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A New Anisotropic Local Meshing Method and Its
Application in Parametric Surface Triangulation

W.W. Zhang 1, Y.F. Nie1, and Y.Q. Li 1

Abstract: A new algorithm for anisotropic triangular meshes generation in two
dimension is presented. The inputs to the algorithm are the boundary geometry
information and a metric tensor that specifies the desired element size and shape.
The initial nodes are firstly distributed according to the above mentioned geometri-
cal information, after bubble simulation, the optimized nodes set that meets the
requirements of the metric tensor is obtained quickly. Then taking full advan-
tage of the nodes set and the adjacency lists information provided by the process
of node placement, a handful of non-satellite nodes are removed from the adja-
cency lists of the nodes with the Anisotropic Bubble-type Local Mesh Generation
(ABLMG) method, the anisotropic meshes are generated rapidly. The developed
meshes reflect the metric tensor requirement well, and they don’t require remeshing
and smoothing. Since the adjacency list is built for each node, it avoids searching
neighbor nodes when calculating the resultant force of each node and generating
the local mesh around each node, the simulation time is greatly saved. The new
algorithm is also used for 3D surface triangulation based on mapping method. The
parametric space corresponding to the target surface is triangulated with our algo-
rithm, then mapping the mesh topology in the parametric space back to the original
surface, the surface mesh with high quality are obtained. Some numerical examples
are given to test the feasibility of the algorithm.

Keywords: anisotropic local mesh generation, nodes placement by bubble simu-
lation, parametric surface, metric tensor.

1 Introduction

It has been stated by many computation practice that anisotropic mesh is highly ef-
ficient for reducing the degrees of freedom of a numerical computation, as well as
more accurately capturing physical phenomena [Peraire and Peiro (1992); Frey and
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Alauzet (2005); Leicht and Hartmann (2010); Legrand, Deleersnijder, Delhez, and
Legat (2007)]. For the problems with complex geometry boundaries and with solu-
tions that change rapidly in both magnitude and direction, unstructured anisotropic
mesh is often advantageous in terms of computational cost and solution accuracy.

A number of meshing strategies, such as the advancing front technique(AFT) [Lo
and Wang (2005)], the Delaunay triangulation method(DTM) [Borouchaki, George,
Hecht, Laug, and Saltel (1997); Borouchaki, George, and Mohammadi (1997);
Yokosuka and Imai (2009); Bossen and Heckbert (1996)], and the method com-
bining local modification with smoothing or node movement [Habashi, Dompierre,
Bourgault, Yahia, Fortin, and Vallet (2000); Yamakawa and Shimada (2003)], have
been developed in the last decade for generating anisotropic meshes according to a
given metric tensor. The AFT can be used to control the shape and size of the ele-
ments through adjusting the location of the new insert node. It offers a high quality
node placement strategy for the early fronts. However, when fronts meet each other
or itself, it is difficult and time consuming to decide the size and the directionality
of the elements in that region. In the DTM, a coarse mesh is usually generated to
cover the problem domain at first. By repeatedly insert nodes, this coarse mesh is
then refined until the required gradation effect is achieved. In the method combin-
ing local modification, it constructs the constrained Delaunay triangulation of the
domain firstly, then iteratively smooths, refines, and retriangulates. On each itera-
tion, a node is selected randomly, it is repositioned according to attraction/repulsion
with its neighbors, and the neighborhood is retriangulated.

From the above discussion, we find that the location where new nodes are to be
inserted has a great impact on the quality of the final anisotropic mesh. And in the
DTM and the method combining local modification, the time-consuming remesh-
ing process is needed. In order to avoid ill-shaped elements caused by poorly dis-
tributed node locations and the remeshing process, Shimada et al. [Shimada and
Gossard (1998)] describe a scheme to pack ellipses by defining proximity-based
interacting forces among ellipses and finding a force-balancing configuration using
dynamic simulation, the centres of the ellipses are then connected with Delaunay
triangulation for a complete mesh topology. Yamakawa et al. [Yamakawa and
Shimada (2003)] propose a anisotropic tetrahedral meshing method with bubble
packing and AFT. However, for the above two methods, the dynamic simulation ef-
ficiency still needs to be improved. Then Qi et al. [Qi, Nie, and Zhang (2012)] have
done several modifications to reduce the cost of simulation, such as the selection
of viscosity coefficient, and a low order numerical algorithm is also chosen when
solving the ordinary differential equations which control the movement of bubbles,
the computing cost has been decreased by approximately 40%. In this paper, based
on the modified strategy of Qi et al., a new anisotropic meshing method, called
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Anisotropic Bubble-type Local Mesh Generation (ABLMG) method is described
according to a given metric tensor. The new method consists of two major steps:
anisotropic node placement (detailed in Section 3) and node-based local mesh gen-
eration (detailed in Section 4). Compared with Shimada’ method, the ABLMG
method builds the adjacency lists for each node in the process of node placement,
which avoids searching neighbor nodes when calculating the resultant force of each
node, meanwhile, by removing a handful of non-satellite nodes from the adjacency
lists, local mesh around each node is built quickly, it makes the ABLMG method
more easy and efficient.

The most direct application of anisotropic mesh generation is surface triangulation.
Surface triangulation is one of the most important and yet difficult prerequisites for
shell analysis [Bechet, Millet, and Sanchez-Palencia (2008)], biomechanics mod-
eling [Chen and Lu (2011)] as well as mesh generation in three dimensions [Wu
and Wang (2005)]. With the result of the rapid development in computer technol-
ogy, quite a number of new automatic surface mesh generation schemes based on
different approaches have been suggested [Miranda, Martha, Wawrzynek, and In-
graffea (2009); Shimada and Gossard (1998); Lee (2001); Lee (2003); Lee (2000);
Borouchaki, Laug, and George (2000)]. The mapping method [Lee (2001); Lee
(2003); Lee (2000); Borouchaki, Laug, and George (2000)] is one of the most
popular method. In the mapping method, the target surface is represented by a bi-
variate mapping, such that any node on the 3D surface is mapped to a parametric
space. 3D surface mesh generation is turned into mesh generation in the paramet-
ric space, and the final 3D surface mesh is obtained by mapping the mesh topology
in the parametric space back to the original surface. In the area of controlling the
grading and the elements size distribution of the surface mesh, Riemannian metric
[Lee (2001); Lee (2003); Lee (2000)] approach is proved to be simple to implement
and easy to use.

The objective of this paper is to introduce a new algorithm for anisotropic local
mesh generation. The local mesh generation method employed in the previous
study [ Nie, Chang, and Fan (2007); Chen, Nie, Zhang, and Wang (2012)] is not
sufficiently simply and efficiently to handle complex shapes and cannot be ex-
tended to the anisotropic problems. Therefore, we developed a new anisotropic
local mesh generation algorithm, unlike many other anisotropic mesh generation
schemes suggested previously, the new algorithm use the anisotropic nodes place-
ment method by bubble simulation to optimize initial nodes distribution, then with
the ABLMG method, the local mesh is generated in a local area around each node
without searching neighboring nodes, the union of these local meshes is the coordi-
nating global mesh. The new algorithm is applied on 3D parametric surface mesh
generation based on the mapping method, and the metric tensor is co-generated by
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the 3D surface metric tensor and the gradient of the parametric surface equations.
Numerical examples show that the high quality of the anisotropic meshes and the
surface meshes generated in this paper.

The rest of the paper is organized as follows: Section 2 introduces the Riemannian
metric tensor. In Section 3, the anisotropic node placement by bubble simulation
is discussed in detail. Section 4 presented the anisotropic local mesh generation
method ABLMG. The application of the ABLMG method on surface trianglation
and a numerical result is discussed in Section 5. Finally, conclusions are described
in Section 6.

2 Riemannian metric tensor

In many cases, it is desirable to create graded anisotropic meshes, where node
spacing is a function of position and direction. For anisotropic mesh generation,
the element size function is generalized to describe shape as well as size, with a
2×2 Riemannian metric tensor M2 [Lo and Wang (2005)]

M2(P) =
[

a(P) b(P)
b(P) c(P)

]
(1)

where a(P) > 0, c(P) > 0, and a(P)c(P)− b2(P) > 0. P is an any node in 2D
domain Ω. Let λ1 and λ2 are the eigenvalues, e1 and e2 are the unit corresponding
orthogonal eigenvector, then M2(P) can be decomposed as

M2(P) = [e1,e2]
[

λ1 0
0 λ2

]
[e1,e2]T

=
[

cosθ −sinθ

sinθ cosθ

][ 1
h2

1
0

0 1
h2

2

][
cosθ sinθ

−sinθ cosθ

] (2)

where h1 and h2 are the mesh sizes along the characteristic direction e1, e2 in the
Ω respectively. Using this tensor, the distance between two nearby nodes x and y is
approximatively computed as

d(x,y) =
√

(x− y)TMavg(x− y) (3)

with Mavg = (M(x)+M(y))/2. When the nodes placement method by bubble sim-
ulation is applied to optimize nodes distribution, h1, h2 and θ (0≤ θ < π) describe
the lengths of the two radii and the rotation angle of the elliptical bubble shown in
Fig. 1. If h1 = h2, the metric is isotropic in which case the elliptical bubbles are
circles.
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Figure 1: Elliptical bubble controlled by Riemannian metric tensor

3 Node placement by elliptical bubble simulation

In the light of the ideas and treatment technologies about molecular dynamics sim-
ulation and bubble meshing method presented by Shimada etc. [Shimada and Gos-
sard (1998)], node placement method by elliptical bubble simulation is described
in this section. The domain is packed by bubbles with interaction forces, and the
nodes are considered as the centers of bubbles, according to the Newton’s second
law of motion, a force balancing configuration of bubbles is found by performing
dynamic simulation, then putting nodes on the center of the bubbles, the obtained
nodes is our need. The flow chart of node placement method by elliptical bubble
simulation is shown in Fig.2.

Initial bubble placement is very essential to the time requirement of the process of
node placement. If the initial bubble configuration is very poor, then a large number
of iterative steps will be required before achieving a stable node configuration. How
to reasonably place the initial bubbles is one of the problems to be solved. During
dynamic simulation, the search of neighboring bubbles is an important aspect of
the resultant force calculation. Meanwhile, in order to meet the requirements of the
metric tensor, how to control the number of elliptical bubbles is also a problem to
be solved. These issues are discussed in the following four subsections.

3.1 Initial elliptical bubble placement

The geometric boundary of the domain is described by the Planar Straight Line
Graph (PSLG), which is formed by a set of line segments, intersecting only at
their end points. The elliptical bubbles are in turn placed on geometric entities,
namely, vertices, edge, faces and volumes. Initial boundaries nodes are placed
with the sub-binary technology. When bubbles are placed on the surfaces, rhombic
cells with inside angles of 600 and 1200 are used instead of square cells in order
to realize hexagonal arrangement of the bubbles. The initial placement of bubbles
in the isotropic case refers to the literature [Liu, Nie, Zhang, and Wang (2010)].
The difference in the anisotropic case is the oblique direction of elliptical bubble



512 Copyright © 2012 Tech Science Press CMES, vol.88, no.6, pp.507-529, 2012

Initial elliptical bubble placement

Compute new positions and directions of 

elliptical bubbles

Boundary constraints

Renew adjacency list

Is the overlap ratio of elliptical 

bubble is satisfied?

Add/ delete bubbles

Y

N

Whether the specified iteration 

number reaches?

The centers of elliptical bubbles are 

used as nodes

Y

N

Figure 2: Flow chart of node placement method by elliptical bubble simulation

which is controlled by θ in the metric tensor (see Section 2). This scheme has the
advantage of being extremely fast and works well according to the desired spacing
of nodes. In a square area with a hole, for example, the positions and orientations
of the bubbles are controlled by the Riemannian metric

M2 =

[
1+4x2

h2
4xy
h2

4xy
h2

1+4y2

h2

]
(4)

and the initial distribution of elliptical bubbles is shown in Fig. 3, Fig. 3a, Fig.
3b and Fig. 3c present initial vertice bubbles, edge bubbles and surface bubbles
respectively.

3.2 Motion control of elliptical bubbles

According to Newton’s second law of motion, the motion equation of the ellipti-
cal bubble is a second order ordinary differential equation [Shimada and Gossard
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Figure 3: Initial elliptical bubble placement in 2D. (a) Vertice bubbles. (b) Edge
bubbles. (c) Surface bubbles.

(1998)]

mẍi + cẋi = fi, i = 1 . . .N (5)

where m is the mass of bubble, c is the damping coefficient, N is the number of
bubbles, xi is the center of elliptical bubble i, −cẋi is the viscous damping force
from the system, which makes the bubble system converge to a stable configuration.
fi is the resultant force exerted on the bubble i by its surrounding bubbles

fi =
N

∑
j=1, j 6=i

fi j (6)

fi j is the interaction force that exert on bubble i from bubble j. It is time-consuming
to compute the interaction forces from other bubbles one by one. Since the interac-
tion force between bubbles is short-range, only neighboring bubbles have the force
effect, we just calculate the force from adjacent bubbles, this will greatly reduce
the computation time of the resultant force. The searching of neighboring bubble
is to be discussed in detail in Section 3.3.

In order to avoid the interaction force from growing infinitely large when the dis-
tance between two bubbles is zero, the interaction force is approximated by the 3rd
order polynomials [Shimada and Gossard (1998)] (see Fig. 4)

f (w) =
{

k0
(
1.25w3−2.375w2 +1.125

)
0≤ w≤ 1.5

0 1.5 < w
(7)

instead of the van der Waals force, where k0 is a const, w is the ratio of the real
distance l and the desired distance l0 between two elliptical bubbles, i.e. w = l/l0,
and the desired distance l0 is defined as

l0 = li j + l ji (8)
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Figure 4: The interaction force between elliptical bubbles

Here li j is the distance from bubble i to the intersection between: (1) the line seg-
ment connecting bubble i and bubble j, and (2) the boundary of bubble i. Similarly
l ji is the distance from bubble j to the intersection between the same line segment
and the boundary of bubble j. From Fig. 4, a repulsive force is applied (shown in
Fig. 5(a)) when two elliptical bubbles are located closer than the stable distance
l0 (l/l0 < 1), when l/l0 = 1, the interaction force is zero (Fig. 5(b)), or an attrac-
tive force is applied (shown in Fig. 5(c)) when the bubbles lie farther apart than l0
(1 < l/l0 < 1.5), until the attractive force is zero if l/l0 > 1.5.
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Figure 5: The relationship between force and positions of elliptical bubbles. (a)
Repulsive force. (b) Stable. (c) Attractive force.

In the previous bubble meshing method, the high-precision numerical method (
the fourth order Runge-Kutta method [Shimada and Gossard (1998)]) is used to
solve the equation of motion. In view of the continuous motion of the bubbles
during dynamic simulation, Qi et al. [Qi, Nie, and Zhang (2012)] have pointed
out that the high-precision numerical solution of every iterative step will inevitably
lead to a large number of time consumption, however, the low-precision numerical
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method (Euler’s method) can save the computing time effectively, although it has
little effect on the quality of the nodes. So Euler’s method is applied to simulate
the motion of the bubbles.

3.3 Bubble adjacency list

Since the interaction force between bubbles is short-range force, during dynamic
simulation, it is unnecessary to calculate the forces exerted on each bubble by the
others one by one, only the forces exerted by adjacent bubbles need to be con-
sidered. In order to search the adjacent bubbles around each bubble quickly, an
adjacency list for each bubble is built to store the information of adjacent bubbles.

Figure 6: Adjacent bubbles set of a bubble

About the initially establishment of the adjacency list, firstly, the calculation region
is divided into a series of small regular areas, these small areas will be referred to
as buckets. Each bucket has a bubble list that contains all the bubbles in the bucket,
as shown in Fig. 6. Take bubble i for example, when searching the neighboring
bubbles of the bubble i, the bubbles only covered by the shadow are judged whether
lie in the circle centered at the bubble i with a radius of 1.7σ , where σ is the ideal
distance between two bubbles, i.e. σ = li j + l ji (Fig. 5). Meanwhile, the bubble
adjacency list should be renewed simultaneously during simulation, from Eq.(7),
the interaction force is zero if w > 1.5, and we set w = 1.7, so the adjacency list
of the bubble i contains enough adjacent bubbles, and it only need be renewed
every k steps. When updating the adjacency list of bubble i, for the bubbles of its
adjacency list, and the bubbles of the adjacency lists of the neighboring bubbles,
checking their new positions whether lie in the circle with the radius of 1.7σ , if
they are in , as members of the new adjacency list.

3.4 Nodes population control

In order to find an appropriate number of bubbles, the population of elliptical bub-
bles is adaptively adjusted during dynamic simulation, so that bubbles are closely
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packed with minimum gaps or overlaps in the final configuration.

The overlap ratio is first used by Shimada [Shimada and Gossard (1998)] in isotropic
case to control the number of nodes, based on the adjacency list, the overlap ratio
in the anisotropic case is deduced as

αi = ∑
N
j=0

1
li j

(2li j + l ji−Di j) (9)

where li j and l ji are shown in the Fig. 5, Di j is the real distance between the centers
of bubble i and bubble j, N is the number of the adjacent bubbles corresponding
to the bubble i, usually N = 8, however, N is chosen to be the number of all the
bubbles in Shimada’s method, which will spent more time to calculate the overlap
ratio than ours.

Actually, the overlap ratio describes the number of neighboring bubbles of each
bubble. In ideal case, the standard overlap ratio of nodes on a line, on a surface
or in an internal volume are 2, 6 and 12, respectively. By computing the overlap
ratios of the bubbles, the bubbles are to be deleted automatically when their overlap
ratios are too large, or new bubbles are to be added when their overlap ratios are
too small. For example, after the dynamic simulation and the adaptive population
adjustment of the elliptical bubbles in Fig. 3, the resulting bubbles and the node
distribution are shown in Fig. 7.
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Figure 7: Nodes distribution when bubble system is in the dynamic equilibrium

4 Anisotropic bubble-type local mesh generation

Noting that good node distribution alone cannot guarantee a quality mesh, the way
in which the nodes are connected is also an important factor. In references [Nie,
Chang, and Fan (2007); Yagawa (2004); Fujisawa, Inaba, and Yagawa (2003)],
mesh generation begins by appropriately distributing nodes in the analysis domain.
However, the process of node generation has not been mentioned, they need to build
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complicated data structure to search neighboring nodes for mesh generation. How-
ever, in our algorithm, the node placement by elliptical bubble simulation provides
a high-quality nodes set, as well as the adjacency list information, which make the
anisotropic mesh generation more simple and efficient, the new local mesh genera-
tion method is called ABLMG (Anisotropic Bubble-type Local Mesh Generation).

nodes

node

element

Satellite

Satellite

Central

P

Figure 8: A local mesh associated to a central node P

Following some definitions are to be introduced. A node P among the distributed
nodes is designated as a central node, which can be seen in Fig. 8. A local mesh
is generated around the central node P using ABLMG method described later. El-
ements formed by the local mesh are called satellite elements, and a node of a
satellite element, associated with the central node P is considered as a satellite
node.

The adjacency list of each central node contains its neighboring nodes with w < 1.7,
which includes all satellite nodes and a small number of non-satellite nodes (no
more than 2) [Chen, Nie, Zhang, and Wang (2012)]. In Delaunay mesh, the mesh
edges are built by connecting the central nodes and their satellite nodes. Therefore,
the very small number of non-satellite nodes should be removed from the adjacency
list of the central node, and this part will be discussed in the following.

Taking full advantage of the generated nodes set and the adjacency list, the local
meshes associated to the central nodes are generated with the ABLMG method by
removing the non-satellite nodes, and the combination of local meshes is harmo-
nious global mesh.

4.1 Deleting non-satellite nodes

The deletion of the non-satellite nodes associated to the central nodes will be dis-
cussed in this section, the following is the procedure:

1. All the nodes are connected with all their adjacent nodes from their adja-
cency lists. Since the adjacency list of each central node contains a small
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number of non-satellite nodes (no more than 2), and the mesh edges are built
by connecting the central nodes and their satellite nodes, the edges which
connect the central node and its non-satellite nodes will cross other edges.

2. Sorting the nodes from the adjacency list in counterclockwise order, taking
the central node P for example, to get the sequence ... Pj−1, Pj, Pj+1... which
is shown in Fig. 9.

3. Checking node Pj (j=1,2,...,n) whether or not to be a satellite node of the
central node P, n is the size of the adjacency list. If node Pj−1 and Pj+1
don’t lie in each other’s adjacency lists respectively, then node Pj is a satellite
node of the central node P. Otherwise, according to step 1, node Pj−1 and
node Pj+1 will be connected. Then the intersection test [Li and Hua (2003)]
between line segment PPj and Pj−1Pj+1 is implemented.

Central node

Adjacent node

other node

P

Pj

Pj+1

Pj-1

Figure 9: Intersection test for the local
mesh of the central node P

dc

ba

w

y

x z

Figure 10: Edge swap

For the step 3, if line segment PPj and Pj−1Pj+1 intersect, Delaunay criteria can be
used in the isotropic case to check the position relationship between the node Pj and
the circumscribed circle of ∆PPj−1Pj+1. However, Delaunay criteria is disabled in
the anisotropic case. So the edge swap criterion [Bossen and Heckbert (1996)] is
used to remove the non-Delaunay edges which allows us to generate local mesh
quickly. In Fig. 10, if ∠α +∠β > 1800, i.e. sin(α + β ) < 0, the edge xz should
be deleted, the expression can be simplified in the following way in Euclidean
geometry

sin(α +β ) = sinα cosβ + sinβ cosα

= a×b
|a|·|b| ·

c·d
|c|·|d| +

c×d
|c|·|d| ·

a·b
|a|·|b|

∝ (a×b)(c ·d)+(c×d)(a ·b) < 0
(10)

Its Riemannian equivalent is:√
detMavg(a×b)(cT Mavgd)+

√
detMavg(c×d)(aT Mavgb) < 0 (11)
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and since
√

detMavg is positive:

(a×b)(cT Mavgd)+(c×d)(aT Mavgb) < 0 (12)

where Mavg = (M(w)+M(x)+M(y)+M(z))/4, and u× v is the 2D cross product
with scalar value u1v2− u2v1. If Eq. (12) holds, the edge xz should be deleted,
the nodes x and z will be deleted from each other’s adjacency lists respectively. If
sin(α +β ) = 0 , there are four nodes lying on a same ellipse, and the method will
become unstable. To avoid this problem, two end nodes of the line segment with
the smallest vertex abscissa value are considered as each other’s non-satellite nodes
respectively. This ensures the uniqueness of the local meshes, and the union of the
local meshes is consistent with the global Delaunay triangulation. If sin(α +β ) >
0, the edge yw should be deleted, and the nodes y and w will be deleted from each
other’s adjacency lists respectively.

After the above process, for each central node, by eliminating non-satellite nodes
in its adjacency list, its corresponding local Delaunay mesh can be obtained. Com-
pared with the local mesh generation method presented in the literature [Yagawa
(2004);Fujisawa, Inaba, and Yagawa (2003)], the ABLMG method avoids the es-
tablishment of the bucket data structures and the local search process of the adjacent
nodes. It generates local meshes more quickly, and all the local meshes are merged
to form a harmonious global mesh.

4.2 Anisotropic mesh quality

In order to test whether the anisotropic mesh meeting the requirements of Rieman-
nian metric tensor M2, a relative error is calculated between the desired distance l0
and the real distance l of each pair connected nodes, and it is described by ε

ε =
|l− l0|

l0
(13)

ε more tends to 0, the anisotropic meshes generated by the ABLMG method more
reflect the features of their respective metric tensors. To measure the anisotropic
triangular element quality, the formulae discussed in [Borouchaki, George, Hecht,
Laug, and Saltel (1997);Du and Wang (2005)] are used. All programs in this paper
are run in the PC (CPU basic frequency is 2.31 GHZ, 1.00 GB memory), using
VC++ 6.0 compiler to compile.

As numerical examples, a union circle region is calculated with the same Rieman-
nian metric tensor as Eq. (4), where h = 0.05. The final number of nodes and
elements are 665 and 1264. The packing elliptical bubbles are shown in Fig. 11(a),
and they are tightly packed with minimum gaps or overlaps. Then putting nodes
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on the centers of the bubbles, and the obtained nodes set is just we need. Finally
using the ABLMG method, the anisotropic mesh is obtained with good configura-
tion and gradualness which is shown in Fig. 11(b). The average values of element
quality is 0.952, the maximum value and the minimum values of the element qual-
ity are 0.999 and 0.686 respectively. According to Eq. (13) of the edge deviation,
let e = 5%, the distribution of the edge deviation is shown in Table 1, we can see
that the edge deviation factor of more than 90% of all the edges is less than e, the
anisotropic mesh generated with the ABLMG method meets the requirements of
Riemannian metric tensor M2.
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Figure 11: Anisotropic mesh quality examination. (a) The packing elliptical bub-
bles. (b) Anisotropic bubble-type local mesh generation.

Table 1: Edge deviation factor distribution

≤ e e < ε ≤ 2e 2e < ε ≤ 3e 3e < ε ≤ 4e 4e < ε ≤ 5e
Percentage
of edges

0.948466 0.00291 0.004497 0.003175 0.040952

4.3 Numerical examples of local mesh generation

In this section, several numerical examples are provided for showing the perfor-
mance of the ABLMG method. The first example is for a square domain [−3,3]2.
Nodes are first generated with elliptical bubble simulation, then each node is con-
nected with its adjacent nodes from its adjacency list, and the initial local meshes
are shown in Fig. 12(a). Finally, after 157317 times intersection checking(of which
there are 1286 times line segment intersection, intersecting segments occupy 0.82%
in intersection test), deleting the non-satellite nodes of each central node, the result
mesh can be obtained which is shown in Fig. 12(c), and close-up views at (-1.5,
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-1.5) are shown in Fig.12(b) and Fig.12(d). The number of nodes and elements are
2301 and 4525 respectively. The average values of element quality is 0.969094,
the maximum value and the minimum values of the element quality are 0.999 and
0.71625, respectively.
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Figure 12: Local meshes generation example. (a) Connecting nodes with all their
adjacent nodes. (b) A close-up view of (a) at (-1.5, -1.5). (c) Final mesh after
deleting non-satellite nodes of each node. (d) A close-up view of (c) at (-1.5, -1.5).

Another example (shown in Fig. 13) is for a circle domain with radius of 10, and
three given metric tensors are as follows: The first is a constant metric tensor that
corresponds to h1 = 0.5, h2 = 0.2, and θ = π/4. The second is a nonuniform metric
tensor with h1 = 0.15|

√
x2 + y2− 6|+ 0.2, h2 = 0.5h1, and θ = 0, there is a line

refinement at
√

x2 + y2 = 6 to be introduced. The last one is a nonuniform metric
tensor that corresponds to h1 = 0.1|y|+ 0.2, h2 = 0.5h1, and θ = 0, this means
that a line refinement at y = 0 is to be introduced. After the node placement by
elliptical bubble simulation, the packing bubbles are shown in Fig. 13, and their
corresponding meshes generated with the ABLMG method are shown in Fig. 14.
The average values of element quality for these three meshes are 0.9253, 0.9119,
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0.9727, respectively. Obviously, the meshes reflect the features of their respective
metric tensors.
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Figure 13: Nodes placement by elliptical bubble simulation with three given metric
tensors in a circle. (a) h1 = 0.5, h2 = 0.2, and θ = π/4. (b) h1 = 0.15|

√
x2 + y2−

6|+0.2, h2 = 0.5h1, and θ = 0. (c) h1 = 0.1|y|+0.2, h2 = 0.5h1, and θ = 0.

(a) (b) (c)

1

Figure 14: Anisotropic meshes generated with the ABLMG method.

A number of meshing strategies have been developed in the last decade for gener-
ating anisotropic meshes according to a given metric tensor, e.g. Ani2D package
[Lipnikov and Vasilevski (2005)]. Ani2D generates conformal anisotropic triangu-
lar meshes with the prescribed number of triangles in a given metric tensor. The in-
put data for their generator is an initial conformal triangulation, and Ani2D changes
the initial mesh through a sequence of local modifications. Compared to the Ani2D
mesh generator, our method avoids complicated remeshing, and appropriate num-
ber of nodes and elements are generated adaptively according to the given metric
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tensor. For example, in a square domain, Ani2D and our method are used respec-
tively to generate anisotropic mesh with a same metric tensor, and both meshes are
shown in Fig.15. In the Ani2D packages, the number of nodes and elements are
137 and 232, the average values of element quality is 0.893102, the maximum value
and the minimum values of the element quality are 0.997852 and 0.704087, respec-
tively. However, the number of nodes and elements are 132 and 212 in our method,
and the average values of element quality is 0.928566, the maximum value and the
minimum values of the element quality are 0.999927 and 0.724101, respectively.

(a) (b)

1

Figure 15: Anisotropic mesh generated by Ani2D and our method. (a) By Ani2D.
(b) By our method.

5 Application in parametric surface triangulation

In this section, the ABLMG method is used for 3D surface triangulation based
on the mapping method [Lee (2001); Lee (2003); Lee (2000)]. The surface to
be meshed is represented by a bi-variate mapping such that any node on the 3D
surface is mapped to a parametric space. The parametric space is meshed with the
ABLMG method, the generated mesh does not need a smoothing process, and it
can be directly projected back to the 3D target surface according to the mapping
function, the target surface mesh is finally obtained. A Riemannian metric tensor
[Lee (2001); Lee (2003); Lee (2000)] is defined so that the desired mesh is obtained
in 3D surface. The 3×3 metric tensor M3 is positive-define, of the form

M3(P) =

 a(P) b(P) c(P)
b(P) d(P) e(P)
c(P) e(P) f (P)


= [e1 e2 e3]

 λ1 0
λ2

0 λ3

 [e1 e2 e3]
T

(14)
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which defines element size and direction characteristics, where P is any node on
the 3D surface, λi and ei(i = 1,2,3) is the eigenvalues and the corresponding
eigenvectors of M3(P) respectively, such that ei · e j = δi j and λi > 0(i = 1,2,3),
hi = 1/

√
λi(i = 1,2,3) is the principal element size in the ei direction. M3(P) is of-

ten given based on the surface geometric feature or the numerical requirements, and
it also can be got according to the posteriori error estimate in the previous iteration
in an adaptive solver.

It is assumed that the target surface ∑ to be meshed is represented by a bi-variate
mapping

r(u,v) = (x(u,v),y(u,v),z(u,v))T (15)

where (u,v) are the parametric co-ordinates of a node on the surface and r is the
mapping function vector of the parameterization. (u,v) ∈Ω , Ω is the 2D paramet-
ric space. When r is a C2 continuous function, the metric tensor corresponding to
the node P in the parametric space is defined as [Lee (2000)]

M2(P) = [ru,rv]
TM3(P) [ru,rv] (16)

where [ru,rv]
T =

[
∂x/

∂u
∂y/

∂u
∂ z/

∂u
∂x/

∂v
∂y/

∂v
∂ z/

∂v

]
. The Riemannian structure is in-

duced into the parametric space to determine the distribution of nodes by bubble
simulation. Once the metric tensor M2(P) is evaluated according to Eq.(16), sur-
face meshing problem in 3D is turned into mesh generation with anisotropy and
non-uniform distribution in 2D parametric space, this part is described in Section
4. Meanwhile, once finishing the mesh generation with the ABLMG method in
the parametric space, there is no need to smooth the topology and geometry of
the mesh, which can be directly projected back to the target surface based on the
mapping function, and the surface mesh is obtained finally.

6 Numerical example

The following numerical example is given for the quantitative research about the
quality of the generated surface mesh. We choose the coefficient k0 = 1.0, the
mass coefficient m = 1.0, the viscosity coefficient c = 3.8429, the time step ∆t =
0.02. In this study, calculating and setting the Riemannian metric tensor M3 in
three-dimensional space is a complex matter, so we just generate uniform isotropic
surface mesh, and the node spacing for the surface is h. The Riemannian metric
tensor at each node in the following examples are assumed as the following

M3 =

 1
h2 0

1
h2

0 1
h2

 (17)
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In Fig. 16, the parametric surface is defined by
x = u
y = v
z = cos2(π(u2 + v2))

(18)

the parametric space is a square with [−1,1]2, h = 0.02. It can be seen that a tight
packing among bubbles without large overlaps or gaps in Fig. 16(a). The nodes
set generated by bubble simulation have good configuration and gradualness in the
parametric space.
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Figure 16: Complex surface mesh generation. (a) Elliptical bubbles in parametric
domain. (b) Partial enlarged view of (a). (c) Mesh in parametric domain. (d)
Surface mesh.

Mesh quality factor α for a triangle P1P2P3 proposed in [Lee (2001)] is used to
measure the quality of the surface mesh

α = min(α̂(P1), α̂(P2), α̂(P3)) (19)
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where

α̂(Pi) = 2
√

3
Det(Mi) ·Det([P2−P1,P3−P1])

d(Mi,P1P2)
2 +d(Mi,P2P3)

2 +d(Mi,P1P3)
2 (20)

In Eq.(20), Mi is the surface metric tensor at Pi while Det(M) is the determinant of
M, d(M, · ) describes the distance under metric tensor M, it is calculated accord-
ing to Eq. (3), the parameter 2

√
3 ensures that the quality factor lies in the interval

(0, 1), α is more closer to 1, the quality of the surface mesh element is more better.

Table 2 shows the statistic information of the numerical example, N and E describe
the number of nodes and surface elements respectively, and the quality of elements
is measured with Eq.(19) and Eq.(20). The distribution of the elements quality is
also presented in Table 2, qmin, qmax and qaver are the minimum, maximum and
average value respectively. It can be seen that surface mesh in Fig. 16(d) has high
overall quality. Although the worst elements quality is less than 0.4, these elements
are located at the sharp corners of the original geometry. In order to improve the
minimum element quality, appropriate metric tensor must be set.

Table 2: The statistic information of surface mesh quality distribution in numerical
examples

Example N E
The quality distribution of surface mesh

0.0-
0.2

0.2-
0.4

0.4-
0.6

0.6-
0.8

0.8-
1.0

qmin qmax qaver

Fig. 16 4385 8512 0 0.39% 4.04% 29.9% 65.7% 0.329 0.999 0.899

7 Conclusions

A new algorithm for anisotropic local mesh generation has been presented in this
paper. Firstly, anisotropic nodes placement method by bubble simulation is applied
to optimize nodes distribution, the node spacing is controlled by the Riemannian
metric tensor. Since the neighbor node set of every node is stored in its adjacency
list, so after the simulation, it is easy to get the neighbor nodes information of each
node. This additional information is very valuable for finding the nodes within the
influence domain of the integration points in meshless analysis. Secondly, the gen-
erated nodes are connected with the ABLMG method, here, we just need remove a
handful of non-satellite nodes from the adjacency lists of the nodes, which is very
easy to implement, and generates well-shaped elements, meanwhile, the smoothing
process isn’t required. Finally, the new algorithm for anisotropic mesh generation
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is applied on the surface triangulation based on the mapping method, the topologi-
cal structure of nodes and elements in the parametric space is mapped back to the
3D surface, and high-quality surface mesh is obtained.

There are several areas for future work. The algorithm could probably be sped up.
For example, when lower mesh quality is acceptable, the algorithm could do less
simulation. Meanwhile, the algorithm should be tested empirically with an FEM
solver and its results are compared to other mesh generators.

In addition, since the defined inter-bubble force is short-range, for two distant bub-
bles, their positions and velocities can be updated simultaneously and indepen-
dently during simulation, this node placement method by elliptical bubble simula-
tion has inherently parallelism.
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