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High-order Alternating Direction Implicit Method Based
on Compact Integrated-RBF Approximations for
Unsteady/Steady Convection-Diffusion Equations
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Abstract: In this paper, the alternating direction implicit (ADI) method reported
in [You (2006)] for the convection-diffusion equation is implemented in the context
of compact integrated radial basis function (CIRBF) approximations. The CIRBF
approximations are constructed over 3-point stencils, where extra information is
incorporated via two forms: only nodal second-order derivative values (Scheme 1),
and both nodal first- and second-order derivative values (Scheme 2). The resultant
algebraic systems are sparse, especially for Scheme 2 (tridiagonal matrices). Sev-
eral steady and non-steady problems are considered to verify the present schemes
and to compare their accuracy with some other ADI schemes. Numerical results
show that highly accurate results are obtained with the proposed methods.

Keywords: compact integrated-RBF stencils, high-order approximations, alter-
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1 Introduction

In this paper, we consider a two-dimensional (2D) unsteady convection-diffusion
equation for a variable u

∂u
∂ t

+ cx
∂u
∂x

+ cy
∂u
∂y

= dx
∂ 2u
∂x2 +dy

∂ 2u
∂y2 + fb, (x,y, t) ∈Ω× [0,T ] , (1)

subject to the initial condition

u(x,y,0) = u0(x,y), (x,y) ∈Ω, (2)

and Dirichlet boundary condition

u(x,y, t) = uΓ(x,y, t), (x,y) ∈ Γ, (3)

1 Computational Engineering and Science Research Centre, Faculty of Engineering and Surveying,
The University of Southern Queensland, Toowoomba, Queensland 4350, Australia.



190 Copyright © 2012 Tech Science Press CMES, vol.89, no.3, pp.189-220, 2012

where Ω is a two-dimensional rectangular domain; Γ the boundary of Ω; [0,T ] the
time interval; fb the driving function; and u0, uΓ some given functions. In equation
(1), cx and cy are the convective velocities, and dx and dy are the positive diffusion
coefficients.

For the steady-state case, equation (1) reduces to

cx
∂u
∂x

+ cy
∂u
∂y

= dx
∂ 2u
∂x2 +dy

∂ 2u
∂y2 + fb. (4)

Equations (1) and (4) are known as a simplified version of the Navier-Stokes equa-
tion. They are widely used in computational fluid dynamics (CFD) and physical
sciences to describe the transport of mass, momentum, vorticity, heat and energy,
the modeling of semiconductors, etc. For example, by means of (1), one can de-
scribe the heat transfer in a draining film [Isenberg and Gutfinger (1972)], water
transfer in soils [Parlange (1980)] and the chemical separation processes [Dehghan
(2004)].

It is desirable to have accurate and stable methods for solving the convection-
diffusion equation. The upwind and central finite differences are among popular
discretisation schemes for the approximation of spatial derivative terms because
they are simple and easy to implement. These finite-difference schemes generally
yield good results on sufficiently fine meshes. However, poor results may be ob-
tained if the mesh used is relatively coarse. To improve the accuracy order, larger
stencils can be used. The drawback of this approach is that the bandwidth of their
coefficient matrices is increased, and thus it is time-consuming to solve such sys-
tems either by using direct solvers, e.g. Gaussian elimination and LU decomposi-
tion technique, or iterative methods, e.g. a generalized minimal residual algorithm
(GMRES) and biconjugate gradient stabilised method (BICGSTAB). This leads to
the development of compact finite difference methods, where small matrix band-
width and high-order accuracy can be achieved together [Noye and Tan (1989);
Kalita, Dalal, and Dass (2002); Kalita and Chhabra (2006)].

The ADI methods are highly efficient procedures for solving parabolic and hyper-
bolic problems [Thomas (1995)]. As shown in [Thomas (1995)], the efficiency
of ADI methods is based on reducing problems in several space variables to a
number of one-dimensional problems. The standard PR-ADI method [Peaceman
and H. H. Rachford (1955)] has been popular because of its computational cost-
effectiveness. However, due to its low-order accuracy, the method often produces
significant dissipation and phase errors [Karaa and Zhang (2004)]. To enhance
spatial accuracy, Karaa and Zhang (2004) has developed a high-order compact
ADI (HOC-ADI) scheme, which possesses fourth-order accuracy and still retains
the tridiagonal algorithm of the standard PR-ADI. For solving the convection-
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dominated diffusion (CDD) equation (i.e. high Peclet numbers), HOC-based schemes
may suffer from excessive numerical dissipation [You (2006); Ma, Sun, Haake,
Churchill, and Ho (2012)]. A high-order ADI method proposed in [You (2006)]
was designed to overcome this problem, where its factorisation involves 4 terms
and spatial derivatives are approximated using the Pad’ algorithm.

In this paper, we implement the ADI method proposed in [You (2006)] in the con-
text of CIRBF approximations for the convection-diffusion equation. Two com-
pact 3-point schemes, namely ADI-CIRBF-1 and ADI-CIRBF-2, for the spatial
discretisation are proposed. Scheme 1 incorporates nodal values of the second-
order derivatives into the approximations, while Scheme 2 includes not only nodal
second-order derivative values but also nodal first-derivative values. The resultant
algebraic systems are sparse, especially for Scheme 2 (tridiagonal matrices). The
performances of the two present schemes are investigated numerically through the
solution of several analytic test problems governed by the unsteady and steady 2D
convection-diffusion equations. Results obtained are also compared with those ob-
tained by the standard PR-ADI scheme and some other high-order compact ADI
schemes. The remainder of the paper is organised as follows. Section 2 gives a
brief review of some ADI methods. Section 3 describes the two proposed schemes.
In section 4, numerical results are presented and compared with some published
solutions. Section 5 concludes the paper.

2 A brief review of ADI methods

2.1 The Peaceman-Rachford method

The PR-ADI method splits equation (1) into two

un−1/2−un−1

∆t/2
+ cx

∂un−1/2

∂x
+ cy

∂un−1

∂y
= dx

∂ 2un−1/2

∂x2 +dy
∂ 2un−1

∂y2 + f n−1/2
b , (5)

un−un−1/2

∆t/2
+ cx

∂un−1/2

∂x
+ cy

∂un

∂y
= dx

∂ 2un−1/2

∂x2 +dy
∂ 2un

∂y2 + f n−1/2
b , (6)

where the derivatives with respect to x and y are treated implicitly in the first and
second equations, respectively. The PR-ADI method often leads to significant dis-
sipation and phase errors due to its low-order accuracy in the spatial discretisation.

2.2 The Douglas-Rachford method

The Douglas-Rachford method [Douglas and Rachford (1956)] is a variant of the
Peaceman-Rachford method. Applying this method to (1), one obtains

u∗,n−un−1

∆t
+ cx

∂u∗,n

∂x
+ cy

∂un−1

∂y
= dx

∂ 2u∗,n

∂x2 +dy
∂ 2un−1

∂y2 + f n
b , (7)
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un−un−1

∆t
+ cx

∂u∗,n

∂x
+ cy

∂un

∂y
= dx

∂ 2u∗,n

∂x2 +dy
∂ 2un

∂y2 + f n
b , (8)

Unlike the Peaceman-Rachford method, this scheme is very easy to generalise
to operator decompositions involving more than two operators [Glowinski, Cia-
rlet, and Lions (2003)]. However, it still retains the drawbacks of the standard
Peaceman-Rachford method.

2.3 Karaa’s method

This method factorises equation (1) as(
Lx +

∆t
2

Ax

)(
Ly +

∆t
2

Ay

)
un =

(
Lx−

∆t
2

Ax

)(
Ly−

∆t
2

Ay

)
un−1, (9)

where

Lx = 1+
∆x2

12

(
δ

2
x −

cx

dx
δx

)
, Ax =−

(
dx +

c2
x∆x2

12dx

)
δ

2
x + cxδx, (10)

Ly = 1+
∆y2

12

(
δ

2
y −

cy

dy
δy

)
, Ay =−

(
dy +

c2
y∆y2

12dy

)
δ

2
y + cyδy, (11)

δη and δ 2
η are the first- and second-order central difference operators for η-direction;

and ∆x and ∆y the mesh size.

Introducing an intermediate variable u∗, equation (9) can be solved by the following
two steps(

Lx +
∆t
2

Ax

)
u∗ =

(
Lx−

∆t
2

Ax

)(
Ly−

∆t
2

Ay

)
un−1, (12)

(
Ly +

∆t
2

Ay

)
un = u∗. (13)

2.4 You’s method

You (2006) proposed the following factorisation to equation (1)(
1+

∆t
2

cx
∂

∂x

)(
1− ∆t

2
dx

∂ 2

∂x2

)(
1+

∆t
2

cy
∂

∂y

)(
1− ∆t

2
dy

∂ 2

∂y2

)
un

=
(

1− ∆t
2

cx
∂

∂x

)(
1+

∆t
2

dx
∂ 2

∂x2

)(
1− ∆t

2
cy

∂

∂y

)(
1+

∆t
2

dy
∂ 2

∂y2

)
un−1

+ ∆t f n−1/2
b . (14)
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In the matrix-vector notation, equation (14) becomes

L−1
x T +

x L−1
xx T−xx L−1

y T +
y L−1

yy T−yy un = L−1
x T−x L−1

xx T +
xx L−1

y T−y L−1
yy T +

yy un−1, (15)

where

T±x =
(

Lx±
∆t
2

cxAx

)
, T±xx =

(
Lxx±

∆t
2

dxBxx

)
, (16)

T±y =
(

Ly±
∆t
2

cyAy

)
, T±yy =

(
Lyy±

∆t
2

dyByy

)
,

Lx, Lxx, Ax, Bxx, Ly, Lyy, Ay and Byy are coefficient matrices derived from the stan-
dard fourth-order Pad’ schemes.

The equation (15) can be solved by the following two steps

L−1
x T +

x L−1
xx T−xx u∗ = L−1

x T−x L−1
xx T +

xx L−1
y T−y L−1

yy T +
yy un−1, (17)

L−1
y T +

y L−1
yy T−yy un = u∗. (18)

The last two ADI methods (section 2.3 and 2.4) are preferable to the first two meth-
ods (section 2.1 and 2.2) in solving the convection-dominated diffusion (CDD)
equation.

3 Proposed schemes

We propose two high-order numerical schemes, which are based on compact integrated-
RBF approximations, for the spatial discretisation, and incorporated them into the
ADI framework proposed in [You (2006)].

3.1 Spatial discretisation

Consider a two-dimensional domain Ω, where a uniform Cartesian grid is used
to represent the domain, and the nodes are indexed in the x-direction by the sub-
script i (i ∈ {1,2, . . . ,nx}) and in y-direction by j ( j ∈ {1,2, . . . ,ny}). Let N be the
total number of nodes (i.e. N = nx×ny) and Nip be the number of interior nodes
(i.e. Nip = (nx−2)× (ny−2)).
At an interior grid point x̂i, j =(xi, j,yi, j)T (i ∈ {2,3, . . . ,nx−1} and j ∈ {2,3, . . . ,ny−1}),
the associated stencils to be considered here are (i) two local stencils: [xi−1, j,xi, j,xi+1, j]
in the x-direction and [yi, j−1,yi, j,yi, j+1] in the y-direction, and (ii) two global sten-
cils: [x1, j,x2, j, . . . ,xnx, j] (x1, j and xnx, j are the two boundary nodes) in the x-direction
and

[
yi,1,yi,2, . . . ,yi,ny

]
(yi,1 and yi,ny the two boundary nodes) in the y-direction.

Hereafter, for brevity, we use η to denote x and y, and thus to have a generic local
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Figure 1: Compact 3-point 1D-IRBF stencil.
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Figure 2: Global 1D-IRBF stencil.

stencil [η1,η2,η3] (η1 < η2 < η3, η2 ≡ ηi, j) (Figure 1) and a generic global stencil[
η1,η2, . . . ,ηnη

]
(Figure 2).

The integral approach starts with the decomposition of second-order derivatives of
u into RBFs

d2u(η)
dη2 =

m

∑
i=1

wiGi(η), (19)

where {Gi(η)}m
i=1 is the set of RBFs; and {wi}m

i=1 the set of weights/coefficients to
be found. Approximate representations for the first-order derivative and the func-
tion itself are then obtained through integration

du(η)
dη

=
m

∑
i=1

wiHi(η)+ c1, (20)

u(η) =
m

∑
i=1

wiH i(η)+ c1η + c2, (21)

where Hi(η) =
∫

Gi(η)dη ; H i(η) =
∫

Hi(η)dη ; and c1 and c2 are the constants of
integration.

Below are two proposed schemes whose constructions are based on (19)-(21). The
difference between the two lies in (i) types of nodal derivatives used in their com-
pact forms (i.e. second-order derivatives only for the first proposed scheme, and
both first- and second-order derivatives for the second proposed scheme); and (ii)
approximations for the boundary derivative values (i.e. global approximations for
the first scheme and compact local approximations for the second scheme). The
value of m is taken to be 3 for local stencils, and nx or ny for global stencils.
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3.1.1 CIRBF-1

Over a 3-point stencil associated with an interior node, we establish the relation
between the physical space and the RBF space as follows

u1
u2
u3

d2u1
dη2

d2u3
dη2

=
(

H
G

)
︸ ︷︷ ︸

C1


w1
w2
w3
c1
c2

 , (22)

where ui = u(ηi) (i ∈ {1,2,3}); d2ui
dη2 = d2u

dη2 (ηi) (i ∈ {1,3}); C1 is the conversion

matrix; and H , G are matrices defined as

H =

 H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1

 , (23)

G =
[

G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
. (24)

Solving (22) yields


w1
w2
w3
c1
c2

= C−1
1


u1
u2
u3

d2u1
dη2

d2u3
dη2

 , (25)

which maps the vector of nodal values of the function and of its second-order
derivative to the vector of RBF coefficients including the two integration constants.

First-order derivative compact approximations:

Approximate expressions for the first-order derivatives in the physical space are
obtained by substituting (25) into (20)

du(η)
dη

=
[

H1(η) H2(η) H3(η) 1 0
]
C−1

1

(
û

d̂2u
dη2

)
, (26)

where η1 ≤ η ≤ η3; û = (u1,u2,u3)T and d̂2u
dη2 = (d2u1

dη2 , d2u3
dη2 )T .
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(26) can be rewritten as

du(η)
dη

=
3

∑
i=1

dϕi(η)
dη

ui +
dϕ4(η)

dη

d2u1

dη2 +
dϕ5(η)

dη

d2u3

dη2 , (27)

where {ϕi(η)}5
i=1 is the set of IRBFs in the physical space.

At the current time level n, equation (27) is treated in an implicit manner as

dun(η)
dη

=
3

∑
i=1

dϕi(η)
dη

un
i +

dϕ4(η)
dη

d2un
1

dη2 +
dϕ5(η)

dη

d2un
3

dη2 , (28)

where the nodal second-order derivative values are also considered as unknowns.

Collocating (28) at η = η2 results in

dun
2

dη
=

dϕ1(η2)
dη

un
1 +

dϕ2(η2)
dη

un
2 +

dϕ3(η2)
dη

un
3 +

dϕ4(η2)
dη

d2un
1

dη2 +
dϕ5(η2)

dη

d2un
3

dη2 ,

(29)

or in matrix-vector form

[
0 1 0

]
dun

1
dη
dun

2
dη
dun

3
dη

=

[
dϕ1(η2)

dη

dϕ2(η2)
dη

dϕ3(η2)
dη

] un
1

un
2

un
3

+
[

dϕ4(η2)
dη

0 dϕ5(η2)
dη

]
d2un

1
dη2

d2un
2

dη2

d2un
3

dη2

 . (30)

At the boundary nodes, nodal values of the first-order derivatives are approximated
using the global 1D-IRBF approach [Mai-Duy and Tran-Cong (2008)]( dun

1
dη

dun
nη

dη

)
=


H1(η1) H1(ηnη

)
...

...
Hnη

(η1) Hnη
(ηnη

)
1 1
0 0


T 

H1(η1) · · · Hnη
(η1) η1 1

H1(η2) · · · Hnη
(η2) η2 1

...
. . .

...
...

...
H1(ηnη

) · · · Hnη
(ηnη

) ηnη
1


−1

un
1

un
2
...

un
nη

 ,

(31)
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where ui = u(ηi) (i ∈ {1,2, . . . ,nη}); and dui
dη

= du
dη

(ηi) (i ∈ {1,nη}).
The IRBF system on a grid line for the first-order derivative of u is obtained by
letting the interior node taking value from 2 to (nη −1) in (30) and making use of
(31)

Lη ûn
η = Aη ûn +Aηη ûn

ηη , (32)

where Lη , Aη and Aηη are nη ×nη matrices, and

ûn =
[
un

1,u
n
2, . . . ,u

n
nη

]T
, (33)

ûn
η =

[
dun

1
dη

,
dun

2
dη

, . . . ,
dun

nη

dη

]T

, (34)

ûn
ηη =

[
d2un

1
dη2 ,

d2un
2

dη2 , . . . ,
d2un

nη

dη2

]T

. (35)

Second-order derivative compact approximations:

Approximate expressions for the second-order derivatives in the physical space are
obtained by substituting (25) into (19)

d2u(η)
dη2 =

[
G1(η) G2(η) G3(η) 0 0

]
C−1

1

(
û

d̂2u
dη2

)
, (36)

or

d2un(η)
dη2 =

3

∑
i=1

d2ϕi(η)
dη2 un

i +
d2ϕ4(η)

dη2
d2un

1
dη2 +

d2ϕ5(η)
dη2

d2un
3

dη2 . (37)

Collocating (37) at η = η2 leads to

− d2ϕ4(η2)
dη2

d2un
1

dη2 +
d2un

2
dη2 −

d2ϕ5(η2)
dη2

d2un
3

dη2 =

d2ϕ1(η2)
dη2 un

1 +
d2ϕ2(η2)

dη2 un
2 +

d2ϕ3(η2)
dη2 un

3, (38)

or in matrix-vector form

[
−d2ϕ4(η2)

dη2 1 −d2ϕ5(η2)
dη2

]
d2un

1
dη2

d2un
2

dη2

d2un
3

dη2


=
[

d2ϕ1(η2)
dη2

d2ϕ2(η2)
dη2

d2ϕ3(η2)
dη2

] un
1

un
2

un
3

 . (39)
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At the boundary nodes, nodal values of the second-order derivatives are approx-
imated as [Mai-Duy and Tran-Cong (2008); Thai-Quang, Le-Cao, Mai-Duy, and
Tran-Cong (2012)] d2un

1
dη2

d2un
nη

dη2

=


G1(η1) G1(ηnη

)
...

...
Gnη

(η1) Gnη
(ηnη

)
0 0
0 0


T 

H1(η1) · · · Hnη
(η1) η1 1

H1(η2) · · · Hnη
(η2) η2 1

...
. . .

...
...

...
H1(ηnη

) · · · Hnη
(ηnη

) ηnη
1


−1

un
1

un
2
...

un
nη

 ,

(40)

where ui = u(ηi) (i ∈ {1,2, . . . ,nη}); and d2ui
dη2 = d2u

dη2 (ηi) (i ∈ {1,nη}).
The IRBF system on a grid line for the second derivative of u is obtained by letting
the interior node taking value from 2 to (nη −1) in (39) and making use of (40)

Lηη ûn
ηη = Bηη ûn, (41)

where Lηη , Bηη are nη ×nη matrices.

3.1.2 CIRBF-2

First-order derivative compact approximations:

Unlike Scheme 1, nodal derivative values (i.e. extra information) used in the com-
pact approximation of first derivatives are chosen here as du1

dη
and du3

dη
. We construct

the conversion system over a 3-point stencil associated with an interior node in the
form of

u1
u2
u3
du1
dη
du3
dη

=
(

H
H

)
︸ ︷︷ ︸

C2


w1
w2
w3
c1
c2

 , (42)

where dui
dη

= du
dη

(ηi) (i ∈ {1,3}); C2 is the conversion matrix; H is defined as
before; and

H =
[

H1(η1) H2(η1) H3(η1) 1 0
H1(η3) H2(η3) H3(η3) 1 0

]
. (43)
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Solving (42) yields


w1
w2
w3
c1
c2

= C−1
2


u1
u2
u3
du1
dη
du3
dη

 , (44)

which maps the vector of nodal values of the function and of its first-order deriva-
tive to the vector of RBF coefficients including the two integration constants. Ap-
proximate expressions for the first-order derivatives in the physical space are ob-
tained by substituting (44) into (20)

du(η)
dη

=
[

H1(η) H2(η) H3(η) 1 0
]
C−1

2

(
û
d̂u
dη

)
, (45)

where η1 ≤ η ≤ η3; û = (u1,u2,u3)T and d̂u
dη

= (du1
dη

, du3
dη

)T .

It can be rewritten as

du(η)
dη

=
3

∑
i=1

dφi(η)
dη

ui +
dφ4(η)

dη

du1

dη
+

dφ5(η)
dη

du3

dη
, (46)

where {φi(η)}5
i=1 is the set of IRBFs in the physical space.

At the current time level, equation (46) is taken as

dun(η)
dη

=
3

∑
i=1

dφi(η)
dη

un
i +

dφ4(η)
dη

dun
1

dη
+

dφ5(η)
dη

dun
3

dη
, (47)

where nodal values of the first-order derivatives on the right hand side are treated
as unknowns.

Collocating (47) at η = η2 results in

−dφ4(η2)
dη

dun
1

dη
+

dun
2

dη
− dφ5(η2)

dη

dun
3

dη
=

dφ1(η2)
dη

un
1 +

dφ2(η2)
dη

un
2 +

dφ3(η2)
dη

un
3,

(48)
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or in matrix-vector form

[
−dφ4(η2)

dη
1 −dφ5(η2)

dη

]
dun

1
dη
dun

2
dη
dun

3
dη


=
[

dφ1(η2)
dη

dφ2(η2)
dη

dφ3(η2)
dη

] un
1

un
2

un
3

 . (49)

η
n

η
η

1
η

2
η

4
η

3
(η

n
η

−3) (η
n

η

−2) (η
n

η

−1)

Figure 3: Special compact 4-point 1D-IRBF stencils for left and right boundary
nodes

At the boundary nodes, instead of using the global 1D-IRBF approach as in Scheme
1, we compute the first derivative here using special compact local stencils (Figure
3). These proposed stencils are constructed as follows. Consider the boundary node
η1. Its associated stencil is [η1,η2,η3,η4]. The conversion system over this stencil
is presented as the following matrix-vector multiplication


u1
u2
u3
u4
du2
dη

=
(

Hsp

Hsp

)
︸ ︷︷ ︸

Csp1



w1
w2
w3
w4
c1
c2

 , (50)

where Csp1 is the conversion matrix and Hsp, Hsp are matrices defined as

Hsp =


H1(η1) H2(η1) H3(η1) H4(η1) η1 1
H1(η2) H2(η2) H3(η2) H4(η2) η2 1
H1(η3) H2(η3) H3(η3) H4(η3) η3 1
H1(η4) H2(η4) H3(η4) H4(η4) η4 1

 , (51)

Hsp =
[

H1(η2) H2(η2) H3(η2) H4(η2) 1 0
]
. (52)
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Solving (50) yields

w1
w2
w3
w4
c1
c2

= C−1
sp1


u1
u2
u3
u4
du2
dη

 . (53)

The boundary value of the first-order derivative of u is thus obtained by substituting
(53) into (20) and taking η = η1

du(η1)
dη

=[
H1(η1) H2(η1) H3(η1) H4(η1) 1 0

]
C−1

sp1

(
u1 u2 u3 u4

du2
dη

)T
,

(54)

or

dun
1

dη
−

dφsp5(η1)
dη

dun
2

dη
=

dφsp1(η1)
dη

un
1 +

dφsp2(η1)
dη

un
2 +

dφsp3(η1)
dη

un
3 +

dφsp4(η1)
dη

un
4,

(55)

where {φspi(η)}5
i=1 is the set of IRBFs in the physical space. We rewrite equation

(55) in matrix-vector form

[
1 −dφsp5 (η1)

dη
0 0

]


dun
1

dη
dun

2
dη
dun

3
dη
dun

4
dη

=

[
dφsp1 (η1)

dη

dφsp2 (η1)
dη

dφsp3 (η1)
dη

dφsp4 (η1)
dη

]
un

1
un

2
un

3
un

4

 . (56)

In a similar manner, one is able to calculate the first derivative of u at the boundary
node ηnη

.

The IRBF system on a grid line for the first derivative of u is obtained by letting the
interior node taking value from 2 to (nη −1) in (49) and making use of (56),

Lη ûn
η = Aη ûn. (57)
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Second-order derivative compact approximations:

Nodal derivative values (i.e. extra information) used in the compact approximation
of second-order derivatives are chosen here as d2u1

dη2 and d2u3
dη2 . The corresponding

formulation is thus exactly the same as described in Scheme 1 (i.e. (39)). However,
at the boundary nodes, instead of using the global 1D-IRBF approach as in Scheme
1, we compute the second-order derivative here using special compact local stencils
(Figure 3). Consider the boundary node, e.g., η1. The conversion system over the
associated stencil is presented as the following matrix-vector multiplication

u1
u2
u3
u4

d2u2
dη2

=
(

Hsp

Gsp

)
︸ ︷︷ ︸

Csp2



w1
w2
w3
w4
c1
c2

 , (58)

where Csp2 is the conversion matrix; Hsp is defined as before; and

Gsp =
[

G1(η2) G2(η2) G3(η2) G4(η2) 0 0
]
. (59)

Solving (58) yields

w1
w2
w3
w4
c1
c2

= C−1
sp2


u1
u2
u3
u4

d2u2
dη2

 . (60)

The boundary value of the second-order derivative of u is thus obtained by substi-
tuting (60) into (19) and taking η = η1

d2u(η1)
dη2 =[
G1(η1) G2(η1) G3(η1) G4(η1) 0 0

]
C−1

sp2

(
u1 u2 u3 u4

d2u2
dη2

)T
,

(61)

or

d2un
1

dη2 −
d2ϕsp5(η1)

dη2
d2un

2
dη2 =

d2ϕsp1(η1)
dη2 un

1 +
d2ϕsp2(η1)

dη2 un
2 +

d2ϕsp3(η1)
dη2 un

3 +
d2ϕsp4(η1)

dη2 un
4, (62)
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where {ϕspi(η)}5
i=1 is the set of IRBFs in the physical space. We rewrite equation

(62) in matrix-vector form

[
1 −d2ϕsp5 (η1)

dη2 0 0
]


d2un
1

dη2

d2un
2

dη2

d2un
3

dη2

d2un
4

dη2

=

[
d2ϕsp1 (η1)

dη2
d2ϕsp2 (η1)

dη2
d2ϕsp3 (η1)

dη2
d2ϕsp4 (η1)

dη2

]
un

1
un

2
un

3
un

4

 . (63)

The IRBF system on a grid line for the second derivative of u is obtained by letting
the interior node taking value from 2 to (nη −1) in (39) and making use of (63),

Lηη ûn
ηη = Bηη ûn, (64)

where Lηη , Bηη are nη ×nη matrices.

It is noted that, for brevity, we use the same notations to represent the RBF coeffi-
cients and the coefficient matrices for the two schemes and also for the approxima-
tion of first and second derivatives in Scheme 2. In fact, for example, the entries of
Lη , Lηη , Aη and Bηη in (57) and (64) are different from those of Lη , Lηη , Aη

and Bηη in (32) and (41); and the coefficient set (w1, w2, w3, w4, c1, c2) in (50) is
not the same as that in (58).

3.2 Temporal discretisation

The temporal discretisation of (1) with a Crank-Nicolson scheme [Crank and Nicol-
son (1996)] gives

un +
∆t
2

cx
∂un

∂x
− ∆t

2
dx

∂ 2un

∂x2 +
∆t
2

cy
∂un

∂y
− ∆t

2
dy

∂ 2un

∂y2

= un−1− ∆t
2

cx
∂un−1

∂x
+

∆t
2

dx
∂ 2un−1

∂x2 − ∆t
2

cy
∂un−1

∂y
+

∆t
2

dy
∂ 2un−1

∂y2

+ ∆t f n−1/2
b +O(∆t2). (65)
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We apply the ADI factorisation to (65), resulting in

{
1+

∆t
2

cx
∂

∂x
− ∆t

2
dx

∂ 2

∂x2

}{
1+

∆t
2

cy
∂

∂y
− ∆t

2
dy

∂ 2

∂y2

}
un

=
{

1− ∆t
2

cx
∂

∂x
+

∆t
2

dx
∂ 2

∂x2

}{
1− ∆t

2
cy

∂

∂y
+

∆t
2

dy
∂ 2

∂y2

}
un−1

+ ∆t f n−1/2
b +O(∆t2). (66)

Equation (66) can be further factorised as

(
1+

∆t
2

cx
∂

∂x

)(
1− ∆t

2
dx

∂ 2

∂x2

)(
1+

∆t
2

cy
∂

∂y

)(
1− ∆t

2
dy

∂ 2

∂y2

)
un

=
(

1− ∆t
2

cx
∂

∂x

)(
1+

∆t
2

dx
∂ 2

∂x2

)(
1− ∆t

2
cy

∂

∂y

)(
1+

∆t
2

dy
∂ 2

∂y2

)
un−1

+ ∆t f n−1/2
b +O(∆t2). (67)

It is noted that Equations (66) and (67) have the same order accuracy in time (i.e.
second order) as Equation (65).

3.3 Spatial - temporal discretisation

Incorporation of the CIRBF approximations derived in Section 3.3.1 (i.e. CIRBF-
1) and 3.3.2 (i.e. CIRBF-2) into the ADI equation (67) leads to, respectively, the
following two schemes

3.3.1 ADI-CIRBF-1

From (32) and (41), nodal values of the first- and second-order derivatives of u can
be derived in terms of nodal variable values

ûη = L −1
η

(
Aη +AηηL −1

ηη Bηη

)
û, (68)

ûηη = L −1
ηη Bηη û. (69)

Substituting (68) and (69) into (67) results in

L −1
x T +

x L −1
xx T −

xx L −1
y T +

y L −1
yy T −

yy ûn =

L −1
x T −

x L −1
xx T +

xx L −1
y T −

y L −1
yy T +

yy ûn−1 +∆t f̂ n−1/2
b , (70)
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where

T ±
x =

(
Lx±

∆t
2

cx
{
Ax +AxxL

−1
xx Bxx

})
, T ±

xx =
(

Lxx±
∆t
2

dxBxx

)
, (71)

T ±
y =

(
Ly±

∆t
2

cy
{
Ay +AyyL

−1
yy Byy

})
, T ±

yy =
(

Lyy±
∆t
2

dyByy

)
.

3.3.2 ADI-CIRBF-2

From (57) and (64), nodal values of the first- and second-order derivatives of u can
be derived in terms of nodal variable values

ûη = L −1
η Aη û, (72)

ûηη = L −1
ηη Bηη û. (73)

Substituting (72) and (73) into (67) results in

L −1
x T +

x L −1
xx T −

xx L −1
y T +

y L −1
yy T −

yy ûn =

L −1
x T −

x L −1
xx T +

xx L −1
y T −

y L −1
yy T +

yy ûn−1 +∆t f̂ n−1/2
b , (74)

where

T ±
x =

(
Lx±

∆t
2

cxAx

)
, T ±

xx =
(

Lxx±
∆t
2

dxBxx

)
, (75)

T ±
y =

(
Ly±

∆t
2

cyAy

)
, T ±

yy =
(

Lyy±
∆t
2

dyByy

)
.

3.3.3 Calculation procedure

Equation (70)/(74) is equivalent to

L −1
x T +

x L −1
xx T −

xx û∗= L −1
x T −

x L −1
xx T +

xx L −1
y T −

y L −1
yy T +

yy ûn−1 +∆t f̂ n−1/2
b , (76)

L −1
y T +

y L −1
yy T −

yy ûn = û∗, (77)

which can be solved by the following two steps.

Step 1: This step involves two substeps

• Substep 1: Compute the nodal values of u∗ at the left and right boundaries of
the computational domain via equation (77) for x = x1 and x = xnx with the
given boundary condition (3).
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• Substep 2: Solve equation (76) on the x-grid lines (y = y j, j ∈ {2,3, · · · ,ny−1})
for the values of u∗ at the interior nodes.

Step 2: Solve (77) on the y-grid lines (x = xi, i ∈ {2,3, · · · ,nx−1}) for the values
of un at the interior nodes.

Owing to the ADI technique, the computational costs for the two present solution
procedures are low. Scheme 2 (i.e. ADI-CIRBF-2) is more efficient as only local
stencils are involved.

4 Numerical examples

It has generally been accepted that, among RBFs, the multiquadric (MQ) function
tends to result in the most accurate approximation [Franke (1982)]. We choose MQ
as the basis function in the present calculations

Gi(x̂) =
√

(x̂− ĉi)T (x̂− ĉi)+a2
i , (78)

where x̂ = (x,y)T is the position vector of the point of interest; and ĉi = (xci ,yci)
T

and ai the position vector of the centre and the width of the ith MQ, respectively.
For each stencil, the set of nodal points is taken to be the set of MQ centres. We
simply choose the MQ width as ai = βhi in which hi the distance between the ith
node and its nearest neighbouring node and β is a given positive number: β = 1 for
global stencils and β = 50 for local stencils in Scheme 1 and Scheme 2. We assess
the performance of the proposed scheme through the following measures:

(i) the average absolute error (L1) defined as

L1 =
1
N

N

∑
i=1
|ui−ui|, (79)

where N is the number of nodes over the whole domain and u is the analytic solu-
tion,

(ii) the root mean square error (RMS) defined as

RMS =

√
∑

N
i=1(ui−ui)2

N
, (80)

(iii) the maximum absolute error (L∞) defined as

L∞ = max
i
|ui−ui|, (81)
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(iv) the grid convergence behaviour O(hα), where α is the average convergence
rate, determined in the least square sense. Local convergence rates are given by

α =
log(RMS(r)/RMS(s))

log(h(r)/h(s))
, (82)

in which h is the grid size; and the superscripts (r) and (s) indicate the data obtained
from computations with the rth and sth grid, respectively.

A flow is considered to reach its steady state when√
∑

N
i=1(u

n+1
i −un

i )2

N
< 10−9. (83)

4.1 Unsteady diffusion equation

Consider a diffusion equation by setting the parameters in Equation (1) as cx =
cy = 0, dx = dy = 1 and fb = 0. The analytic solution is taken here as [Tian and Ge
(2007)]

u(x,y, t) = e−2π2t sin(πx)sin(πy). (84)

The problem domain is chosen to be a unit square Ω = [0,1]× [0,1] and the initial
and Dirichlet boundary conditions are derived from (84).

We employ a set of uniform grids to study the convergence of the solution with
grid refinement. Results obtained at t = 0.0125 using ∆t = 10−5 and {11×11,16×
16, . . . ,41× 41} are displayed in Figure 4, showing that the approximate solution
converges apparently as O(h2.74) for ADI-CIRBF-1, and O(h4.76) for ADI-CIRBF-
2.

We employ a set of time steps ∆t = {0.05,0.025,0.0125,0.00625} to test the tem-
poral accuracy. Results obtained at t = 1.25 using an uniform grid of 81× 81 are
shown in in Table 1. The two present schemes are about second-order accurate in
time as expected (temporal derivative terms are presently discretised with a second-
order Crank-Nicolson scheme). It is noted that we employ a fine grid of 81×81 to
ensure that the approximate error in space is small enough so that its effects can be
neglected.

To facilitate a comparison with the exponential high-order compact ADI scheme
(EHOC-ADI) [Tian and Ge (2007)], we now choose ∆t = h2 and t = 0.125. Table 2
indicates that the present ADI-CIRBF-2 scheme and the EHOC-ADI scheme yield
similar local rates of convergence of about 4.

Figure 5 plots the RMS error against time with ∆t = 10−4. It can be seen that
ADI-CIRBF-2 is the most accurate scheme, followed by ADI-CIRBF-1 and then
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Figure 4: Unsteady diffusion equation, {11×11,16×16, . . . ,41×41}, ∆t = 10−5,
t = 0.0125 : The effect of grid size h on the solution accuracy for the two present
schemes. The solution converges as O(h2.74) for ADI-CIRBF-1 and O(h4.76) for
ADI-CIRBF-2.

PR-ADI. It also shows that the present results using a grid of 21× 21 are already
more accurate than the standard ADI results using a grid of 41×41.

4.2 Unsteady convection-diffusion equation

Consider the unsteady convection-diffusion equation (1), where fb = 0, in a square
Ω = [0,2]× [0,2] with the following analytic solution [Noye and Tan (1989)]

u(x,y, t) =
1

4t +1
exp
[
−(x− cxt−0.5)2

dx(4t +1)
−

(y− cyt−0.5)2

dy(4t +1)

]
, (85)

and subject to Dirichlet boundary conditions. From (85), one can derive the initial
and boundary conditions.

Figure 6 shows the accuracy of the spatial discretisation of the two present schemes.
The calculations are carried out on a set of uniform grids {31×31,41×41, . . . ,81×
81} and a time step of 10−4 with the following parameters: cx = cy = 0.8, dx = dy =
0.01. The accuracy of the solution is measured at t = 1.25. It is noted that the time
step is chosen small enough to minimise the effect of the approximate error in time.
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Table 1: Unsteady diffusion equation, t = 1.25, grid 81×81: Solution accuracy of
the two present schemes against time step.

ADI-CIRBF-1 ADI-CIRBF-2
∆t RMS Local Rate RMS Local Rate
0.05 3.8700E-12 —- 3.8518E-12 —-
0.025 1.1432E-12 1.76 1.1276E-12 1.77
0.0125 2.9542E-13 1.95 2.9337E-13 1.94
0.00625 7.3686E-14 2.00 7.4054E-14 1.99

Table 2: Unsteady diffusion equation, t = 0.125, ∆t = h2: Effect of grid size on the
solution accuracy.

EHOC-ADI ADI-CIRBF-2
Grid (nx×ny) RMS Local Rate RMS Local Rate
11×11 8.55134E-05 —- 9.39417E-05 —-
21×21 5.19160E-06 4.041 5.81951E-06 4.013
41×41 3.17475E-07 4.031 4.02907E-07 3.852

Table 3: Unsteady convection-diffusion equation, grid 81× 81, t = 1.25, ∆t =
0.00625: Comparison of the solution accuracy between the present schemes and
some other techniques.

Method L1(u) RMS(u) L∞(u)
PR-ADI [Peaceman and H. H. Rachford (1955)] 3.109E-04 2.025E-03 7.778E-03
3rd-order 9-point compact [Noye and Tan (1989)] 1.971E-05 1.280E-04 6.509E-04
4th-order 9-point compact [Kalita, Dalal, and Dass (2002)] 1.597E-05 1.024E-04 4.477E-04
HOC-ADI [Karaa and Zhang (2004)] 9.218E-06 5.931E-05 2.500E-04
EHOC-ADI [Tian and Ge (2007)] 9.663E-06 6.194E-05 2.664E-04
ADI-CIRBF-1 8.457E-06 2.808E-05 2.250E-04
ADI-CIRBF-2 6.742E-06 2.197E-05 1.703E-04

It can be seen that the solution converges very fast with grid refinement: O(h4.07)
for ADI-CIRBF-1 and O(h4.32) for ADI-CIRBF-2. Figure 7 shows the initial pulse
and the pulse at t = 1.25 using a grid of 81× 81 and ∆t = 0.00625 by the two
present schemes. The initial pulse is a Gaussian pulse centred at (0.5,0.5) with the
pulse height 1. At t = 1.25, the pulse moves to a position centred at (1.5,1.5) with
the pulse height of 1/6. Figure 8 displays the surface plots of the solution obtained
by the analytic solution and the two present schemes in a sub-region 1≤ x,y≤ 2 -
these plots are almost identical.

Table 3 shows a comparison of L1, RMS and L∞ errors between the two present
schemes and the standard PR-ADI scheme, third-order nine-point compact scheme
[Noye and Tan (1989)], fourth-order nine-point compact scheme [Kalita, Dalal,
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Figure 5: Unsteady diffusion equation, ∆t = 10−4: The solution accuracy of the
standard PR-ADI and the two present schemes against time.

and Dass (2002)], HOC-ADI scheme [Karaa and Zhang (2004)] and exponential
high-order compact ADI (EHOC-ADI) [Tian and Ge (2007)]. It can be seen that
the present schemes yield solutions with higher accuracy. In addition, in Figure 9,
we plot RMS against time for these schemes, except for EHOC-ADI (the data for
this scheme is not available). It shows that all of these curves have similar shapes
and the present schemes have smaller error for every time step. Figure 10 displays
contour plots of the pulse in the region 1 ≤ x,y ≤ 2 by the analytic solution, PR-
ADI, ADI-CIRBF-1 and ADI-CIRBF-2. Contour plots of other mentioned schemes
can be found in [Tian and Ge (2007)]. It can be seen that the computed pulses by
the two present schemes are visually indistinguishable from the analytic one, while
PR-ADI produces a pulse that is distorted in both x- and y-directions. For the latter,
the reason was explained in [Noye and Tan (1989)] (the second-order error terms of
the standard PR-ADI scheme are related to the wave numbers in both directions).

Recently, Ma, Sun, Haake, Churchill, and Ho (2012) proposed a high-order hybrid
Pad’ ADI (HPD-ADI) method for convection-dominated diffusion problems and
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Figure 6: Unsteady convection-diffusion equation, {31×31,41×41, . . . ,81×81},
∆t = 10−4, t = 1.25: The effect of grid size h on the solution accuracy for the
two present schemes. The solution converges as O(h4.07) for ADI-CIRBF-1 and
O(h4.32) for ADI-CIRBF-2.

also examined the performance of their method via this example. We consider two
sets of parameters used in their article

Case I: cx = cy = 0.8, dx = dy = 0.01, h = 0.025, t = 1.25, ∆t = 2.5E−4.

Case II: cx = cy = 80, dx = dy = 0.01, h = 0.025, t = 0.0125, ∆t = 2.5E−6.

The corresponding Peclet number is thus Pe = 2 for Case I and Pe = 200 for Case
II. Results concerning RMS and L∞ errors are presented in Tables 4-6. In the case of
low Pe, the two present schemes are superior to HPD-ADI and also other schemes
(Table 4). In the case of high Pe (i.e. convection dominated), ADI-CIRBF-2 yields
the best performance: higher degrees of accuracy (Table 5) and higher rates of
convergence (Table 6).

4.3 Steady convection-diffusion equation

Consider Equation (4) with cx = cy = 0.1, dx = dy = 1 in a square Ω = [0,L]× [0,L]
and subject to Dirichlet boundary condition. The analytic solution takes the form



212 Copyright © 2012 Tech Science Press CMES, vol.89, no.3, pp.189-220, 2012

0
0.5

1
1.5

2 0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

u

(a)

0
0.5

1
1.5

2 0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

u

(b)

Figure 7: Unsteady convection-diffusion equation, 81× 81, ∆t = 0.00625: The
initial and the computed pulses at t = 1.25 by ADI-CIRBF-1 (a) and ADI-CIRBF-
2 (b).



High-order Alternating Direction Implicit Method 213

1

1.5

2 1

1.5

2
0

0.05

0.1

0.15

0.2

x
y

u

(a)

1

1.5

2 1

1.5

2
0

0.05

0.1

0.15

0.2

x
y

u

(b)

1

1.5

2 1

1.5

2
0

0.05

0.1

0.15

0.2

x
y

u

(c)

Figure 8: Unsteady convection-diffusion equation, 81×81, ∆t = 0.00625: Surface
plots of the pulse in the sub-region 1≤ x,y≤ 2 at t = 1.25 by the analytic solution
(a), ADI-CIRBF-1 (b) and ADI-CIRBF-2 (c).



214 Copyright © 2012 Tech Science Press CMES, vol.89, no.3, pp.189-220, 2012

Table 4: Unsteady convection-diffusion equation, grid 81× 81, t = 1.25, ∆t =
2.5E− 4: Comparison of the solution accuracy between the present schemes and
some other techniques for case I.

Method RMS(u) L∞(u)
PR-ADI [Peaceman and H. H. Rachford (1955)] 1.11E-03 8.92E-03
HOC-ADI [Karaa and Zhang (2004)] 2.73E-05 2.46E-04
PDE-ADI [You (2006)] 2.20E-05 1.71E-04
HPD-ADI [Ma, Sun, Haake, Churchill, and Ho (2012)] 6.38E-05 6.54E-04
ADI-CIRBF-1 9.32E-06 7.80E-05
ADI-CIRBF-2 2.75E-06 2.37E-05

Table 5: Unsteady convection-diffusion equation, grid 81× 81, t = 0.0125, ∆t =
2.5E− 6: Comparison of the solution accuracy between the present schemes and
some other techniques for case II.

Method RMS(u) L∞(u)
PR-ADI [Peaceman and H. H. Rachford (1955)] 2.69E-02 3.74E-01
HOC-ADI [Karaa and Zhang (2004)] 1.47E-02 2.42E-01
PDE-ADI [You (2006)] 5.49E-04 1.22E-02
HPD-ADI [Ma, Sun, Haake, Churchill, and Ho (2012)] 5.49E-04 1.24E-02
ADI-CIRBF-1 1.71E-03 3.32E-02
ADI-CIRBF-2 5.45E-04 1.06E-02

Table 6: Unsteady convection-diffusion equation, t = 0.0125, ∆t = 2.5E−6: The
solution accuracy of the present schemes and some other techniques against grid
size for case II. LCR stands for “local convergence rate".

PDE-ADI HPD-ADI ADI-CIRBF-1 ADI-CIRBF-2
Grid (nx×ny) RMS(nx) LCR RMS(nx) LCR RMS(nx) LCR RMS(nx) LCR
31×31 1.93E-02 —- 1.91E-02 —- 3.22E-02 —- 2.42E-02 —-
41×41 8.41E-03 2.98 8.30E-03 2.97 1.69E-02 2.29 8.45E-03 3.45
51×51 3.74E-03 3.30 3.70E-03 3.29 9.14E-03 2.52 3.74E-03 3.58
61×61 1.80E-03 3.51 1.78E-03 3.50 5.00E-03 2.75 1.79E-03 3.71
71×71 9.51E-04 3.63 9.48E-04 3.62 2.85E-03 2.92 9.47E-04 3.80
81×81 5.49E-04 3.69 5.49E-04 3.69 1.71E-03 3.05 5.45E-04 3.86
101×101 2.21E-04 3.78 2.23E-04 3.76 7.14E-04 3.22 2.18E-04 3.91
121×121 1.07E-04 3.81 1.10E-04 3.79 3.46E-04 3.33 1.04E-04 3.94

LCR=-log[RMS(nx)/RMS(31)]/log[nx/31].
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Figure 9: Unsteady convection-diffusion equation, 81× 81, ∆t = 0.00625: The
solution accuracy of the present schemes and some other techniques against time.

[Sheu, Kao, Chiu, and Lin (2011)]

u =
u0

er+− er−
eδx/2 sin(πx)(er+y− er−y) , (86)

where u0 = 1, δx = cxL/dx, δy = cyL/dy, L = 1, and

r± =
1
2

δy±
1
2

√(
δ 2

y +4W
)
, W = 4π

2 +δ
2
x /4. (87)

The driving function fb is given by

fb = cx
∂u
∂x

+ cy
∂u
∂y
−dx

∂ 2u
∂x2 −dy

∂ 2u
∂y2 . (88)

To solve the steady equation (4), a pseudo time-derivative term ∂u
∂ t is added to its

left side to facilitate an iterative calculation. The steady equation (4) thus has the
same form as the unsteady equation (1). When the difference of u between two
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Figure 10: Unsteady convection-diffusion equation, 81× 81, ∆t = 0.00625: Con-
tour plots of the pulse in the sub-region 1 ≤ x,y ≤ 2 at t = 1.25 by the analytic
solution (a), standard PR-ADI (b), ADI-CIRBF-1 (c) and ADI-CIRBF-2 (d).
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successive time levels is small, i.e. less than a given tolerance, the obtained solution
is the solution to (4).

In the present calculation, we employ a set of uniform grids {11×11,16×16, . . . ,51×
51} and a time step of 0.0005. Figure 11 displays the solution accuracy against the
grid size, which shows the superiority of the two present schemes over the stan-
dard PR-ADI scheme. The solution converges apparently as O(h1.94), O(h3.02) and
O(h4.53) for PR-ADI, ADI-CIRBF-1 and ADI-CIRBF-2, respectively. Addition-
ally, Figure 12 show that profiles of u along the centrelines by ADI-CIRBF-1 and
ADI-CIRBF-2 agree very well with the analytic solutions.
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Figure 11: Steady convection-diffusion equation, {11× 11,16× 16, . . . ,51× 51}:
The effect of grid size h on the solution accuracy for the standard PR-ADI and two
present schemes. The solution converges as O(h1.94), O(h3.02) and O(h4.53) for
PR-ADI, ADI-CIRBF-1 and ADI-CIRBF-2, respectively.

5 Concluding remarks

This paper presents new high-order approximation schemes for the discretisation of
convection-diffusion equations in two dimensions. The ADI algorithm is adopted
in the form in which the operator is factorised into four separate terms rather than
the usual two, while compact integrated-RBFs are implemented to represent the



218 Copyright © 2012 Tech Science Press CMES, vol.89, no.3, pp.189-220, 2012

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

 

 

Exact

Computed

u

y

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 

Exact

Computed

x
u

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

 

 

Exact

Computed

u

y

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 

Exact

Computed

x

u

(c) (d)

Figure 12: Steady convection-diffusion equation, 51× 51: Profiles of the solution
u along the vertical and horizontal centrelines by ADI-CIRBF-1 (a)-(b) and ADI-
CIRBF-2 (c)-(d).

variable and its derivatives over 3-point stencils. Two CIRBF schemes are pro-
posed, which lead to a significant improvement in accuracy over the central-finite-
difference-based ADI method. CIRBF-2 scheme, where first-order and second-
order derivatives are approximated separately, is found to be more efficient and
effective than CIRBF-1 scheme, where first-order and second-order derivatives are
approximated simultaneously. We note that the assumption of rectangular domain
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here is not necessary and the present methods can easily treat non-rectangular do-
mains.
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