hardjito, Wallah, and Rangan
(2007)

Specimen Test results FE results Correlation
Qmax(kN) vc (mm) Qmax(kN) vc (mm) Qmax(kN) vc (mm)

GCI-1 940 5.44 937 5.58 0.9968 1.0257
GCI-2 674 8.02 720 8.41 1.0682 1.0486
GCI-3 555 10.31 534 10.82 0.9622 1.0495
GCI-4 1,237 6.24 1,226 6.03 0.9911 0.9663
GCI-5 852 9.08 864 8.87 1.0141 0.9515
GCI-6 666 9.40 675 9.62 1.0135 1.0244
GCII-1 1,455 4.94 1,376 5.53 0.9457 1.1194
GCII-2 1,030 7.59 1,032 7.94 1.0019 1.0461
GCII-3 827 10.70 886 9.91 1.0713 0.9262
GCII-4 1,559 5.59 1,561 6.38 1.0013 1.1413
GCII-5 1,057 7.97 1,100 7.37 1.0407 0.9247
GCII-6 810 9.18 869 9.04 1.0728 0.9847
Mean 1.015 1.017

The dimensions of the steel I-section of CTB2 and CTB5 are: the overall depth
d = 200 mm, the web thickness tw = 5.6 mm, the flange width b f = 100 mm,
and the flange thickness t f = 8.5 mm for CTB2, and d = 240 mm, tw = 6.2 mm,
b f = 100 mm, and are: t f = 9.8 mm for CTB5. The Young’s moduli of the steel
and concrete are assumed as Es = 200,000 MPa and Ec = 28,869 MPa. The stress-
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Figure 14: Continuous composite steel-concrete beams tested by Ansourian (1981).

strain curve for conventional concrete given by Eq. (66) was used for the concrete
slabs with 200 mm cube strength 50 MPa for CTB2, and 29 MPa for CTB5. Tri-
linear stress-strain curve was used for the steel I-beam and reinforcement with the
initial yield stresses 277 MPa, 340 MPa, and 430 MPa for the flange, web and
reinforcement of CTB2, and 265 MPa, 278 MPa, and 430 MPa for the flange, web
and reinforcement of CTB5. The FE results for variations of the applied load with
the vertical deflections of the middle spans are compared with the test results in Fig.
15(a) for the beam CTB2, and in Fig. 15(b) for the beam CTB5. Eight elements
were used for each beam. The FE results agrees with the test results very well.
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Figure 15: Comparison with test results of Ansourian (1981).

10 Conclusions

This paper has developed a finite composite beam element for the nonlinear elastic-
plastic analysis of composite HSS and GPC members. The relative slip between
the steel and concrete components was considered as an independent degree-of-
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freedom. The geometric nonlinearities were derived using vector analysis and dif-
ferential geometry to exclude rigid body movements from the nonlinear strains.
Constitutive models for the compression, crack detection, and crushing of geopoly-
mer concrete were proposed to account for the material nonlinearity of geopolymer
concrete. In the FE implementation, these constitutive models were used in asso-
ciation with the uniaxial stress-strain curve for geopolymer concrete proposed by
Hardjito, Wallah, Sumajouw, and Rangan (2005a, 2004). The effects of nonlinear-
ities and slip on the deformations and strains in the steel and concrete components
and so on the stress resultants, stiffness, and strength of the composite member are
thus combined together in the FE formulation. The comparisons reported with the
experimental results demonstrated the good numerical capacity and efficiency of
the nonlinear finite beam element developed in this paper.
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