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Faster Than Real Time Stochastic Fire Spread Simulations
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Abstract: Faster than real time stochastic fire spread predictions are reported us-
ing a Non-Intrusive Spectral Projection (NISP) method based on Polynomial Chaos
expansion and Graphic Processing Units (GPUs). The fireLib BEHAVE model to-
gether with a raster surface fire growth algorithm was implemented using the Com-
pute Unified Device Architecture (CUDA) programming language. The uncertainty
generated by the four random variables considered (wind speed, wind direction,
fuel moisture, and fuel load) is quantified in the stochastic solution. Stochastic
simulation of an idealized vegetation fire in a realistic complex terrain is obtained
with speed-ups as high as 176 when compared to Central Processing Unit (CPU)
and two orders of magnitude faster than real time fire propagation. The results
include the fire front location and its error bar area, based on a 95% confidence
interval, as well as temporal Probability Density Functions at selected points that
quantify the uncertainty on the fire spread.

Keywords: Faster than real time; Graphic Processing Units; Non-intrusive spec-
tral projection; Uncertainty quantification.

1 Introduction

Forest fires may be simulated using either deterministic or stochastic approaches
depending on the purpose of the application. Fire spread predictions may be useful
for firefighter training Kimmins, Blanco, Seely, Welham, and Scoullar (2010) and
resource management such as detecting higher flammable zones, decision support,
forest cleaning planning and to assess economic impacts towards structures fire
risk. Additionally, if reliable much faster than real time predictions are obtained
they may assist fire mitigation and fighting.

Deterministic models were thoroughly developed after the pioneering Rothermel
(1972) work and extensive literature reviews exist on semi-empirical modeling,
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see e.g. Finney (1998), Perry (1998), Viegas (1998), Lopes, Cruz, and Viegas
(2002), Pastor, Zárate, and Arnaldos (2003), Stratton (2006), and Papadopoulos
and Pavlidou (2011).

The characterization of input variables is extremely important because they strongly
affect forest fire simulations. Data bases of input parameters are scarce for real
situations because their values are not constant neither in time nor in space. Con-
sequently, model predictions have been mostly applicable to situations where the
impact of possible errors is limited, such as training and fire management activities
other than operational fire behavior prediction. Due to this uncertainty in the input
parameters, namely in vegetation characteristics, wind fields and topographic con-
ditions, it is highly recommended to simulate forest fire propagation with methods
that consider the input variability in the model.

There is a lot of published work about stochastic and probabilistic fire modeling.
Most encountered approaches are used in ecological and impact assessment studies
which consider multiple fire events over long time periods. These studies address
scenario simulation employing stochastic fire behavior and occurrence estimated
from historical data Fried, Gilless, and Spero (2006), stochastic optimization meth-
ods to predict options that minimize the total cost of the wildfire [Ntaimo, Hu, and
Sun (2008); Hu and Ntaimo (2009)] and ecological studies over several decades
with fire occurrences introduced as probabilistic distributions based on past fre-
quencies He and Mladenoff (1999). Furthermore, some models have been adjusted
to account for random variables and mechanisms. Some techniques have been ap-
plied such as Cellular Automata (CA) with stochastic evolution rules Lichteneg-
ger and Schappacher (2009), fire spread rate based on the probability functions of
fire mechanism and input variables [Vorobov (1996); Boychuk, Braun, Kulperger,
Krougly, and Stanford (2009)] and also conventional Monte Carlo techniques were
used, for instance, in the elaboration of high resolution fire-risk maps Carmel, Paz,
Jahashan, and Shoshany (2009).

All these works consider fire behavior to be intrinsically probabilistic and they are
very little concerned about the way the uncertainty of the input data is propagated
by forest fire spread models to the final forecast.

Knowing that it is not feasible to assume the input data to be 100% accurate, the
uncertainty input in fire development should be quantified in the fire growth pre-
diction. Stochastic Uncertainty Quantification (UQ) methods are able to effectively
deliver this analysis resorting to a sample set of deterministic solutions obtained
with the input’s Probability Density Function (PDF). Several options are available
for stochastic UQ as for instance Monte Carlo methods, but they are very compu-
tational demanding due to the large data sets required, namely for complex cases
when the number of non-deterministic variables increases. Furthermore, Monte
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Carlo methods do not allow for sensitivity analysis, this is, direct quantification of
the uncertainty contribution of each input parameter in the solution. Non-Intrusive
Spectral Projection (NISP) methods allow for this type of analysis while resorting
to a much smaller sample set.

The NISP approach allows one to obtain a stochastic solution by evaluating the
deterministic model for several samples of the uncertain input parameters (see e.g.
Reagan, Najm, Ghanem, and Knio (2003); Xiu and Karniadakis (2003); Crestaux,
Le Maître, and Martinez (2009); Mendes, Pereira, and Pereira (2010)). The solution
is expanded in a series using Polynomial Chaos (PC) and the unknown coefficients
of the terms are calculated with the solutions of the deterministic samples. Stochas-
tic data solution, including error bars and PDFs, are then estimated by sampling the
obtained solution function.

The implemented deterministic fire models are based on the semi-empirical Rother-
mel family of models, which are a validated and widely used approach to fire sim-
ulation. The fireLib Bevins (1996) version of the BEHAVE fire model Andrews
(1986) was used as it is an easy to use and optimized Application Programming
Interface (API), with freely available source code. Current models are able to
produce a fire front solution from a large set of input data very quickly so that
computational performance usually is not an issue. However, the great number of
deterministic runs required by the UQ method raises constrains about computing
time if the quasi-3D stochastic solution needs to be obtained much faster than real
time. Our approach to overcome these constrains was by using Graphic Processing
Units (GPUs).

GPUs have been used by the scientific community as soon as its capability to ex-
plore fine grained parallelism was perceived. Examples of those algorithms are
Computational Fluid Dynamics (CFD) codes Tolke and Krafczyk (2008), Lattice
Boltzman Habich (2008) and matrix solvers Bell and Garland (2008). Fine grained
parallelism means that each task duration and data requirement is very small com-
pared to the size of the problem. The semi-empirical fire models are very suitable
for using with GPU and speed-ups up to two orders of magnitude can be achieved.

The argument for using the GPU can be made regarding other aspects such as price
and availability, making the GPU a very attractive computing platform. Based
on those advantages, Nvidia released the Compute Unified Device Architecture
(CUDA) framework, which consists of a new GPU architecture that enables code
developers to program generalized scientific software, using only a few extensions
of the C++ programming language, see e.g. Kirk and Hwu (2009).

The implementation of the fire model in the GPU required the porting (code devel-
opment with CUDA) of fireLib, plus a suitable Fire Growth Model (FGM). Math-
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ematical models of fire behavior, such as BEHAVE, were originally designed for
1D fire propagation. Thus, the FGM function arises with the purpose of extending
these models to a quasi-3D fire front propagation in a real complex terrain.

FGMs can be classified as being raster or vector. More details about FGM can
be found in Anderson, Catchpole, Mestre, and Parkes (1982) and Finney (1998)
for vector models and Lopes, Cruz, and Viegas (2002) and Perera, Ouellette, Cui,
Drescher, and Boychuk (2008) for raster models. The decision to port to GPU
the fireLib API and raster type models was based on several reasons. Data paral-
lelism can be more easily explored as fire propagates between neighbouring raster
cells in a local and independent interaction. Also, although vector models are more
accurate [Cui and Perera (2008); Papadopoulos and Pavlidou (2011)], their imple-
mentation raises several challenges as the fire front crossovers and branches have
to be properly resolved at each iteration. The implementation effort is beyond the
scope of the work presented here. The GPU implementation of fireLib models is
reported in Sousa, Reis, and Pereira (2012).

The purpose of this paper is therefore to present faster than real time stochastic cal-
culations using a NISP method and the existing deterministic fire modeling tools.
Stochastic forest fire predictions on GPUs may allow to obtain thousands of simu-
lations and their statistical treatment during the fire development, becoming useful
for firefighting purposes.

In the present work one has only considered as random variables the wind speed,
the wind direction, the fuel load, and the fuel moisture, but other random variables
including the whole set of 17 Rothermel variables can be considered. However,
the selected variables are those that immediately affect the fire spread model and
everybody knows that are not known with 100% confidence. Furthermore, the
reported results, either the simplified benchmarks or the realistic complex terrain
fire scenario, are physically consistent.

In the following section the deterministic fire models ported to the GPU are de-
scribed, together with verification and speed performance, and the stochastic un-
certainty quantification method is presented. The models are compared and the
best option is selected for the next section where the stochastic UQ and the NISP
model coupling with the deterministic FGM are used to simulate three test cases
of stochastic fire prediction with several random variables. The paper closes with
summary conclusions about stochastic fire spread simulation feasibility.



Faster Than Real Time Stochastic Fire Spread Simulations 365

2 Methods

2.1 Fire Growth Models

FireLib functions are used to compute 1D fire Rate Of Spread (ROS) based on local
variables, such as wind speed and direction, slope and aspect, and fuel properties
like moisture and fuel load [Rothermel (1972); Albini (1976); Andrews (1986);
Bevins (1996)]. To simulate a fire over a raster computational terrain, the data is
provided to the model organized as 2D layers, where each aforementioned vari-
able’s spatial distribution is represented by a layer.

The FGM uses fireLib’s ROS to compute the ignition times for each raster cell ac-
cording to an elliptical shape propagation Anderson, Catchpole, Mestre, and Parkes
(1982). The result is a map of ignition times for the whole terrain. Two raster FGMs
were implemented and compared, namely the Contagious Procedure (CP) and the
Cellular Automata (CA).

The CP FGM can be found for instance in the fire modeling tools BFOLDS Per-
era, Ouellette, Cui, Drescher, and Boychuk (2008) and FireStation Lopes, Cruz,
and Viegas (2002). It consists in a contagious algorithm which computes the cells
ignition time tig based on the propagation time between neighboring cells yielded
by L/ROS, where L is the centroid distance between the two cells. Fig. 1 shows
the two neighborhood configurations that are used with this method, namely the 16
and 8 cells stencil. The time progression is not made with a fixed step, instead the
iteration time tn+1 is the minimum time of all the newly ignited cells. Therefore,
oscillations in the time step ∆t are likely to occur along the iterative process. The
set of rules leading the system can be summed up as follows.

• For the time step n with simulation time tn, the cell is burning if tig = tn. For
these cells, all vicinity cells ignition times tigV are computed as tigV = tig +
LV/ROSV , where LV and ROSV are the centroid distance that separates the
neighboring cell and the propagating speed in the same neighbor direction,
respectively. This value is compared with the ignition times due to other
surrounding burning cells, replacing it if it is lower. This is done in order to
respect the fire arrival times in multiple fire ignition situations or concave fire
fronts.

• If tig < tn the cell is considered burned and is ignored.

• The tn+1 value is updated so that it is the smallest ignition time after tn,
{min(tig > tn}.

A CA is a numerical procedure that advances a given system by deterministically
computing a succession of states, based on a set of rules applied to all cells of
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(a) CP 16 FGM (b) CP 8 FGM

Figure 1: Neighborhoods and propagation direction.

the domain. CA algorithms are known about their fine grained parallelism, hence
the interest in pursuing a GPU implementation. The literature reports several fire
prediction models with CA and the current implementation is based on the work
of Karafyllidis and Thanailakis (1997) and Encinas, Encinas, White, Rey, and
Sánchez (2007).

The state variable S is defined as the ratio between the cell burned area and the total
area ratio S = Ab/At , and a fixed time step is used. The rules are applied to each
cell considering the influence of the 8 surrounding neighbors (see Fig. 2). The set
of state rules are as follows.

• S = 0 represents an unburned cell.

• If S = 1 the cell is completely burned.

• S ∈]0,1[ represents a fraction of the burned area.

• The new cell state is represented by a transition rule, function of the previous
state of the neighbors and the same cell:

Sn+1 = Sn +
ad j

∑
V

ROSV
LV
∆t

S′nV +
diag

∑
V

πROS2
V

4
(LV

∆t

)2 S′nV (1)
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Figure 2: Neighborhood and propagation direction for the CA FGM.

where ad j and diag refer to the adjacent and diagonal neighbors, respec-
tively, and V are the vicinity cells. The variables ROSV and LV are the rate
of spread and the cell center point distance, respectively. The neighbor state
variable follows the rule S′nV = 0 if Sn

V < 1, and S′nV = 1 otherwise (see Sousa,
Reis, and Pereira (2012) for more details).

A considerable amount of work has been put into the GPU implementations. In
Sousa, Reis, and Pereira (2012) an efficient CUDA version is implemented and an
extensive coverage of the GPU porting is presented.

2.2 Verification and Speed Performance

The FGM implementation in the GPU can be verified in situations where the re-
sulting fire front shape can be determined from the elliptical distribution computed
by fireLib, which is true for constant condition scenarios. In these cases, the fire
shape is exactly known by definition, and the resulting fire contours are explicitly
yielded by fireLib.

The verification scenarios with constant parameters have terrain dimensions of 7×
7 km2 and are defined as follows.

• Scenario 1 corresponds to fuel model NFFL 1 Andrews (1986) with fuel
moisture of 5%, flat terrain and no wind. A concentric progression of the fire
front, starting from the ignition point, is to be expected with these conditions.
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• Scenario 2 has the same fuel characteristics as the first scenario, but takes into
account a uniform wind distribution of 2.3 m·s−1 with a 45◦ angle from North
to South clockwise direction, slope value of 26.5 degrees with an aspect of
23◦ in the South West direction. The expected solution is now an ellipse
tilted in the maximum spread rate direction.

Comparison between the burned area computed by the FGM and the exact elliptical
shape Richards (1995) can be done with the Surface Error Index (SEI) as following:

SEI = 2
E ∪N
E +N

(2)

where E and N are the exact and numerical solutions of the ignition maps, respec-
tively. For Scenario 1, the SEI obtained are 0.986, 0.948 and 0.976 for CP16, CP8
and CA models, respectively. Scenario 2 presents a model performance of 0.915,
0.690 and 0.772 for CP16, CP8 and CA models, respectively.

The SEI quantifies the error introduced by the FGM. A SEI < 1 means that the
model is deviating from the elliptical shape predicted by the mathematical model
for fire behavior built in fireLib. One can see that the model performance is related
to the number of neighbors and the 16 cells CP model displays better results through
both scenarios. This happens because the 16 cells stencil has more directions for
the fire to propagate than the 8 cells one. With the increase of the number of
neighbor directions in the stencil, the SEI would increase up to the limit of 1 with an
infinite number of directions. The SEI′s results obtained for the FGM are expected
according to the literature survey (see e.g. Cui and Perera (2008)).

Speed performance is assessed using real topographic data for the simulation of a
fire that propagates during 8 days and it may be representative of the computing
times of real situations. Tab. 1 lists the total computing time on the CPU and GPU
as well as the speed-up, calculated as the ratio between CPU and GPU times, for
three different grids.

The results show that all FGM satisfies the faster than real time condition, even
with a computational domain comprising 4 million cells grid, which is a grid size
far bigger than the usually employed in this kind of fire simulation. This particular
calculation took 34 CPU hours to simulate an eight day real time fire.

Although the CPU simulation time is still faster than real time, the problem here
lies in the feasibility to perform stochastic predictions also faster than real time.
The excellent speed-up obtained with GPU implementations are very promising
regarding the proposed objective. Two orders of magnitude in speed-up were ob-
tained and the CP models show very promising results. The CA implementation
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Table 1: Speed performance summary.

Model Grid [M cells] Total CPU time [s] Total GPU time [s] Speed-up
CP 16 0.26 139.24 0.79 174.1
CP 16 1.05 1171.24 6.33 184.7
CP 16 4.2 8541.81 49.91 171.0
CP 8 0.26 82.86 0.54 153.4
CP 8 1.05 644.09 3.96 162.2
CP 8 4.2 5090.03 30.84 164.9
CA 0.26 1598.67 49.08 32.6
CA 1.05 14346.7 341.85 42
CA 4.2 123776.0 2894.78 42.8

also delivered a good increase in performance but the overall computing times are
bigger than the CP ones. Consequently, the 16 cells CP is the natural selection to
use with the UQ method due to the verification results and computation times.

2.3 Stochastic Uncertainty Quantification Model

Uncertainty quantification in the fire front is done using Non-Intrusive Spectral
Projection (NISP) methods, where the stochastic solution is built given the PDF of
the input variables. The method assures that a solution variable can be correctly
described from a set of input samples much smaller than with Monte Carlo family
methods. Fig. 3 describes the process and the coupling between the FGM models
and the NISP procedure.

As shown in Fig. 3, the present model comprises two sub-models and a parametric
uncertainty methodology. The first sub-model is the fire spread model, that in the
present case considers the fireLib and a fire growth model. The second sub-model
comprises the stochastic model Non-Intrusive Spectral Projection method that is
faster than Monte Carlo, see e.g. Ervilha, Pereira, and Pereira (2013), and allows
for uncertainty propagation.

The NISP module is divided into two parts. The first one is responsible for building
the deterministic input samples from the input variables PDF. Next, several FGM
runs are issued at the same time to build a solution set from input samples. The re-
sulting ignition maps are processed to compute the stochastic ignition time variable
for each point in the map. A post-processing stage follows, in order to compute the
PDF solution and the confidence intervals for the fire front position.

With the NISP approach a stochastic solution can be obtained by evaluating the
deterministic model for several samples of the uncertain input parameters. The
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Figure 3: Overall view of the coupling between the deterministic FGM runs and
the NISP method.

solution is decomposed in a series using Polynomial Chaos (PC) expansion, see
e.g. Xiu and Karniadakis (2003) and Crestaux, Le Maître, and Martinez (2009),
and the unknown coefficients of the terms are calculated using the input samples.
The solution PDF is then estimated by sampling the obtained solution polynomial.

A random variable X can be described as a function of a random standard variable
ξ in a PC expansion:

X(ξ ) =
p

∑
j=0

aX
j Φ j(ξ ) (3)

where aX
j are known coefficients and Φ j, j = 0, . . . , p, are orthogonal polynomials

of order j. In the present study, ξ is a standard normal distribution N(0,1) and
Φ j are Hermite polynomials. There can also be N independent random parameters
(X1, . . . ,XN), each one associated to a stochastic dimension ξi, i = 0, . . . ,N, and the
orthogonal polynomials would now be function of a vector of random variables~ξ =
(ξ1, . . . ,ξN). Because the polynomials are orthogonal, the inner product between
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any two is
〈
Φi,Φ j

〉
= 0 if i 6= j and

〈
Φi,Φ j

〉
=
∫

ΦiΦ jW (~ξ )d~ξ =
〈
Φ

2
j
〉

δi j (4)

where δi j is the Kronecker delta function, W (~ξ ) = w(ξ1) · · · · ·w(ξN) is the weight-
ing function of the polynomial {Φ j}, and w(ξi), ∀i ∈ {1, . . . ,N}, is

w(ξi) =
exp
(
− ξ 2

i
2

)
√

2π
(5)

The solution variable can also be expanded in a multi-dimensional PC series as a
function of the vector of random variables. Depending on the number of random in-
put variables N and the maximum polynomial order p of the expansion, the number
of terms in the polynomial is given by:

P+1 =
(N + p)!

N!p!
(6)

To better understand the PC expansion used in this work, one will describe this
method for the first study case presented in the next section, where 2 stochastic
input variables are considered, namely the wind speed U and the wind direction
α . So, the stochastic ignition time tig is obtained through a PC series as a func-
tion of those random variables associated to the stochastic dimensions ξU and ξα ,
respectively. For a polynomial expansion of 2nd order, the ignition time tig is:

tig(~ξ ) =
5

∑
j=0

atig
j Φ j(~ξ ) (7)

where atig
j , j = 0, . . . ,5, are now unknown coefficients that must be computed as

functions of the input parameters and Φ j(~ξ ), j = 0, . . . ,5, are the Hermite orthogo-
nal polynomials of order j. For this first study case, the expansion takes the concrete
form:

tig(ξU ,ξα)= atig
0 +atig

1 Φ1(ξU)+atig
2 Φ1(ξα)+atig

3 Φ2(ξU)+atig
4 Φ1(ξU)Φ1(ξα)+atig

5 Φ2(ξα)
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(8)

where Φk(~ξ ), k = 0, . . . ,2, are the orthogonal polynomials belonging to the Hermite
polynomial basis {Φk} and obtained as functions of the vector of random variables
~ξ = (ξU ,ξα).

To calculate the coefficients, a Galerkin projection of the PC in the polynomial basis
{Φ j} is made by multiplying each side of Eq. 7 by Φ j and using the orthogonality
relation of Eq. 4:

atig
j =

〈
tig(~ξ )Φ j

〉
〈

Φ2
j

〉 =

∫
tig(~ξ )Φ jW (~ξ )d~ξ〈

Φ2
j

〉 , j = 0, . . . ,P (9)

The atig
j coefficients are now written as a function of the solution variable and

can be obtained in the NISP approach by evaluating the deterministic solutions
{(tigd )

n}S
n=1 as a function of the chosen input variables samples {(U,α)n}S

n=1,
where S are selected points. Finally, the integral in Eq. 9 is numerically solved
by Gauss-Hermite quadrature. The number of selected samples are defined by the
number of Gauss-Hermite quadrature points Si for each variable ξi, ∀i ∈ {1, . . . ,N}
and (zri ,qri), r = 1, . . . ,Si, are the quadrature points and weights. For the multi-
dimensional case there will be S = ΠN

i=1Si number of samples. The Gauss quadra-
ture rule yields an exact result with Si collocation points for a polynomial’s degree
up to 2Si− 1. The integral on Eq. 9 has presently be considered to have a max-
imum degree of 2p, because the PC expansion of tig(~ξ ) has at most a degree of
p so, the minimum Gauss collocation points can be related to the PC degree by
Si ≈ p+ 1/2. The coefficients in the above equation can now be presented in the
form of a numerical expression:

atig
j ≈

∑
S1,...,SN
r1,...,rN=1 tigd (Xr1 , . . . ,XrN )Φ j(zr1 , . . . ,zrN )∏

N
i=1 qri〈

Φ2
j

〉 , j = 0, ...,P (10)

The stochastic solution variable is now completely known with this method. A
PDF of any dependent variable solution can be obtained and the characteristics
mean value µtig and variance σ2

tig are given by Eq. 11 and Eq. 12, respectively.

µtig =< tig >= atig
0 (11)
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σ
2
tig =< tig2 >−< tig >=

P

∑
j=1

(atig
j )

2 < Φ
2
j > (12)

3 Results

3.1 Stochastic prediction results

This section presents results for several sets of random input variables (wind speed,
wind direction, fuel load, and fuel moisture) to study the influence of the para-
metric uncertainty in the final solution. Other variables like terrain topography are
considered to be exact. The random input variables have a Gaussian probability
distribution, described by a mean (µ) and a standard deviation (σ ).

The studied cases are divided into 3 main groups, namely cases A, B and C. Each
group has different sets of random variables that are introduced in the model in
order to carry out a sensitivity analysis study. For case group A, only wind speed
(U) and wind direction (α) are random variables. In the second case group, the fuel
data is considered uncertain and the wind characteristics are now assumed to be
exact, which means that, for group B, the stochastic variables are fuel moisture (M)
and fuel load (ω0). Group C treats all the four inputs U , α , M and ω0 as random
variables. Additionally, the effect of terrain on the stochastic forecast is studied in
C by comparing two cases with different orography (zero slope and complex terrain
(see Fig. 4), respectively) under the same input conditions. All cases in A and B
have zero slope terrain. The non random input parameters used in simulations are
listed in Tab. 2.

Figure 4: Three dimensional rendering of the C2 case terrain, with elevation (in
meters) displayed in gray scale. The upper side is pointed to north.
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Table 2: Deterministic parameters used in the simulations.

Input variable Deterministic value
Fuel bed depth 0.06 m

Moisture of extinction 12%
Fuel surface-area-to-volume ratio 11483 m2.m−3

Fuel density 513 kg.m−3

Heat of combustion 18608 kJ.kg−1

Total silica content 0.01
Effective silica content 0.056

For all groups, the mean values (µ) of the random input variables considered are
µU = 1.2 m.s−1, µα = 135◦ clockwise from North, µω0 = 1.123 kg.m−2, and µM

= 7%. The parameters variability for each case is presented in Tab. 3 through the
coefficient of variation CV = σ/µ .

Table 3: Coefficient of variation considered for the input random variables used in
group A (cases A1, A2 and A3), group B (cases B1, B2 and B3), and case group C.

Input random variable A1 A2 A3 B1 B2 B3 C
U 20% 40% 20% 0% 0% 0% 20%
ω0 10% 10% 20% 0% 0% 0% 10%
α 0% 0% 0% 15% 30% 15% 15%
M 0% 0% 0% 10% 10% 20% 10%

The studied cases considered have a computational domain corresponding to a ter-
rain with 3 × 3 km2 and a flat terrain is used except for case C2. The location of
the initial single ignition point is the same for all the studied cases.

The stochastic forecasts of the fire front evolution are listed in Tab. 4. The data
correspond to the one hour burned area obtained for deterministic prediction, in
which input variables have constant values, and stochastic simulation (ensemble
mean and lower and upper limits depending on the Confidence Intervals (CI)). The
last column refers to an adimensional factor (error factor) that represents the ratio
between the burnt area’s error bar (this is, the burned area between lower and upper
limits) and the stochastic mean burned area.

The predictions display a stochastic mean burned area always smaller that the de-
terministic one. Although all random parameters are characterized by a symmetric
PDF, the randomness influence originates a delay of the fire propagation.
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Table 4: One hour forecast of burned area for 95% and 60% confidence intervals
for all the studied cases.

Case CI Deterministic Stochastic Lower Upper Error Error
study [%] mean mean limit limit area(a) factor(b)

[km2] [km2] [km2] [km2]
A1 95 0.21 0.17 0.05 0.66 0.61 3.59
A1 60 0.21 0.17 0.10 0.34 0.24 1.41
A2 95 0.21 0.13 0.03 1.74 1.71 13.15
A2 60 0.21 0.13 0.07 0.48 0.41 3.15
A3 95 0.21 0.12 0.03 0.89 0.86 7.17
A3 60 0.21 0.12 0.07 0.34 0.27 2.25
B1 95 0.17 0.16 0.13 0.19 0.06 0.38
B1 60 0.17 0.16 0.15 0.18 0.03 0.19
B2 95 0.17 0.16 0.13 0.19 0.06 0.38
B2 60 0.17 0.16 0.15 0.18 0.03 0.19
B3 95 0.17 0.15 0.07 0.22 0.15 1.00
B3 60 0.17 0.15 0.12 0.21 0.09 0.60
C1 95 0.17 0.13 0.04 0.52 0.48 3.69
C1 60 0.17 0.13 0.08 0.27 0.19 1.46
C2 95 0.13 0.11 0.04 0.40 0.36 3.27
C2 60 0.13 0.11 0.07 0.20 0.13 1.18

(a)error area = upper limit - lower limit
(b)error factor = error area

stochastic mean

Focusing the analysis on the flat terrain cases (A, B and C1), the error factor allows
to assess the impact of each random variable on the ignition times of fire propaga-
tion. Cases A and C1 are characterized by higher values of the error factor, denoting
the great impact of the wind properties variability in comparison with fuel variabil-
ity (B cases). The area’s error bar for the cases A and C1 are up to 10 times the
stochastic mean burnt area, while the area’s error bar in B cases is approximately
equal to the stochastic mean value.

The effect of the variability of each random parameter show that for case A the
effect of the wind velocity variability is higher than the wind direction variability
and Tab. 4 lists the increase of the error factor when σU rises from 20% to 40%
(case A2) over the increase of σα from 10% to 20% (case A3). This value is almost
4 times bigger for A2 and 2 times bigger for A3, when comparing to A1. The results
for the B cases show that moisture variability has a far greater impact than the fuel
load’s. When the later increases from σω0 = 15% in B1 to 30% in B2, the difference
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in error factor is smaller than 1%. In comparison, increasing σM from 10% to 20%
in case B3 results in an error factor twice the size of B1’s. C1 simulation yields
similar results than A1 for error factor, indicating the smaller influence of the fuel
properties variability over the wind properties. This is consistent with A and B
findings.

The C2 simulation introduces a realistic terrain (under C1 initial conditions) to
quantify the influence of the orography in fire propagation. Fig. 4 shows a 3D
rendering of the 3 by 3 km2 terrain, where the arrow points to the initial ignition
spot.

Fig. 5(b) shows the stochastic mean for the fire front position plotted in one hour
intervals, presenting a slower backfire region (temporal isolines very close) and
increasing speed when going upslope (larger distance between temporal isolines).

(a) (b)

Figure 5: Case C2. (a) Aspect map as a reference for the forecast simulations. (b)
Stochastic mean for the fire front plotted with 1 hour intervals.

Fig. 6(a) and Fig. 6(b) show the ensemble mean together with the error bar with
upper and lower fire locations. The 60 minutes predictions correspond to 95% and
60% CI, respectively. The stochastic mean average burned area and the determin-
istic counterpart can be found in Tab. 4. Fig. 6(c) shows the 90 minutes forecast for
a 95% CI. The error area rises relatively to the one hour plot, with a 12% increase
in the error factor. For the cases with flat terrain, this difference does not occur, i.e.
the error factor is practically the same along the simulation time.

A relevant output of faster than real time stochastic prediction is the error bar of
the fire front line according to a confidence interval, usually 95%. The error bar
gives upper and lower locations of the fire line. The model mimics the physical and
ecophysiological processes that happen in a wildfire and their influence in the fire
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(a) 60 minutes with 95% CI (b) 60 minutes with 60% CI

(c) 90 minutes with 95% CI

Figure 6: Forecast of the fire front. Stochastic mean is in dashed, deterministic
mean is in dot dashed, and CI are the solid lines.

spread because the uncertainty in almost all the variables is the only thing that is
certain.

The statistical output of the predicted fields allows to know the probability of fire
occurrence at a selected point and to decide accordingly about actions to have in
real wildfires.

Stochastic fire forecast allows the quantification of the fire front occurrence proba-
bility at any location, as a function of time. This becomes particularly interesting
when specific locations are of utmost importance and require priority protection,
such as personnel and equipment staging areas or building structures. The fire be-
havior is studied for two different points, namely P1 and P2, located at (1.13 km,
1.87 km) and (0.75 km, 1.5 km), respectively (see Fig. 5(a)).

Tab. 5 and Fig. 7(a), Fig. 7(b) and Fig. 7(c) present the stochastic information
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and the normalized PDF obtained for both points in all studied cases, respectively.
Apart from the stochastic mean, one can obtain other stochastic information. The
standard deviation is obtained through the square root of variance (second order
moments) and represents the range values considered, being low if data points tend
to be close to the mean and high for disperse points. The third order moment (skew-
ness) is a measure of the PDF symmetry, acquiring positive values for negative bias
and negative values otherwise. Finally, kurtosis is a fourth standardized moment
and it is representative of the PDF shape. The PDF translates the probability of
fire ignition at the point under consideration for a certain time (time coordinate
axis). The current work presents normalized PDFs and, consequently, the integral
of each PDF over time is equal to one. This means that one can easily know what is
the probability of a certain ignition time at a specific location directly through the
percentage of the PDF area until that considered time.

Table 5: Mean, standard deviation (sd), skewness (skew) and kurtosis (kurt) of the
ignition times PDFs at points P1 and P2.

Case P1 P1 P1 P1 P2 P2 P2 P2
study mean sd skew kurt mean sd skew kurt

A1 59.23 21.35 1.12 1.71 169.57 60.39 0.78 0.83
A2 70.84 46.94 1.44 2.85 184.80 88.13 0.88 1.07
A3 74.89 35.49 1.69 5.09 185.12 99.25 1.23 2.06
B1 56.35 3.12 0.96 1.25 178.64 9.88 0.96 1.25
B2 56.44 3.13 0.95 1.23 178.93 9.93 0.96 1.23
B3 58.61 11.46 2.07 5.99 185.80 36.33 2.07 5.99
C1 67.05 24.47 1.12 1.72 191.83 69.29 0.80 0.88
C2 73.64 30.81 1.38 2.67 236.31 77.49 0.71 0.70

As expected, for all cases the stochastic mean ignition time for P1 is always smaller
than for P2 because P1 is located on the direction of the maximum spread propa-
gation. Consequently, the fire front is expected to arrive at P1 before P2. This fact
is responsible for the location of the PDF for P1, which is shifted into the left in
Fig. 7(a), Fig. 7(b) and Fig. 7(c).

The plots for the A group (Fig. 7(a)) show that the standard deviation is much
smaller in P1 than in P2. This is due to the ignition point proximity of P1. For
instance, the results for case A1 show that at point P1 after 50 minutes there is
around 50% probability that the fire front reach this particularly point and after
150 minutes the probability is 100%. The increase in the number of random input
variables translates in an increase of the standard deviation of the PDF, although
some variables have higher impact than others, which is consistent with previous
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(a) Group A (b) Group B

(c) Group C

Figure 7: PDF of ignition times in P1 and P2.

findings. Notice that the standard deviation for case A2 at location P1 is more than
twice that for case A1 (see Tab. 5). Additionally, at location P2 the wind speed
variability has an impact similar to that of wind direction. This shows that the
influence of wind speed variability is higher at location P1, which corresponds to
P1 being in the direction of maximum fire propagation.

The PDFs of B cases are shown in Fig. 7(b). In agreement with Tab. 4, B2 yields the
same result for stochastic mean as B1. Both points display much narrow PDF than
in the A cases, again in accordance to the burned area results of Tab. 4. Relatively
to the B3, the PDF curve is shaped after a time step, which means that the highest
probability of ignition time is exactly in this slice and then the probability decreases
over time. The wide variation in the PDFs shape in B3 case translates the highest
influence of moisture fuel variance over the fuel load distribution. Notice that for
all B group cases, both ensemble mean and standard deviation in P2 are about three
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times bigger than in P1, while symmetry and shape factors are similar. So, beyond
their different location that implies obviously different mean time ignition values,
both points reflect the same fire front behavior but with sparse results.

Case C2 (Fig. 7(c)) quantifies the influence of real terrain on the simulations, which
delays or speeds fire propagation as the topographic features are encountered. How-
ever, given the terrain influence, the comparison between different location point′s
PDF is not feasible to be done and important conclusions come mainly from fire
front forecast plots (as for instance Fig. 6), which provide stochastic mean con-
tours and error bar burned area according to the considered CI. At each location it
is possible to determine the probability of fire occurrence as a function of time. For
example, in Fig. 7(c), the PDF shows that the fire front takes always more than 50
min to reach point P2. Then, the probability of ignition rises until 210 min, after
which it decreases to nearly zero at 500 min.

3.2 Parametric Uncertainty Quantification

The present results advance the knowledge of wildfire spreading simulation be-
cause they allow the uncertainty quantification on the fire spread. The influence
of a random variable’s uncertainty can be accurately quantified by comparing the
stochastic coefficients (see Eq. 8), allowing a sensitivity analysis of the influence
of each variable into the stochastic results.

For instance, taking the ignition time solution under consideration with wind speed
and wind direction as the random input parameters, Eq. 8 shows the expansion solu-
tion as a function of first and second order stochastic coefficients. The coefficients
atig

1 and atig
2 denote first order wind speed and first order wind direction, respec-

tively, while atig
3 translates the second order wind speed influence, atig

4 contains the
cross influence of wind speed and direction and, finally, atig

5 stands for the second
order wind direction. One should note that other solution random parameters has
different but similar expansions.

Fig. 8(a) and Fig. 8(b) show the stochastic coefficients obtained for the group A
scenario at P1 and P2, respectively. The small influence of the first order wind
direction coefficient (α) at location P1 is translated into a very small influence of
this parameter variability into the stochastic ignition time results. This is justified
because P1 is in the maximum propagation direction and the variability induced is
symmetric. However, the second order coefficient of α has a considerable value
at this location for case A3. Fig. 8(b) shows that the coefficients related to α for
P2 have the expected large values, contributing to a decrease in the ignition time
result.

Taking as random input variables the fuel load (ω0) and the fuel moisture (M), the
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(a) P1 (b) P2

Figure 8: Stochastic coefficients for case group A.

expansion coefficients show that P1 and P2 have similar coefficient behavior, see
Fig. 9(a) and Fig. 9(b), indicating that uncertainty propagation pattern is not depen-
dent of the location. Fig. 9(a) and Fig. 9(b) show that the fuel load’s variability has
a negligible impact on the solution, even with a twofold increase in σω0 from B1 to
B2. The moisture fuel variability presents a small impact in the stochastic mean of
time ignition simulations, but its contribution is mostly to the solution’s variability
and therefore notable in the PDF development (see Fig. 7(b)).

For the group C with four random variables, the PC expansion (see Eq. 7) generates
15 stochastic coefficients, including the stochastic mean represented by the first
term atig

0 . The findings for the case C1 (flat terrain) are consistent with A and
B results because the fuel load has a negligible contribution as well as the wind
direction for P1 (see Fig. 10(a)). When the complex terrain is considered (case
C2), the wind direction parameter is no longer negligible in the stochastic solution
for this point. At P2 location (see Fig. 10(b)) both cases C1 and C2 show that the
main influence in forest fire propagation is from wind features (speed and direction)
over the fuel ones (load and moisture).

The present uncertainty propagation analysis can be applied for any other scenarios
and point locations. This is of special relevance under firefighting mode because
it will allow to locate the virtual sensor at, for example, the urban-wildland in-
terface and to quantify the uncertainty (variability of the parametric input random
variables) on the ignition time at that location as well as the parametric variability
hierarchy.
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(a) P1 (b) P2

Figure 9: Stochastic coefficients for case group B.

(a) P1 (b) P2

Figure 10: Stochastic coefficients for case group C.

The limitations of the present stochastic model are inherent to the sub-models re-
lated with fire spread and also the assumption of the input random parameter vari-
ability. However, the present NISP model may be used with other fuel spread mod-
els and for a better guess of the meteorological conditions wind forecast models
can be used.
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The model could be improved by allowing a discontinuous fire front line as an input
parameter uncertainty. For large fires, the variability of the fire front line can be cap-
tured, or will be captured soon, using optical diagnostics sensors, unmanned vehi-
cles, or satellite pictures, almost as in Google street view (see https://maps.google.com/).

3.3 Speed-up

The stochastic calculations considered 5 Gauss-Hermite quadrature points for each
stochastic variable. So, for stochastic calculations with 4 random inputs a total
number of 625 (54) different deterministic runs is required. Each deterministic
simulation calculates the fire spread during 8 hours of real time evolution.

The CP16 model was computed on the GPU and the computing time is listed in
Tab. 1 and Tab. 6. The CPU time to provide the 625 required runs is not faster than
real time and, consequently, not feasible to stochastic fire predictions. Moreover,
a total computing time would be far greater with Monte Carlo calculation instead
of the presented NISP model. The GPU results are much faster than real time, 60
times faster, providing the calculations of 625 runs being obtained with a speed-up
of 176 times the CPU results and, consequently, the GPU and NISP method are
suitable for the purpose of a decision support tool in firefighting context.

Table 6: Comparison between CPU and GPU speed performances.

GPU [s] CPU [s] CPU
GPU

CPU
real time

GPU
real time

493.75 87025 176.25 3.02 0.02

4 Conclusions

The paper presented details of a stochastic simulation of vegetation fires. The cal-
culations were obtained using a Non-Intrusive Spectral Projection method in which
the solution is expanded in a series using Polynomial Chaos. The unknown coef-
ficients of the expansion terms are calculated from deterministic solutions using a
conventional fire growth model. In the present case the fireLib functions were used
for the calculation of the rate of spread together with raster contagious or cellular
automata algorithms.

To decrease the computing time required for hundreds or thousands of deterministic
simulations over, typically, one hour real fire propagation, the low cost Graphics
Processing Unit (GPUs) were used.

The stochastic simulations of idealized vegetation fires with input parametric uncer-
tainty involving wind speed, wind direction, fuel load, and fuel moisture as random
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variables were simulated under flat and complex realistic terrain. The following
conclusions can be withdrawn.

1. The GPU have allowed to obtained much faster stochastic fire spread predic-
tions than the real time fire propagation.

2. Under flat or complex terrain the wind speed and wind direction uncertainties
have stronger influence on the fire propagation than the fuel contents. The
relative influence of the uncertainties were quantified.

3. The proposed methodology can be used for any scenario. The output pro-
vides the time evolution of the ensemble mean fire front location and burned
areas error bar for a certain confidence interval and the probability density
functions at each point as a function of time. In addition, the hierarchy of
input parametric uncertainties in the fire spread simulation was quantified.
These estimators may add relevant information because wildland fire growth
is an intrinsic stochastic process.
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