
Copyright © 2012 Tech Science Press CMES, vol.88, no.4, pp.309-324, 2012

A Multi-Scale Computational Method Integrating Finite
Element Method with Atomic Interactions of Materials

Bin Gu1,2,3, L. C. Zhang2, Weifeng Yuan1 and Youjun Ning1

Abstract: Bridging the atomic and continuous analyses is an important aspect in
multi-scale mechanics. This paper develops a computational method to integrate
the atomic potential of a material with the finite element method. The novelty of
this method is that strain energy is calculated from the atomic potential without the
assumption in the Cauchy-Born rule that deformation in a virtual atomic cell is ho-
mogeneous. In this new method, the virtual atomic cell deformation is interpolated
according to the continuum displacements associated with the shape functions. The
applications of the method to single crystal Si and Ge bars under uniaxial tension
and compression show that with a proper construction of the virtual atomic cell,
the Young’s modulii in the <100>, <110> and <111> directions obtained are in
good agreement with the experimental measurements and MD simulations in the
literature. Moreover, the simulated material’s response to tension and compression
is consistent with the interatomic interactions.
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1 Introduction

It has been very common that scale effect spans from meter to nanometer in length
and from hour to femto-/pico-second in time. Due to their intrinsic disadvantages,
computational methods suitable for a specific scale are unable to correctly cap-
ture the behavior of materials across multiple scales. For instance, a molecular
dynamics (MD) simulation, limited by its computational capacity and error trun-
cation/accumulation hurdle, can only model the size under micrometer while the
continuum assumption in the finite element method (FEM) becomes invalid when
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the scale reaches the atomic range [Zhang (2010)]. Therefore, multi-scale model-
ing which aims to bridge the gap has triggered tremendous research attention in the
past decades [Ghanbari and Naghdabadi (2009); Ojeda and Cagn (2010)].

Following the strategy of direct coupling, many methods have been proposed to
address the atomistic/continuum coupling problems, such as the quasi-continuum
(QC) methods with and without a ghost force correction [Tadmor, Ortiz and Phillips
(1996); Shenoy, Miller, Tadmor, Phillips and Ortiz (1998); Shenoy, Miller, Tadmor,
Rodney, Phillips and Ortiz (1998); Miller and Tadmor (2002)], the concurrent cou-
pling of length scale (CLS) method [Broughton, Abraham, Bernstein and Kaxiras
(1999); Rudd and Broughton (2000)], the FEAt model [Curtin and Miller (2003)]
and the coupling of atomistics and discrete dislocation (CADD) method [Curtin
and Miller (2003); Shilkrot, Miller and Curtin (2002); Shilkrot, Miller and Curtin
(2003)]. In these direct coupling methods, a domain for analysis is divided into
multiple regions handled by different computational methods respectively. In gen-
eral, MD is applied on atomistic regions to explore complicated mechanisms, and
continuum computational methods such as FEM are applied in continuum regions
to model large volumes so as to provide an appropriate background for the MD
simulation. Because MD is a non-local computational method, transition regions
are established between the atomistic and continuum regions so that all atoms in the
atomistic regions have full complement of neighboring atoms. Usually, the atomic
scale deformation in the transition regions, called pad atoms, is interpolated from
the displacements of continuum regions. The difference among these methods is
in their ways to treat the continuum and the transition regions. In the QC methods,
the continuum region is simulated using the FEM incorporating the interatomic po-
tential in terms of the Cauchy-Born (C-B) rule. In the CLS method, the traditional
linear elastic FEM is applied to treat the continuum region. In the FEAt model,
the transition region and continuum region are dealt with nonlocal and nonlinear
FEM, respectively. In the CADD method, on the other hand, the plasticity in the
continuum region is accounted by discrete dislocations. A meshless computational
method [Gu and Zhang (2006)] has also been adopted to model the continuum
regions in the direct coupling methods on the basis of the QC method. By us-
ing bridging scale decomposition, Wagner and Liu (2003) realized the coupling of
atomistic and continuum simulation, in which the deformation of the entire domain
is first solved from the C-B rule based FEM, followed by obtaining the supple-
mentary deformation from MD simulation and superposing to the atomistic region.
The difference between the direct coupling methods in terms of the treatment of
the transition region depends on whether the pad atoms are included in the atom-
istic energy calculation. When the pad atoms are excluded, such as in the QC and
CLS methods, a unified total energy functional can be obtained. It requires much
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less computational resources to find its solutions, but inevitably gives rise to the
physically meaningless ghost force. When the atomic potential accounts for the
contribution of the pad atoms, these atoms are treated as fixed atoms in MD simu-
lations. Meanwhile, the interface atoms are regarded as fixed boundary conditions
in the modeling of continuum regions. In so doing, the ghost force can be elimi-
nated while an iterative computation scheme between the atomistic and continuum
solutions is needed. Although the direct coupling methods can cope with different
scales separately, it is difficult in the simulation to foresee the atomistic and con-
tinuum regions when deformation in a material is complicated, especially when the
region boundaries change during a deformation process. The size of the atomistic
regions may exceed the limit of the MD simulation, leading to low computational
efficiency. Moreover, the gap between different time scales is unlikely to be elimi-
nated.

Much effort has been dedicated to develop multi-scale methods in the continuum
mechanics framework where both the length and time scales are computationally
practical and efficient. To this end, the basic equations in continuum mechanics
are often modified to accommodate the information extracted from smaller scales.
Including the work conjugates of the slip rate and slip rate gradient in the principle
of virtual work, Fleck and Hutchinson (2001) established a strain gradient theory
in which the higher-order stresses and additional boundary conditions were intro-
duced to investigate the size effect problem. McVeigh and Liu (2009) derived a
set of multi-resolution governing equations with the introduction of microstresses
in different scales within a material. This continuum approach was used to an-
alyze the fracture toughness of ductile reinforced brittle composites. Due to the
intrinsic link between the atomic potential and the strain energy, the strain energy
in continuum mechanics is often replaced by the atomic potential to achieve the
atomistic/continuum coupling. To date such replacement is generally implemented
in terms of the C-B rule [Milstein (1980)] by which the strain energy is assumed to
be equal to the atomic potential of atoms in a material and all the atoms in the vir-
tual atomic cell (VAC) constructed around a material point undergo homogeneous
deformation. Based on the C-B rule, the equilibrium equations of a continuum
model can be derived from the principle of the minimum potential without the need
of a constitutive relationship. On the contrary, the constitutive relationship and
material constants can be deduced from the interatomic potential via the work con-
jugate of stress and strain. The C-B rule based FEM was firstly applied in the QC
method to handle the deformation of continuum regions. It was further extended
to the virtual internal bond (VIB) model by Klein and Gao (1998) in which the
real lattice structure of material was replaced by the bond density distribution func-
tion while maintaining the assumption of homogeneous deformation of bonds in
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the VAC. As has been pointed out in [Zhang, Huang, Geubelle, Klein and Hwang
(2002)], homogeneous deformation in the VAC is appropriate only when lattice
structure of materials is centrosymmetric, as otherwise the assumption may give
rise to unphysical or incorrect results. For a non-centrosymmetric crystal structure,
an interpenetration technique using simple Bravais lattices as sublattices should
be applied to construct an assembly [Zanzotto (1996)]. In this method, atoms be-
longing to the same sublattice undergo uniform deformation and the difference of
deformation between two sublattices can be represented with a rigid body displace-
ment deduced according to the minimum energy of the VAC. Compared with the
direct coupling methods which are merely a mathematical combination of different
methods, the information transfer methods are more physically meaningful. Dif-
ficulty in this kind of methods is to establish the correct link between two scales
through properly selected parameters, which requires a deep understanding of the
mechanisms and physics of the behavior of a material.

This paper develops a continuum computational method (CCM) incorporating atomic
potential which does not need the assumption of uniform deformation in the VAC.
Instead, atom displacements in the VAC will be obtained through nodal displace-
ment interpolation using the shape functions. It is therefore suitable for both cen-
trosymmetric and non-centrosymmetric crystal structures. The basic idea and pro-
cedure of our CCM will be depicted in the next section. A bar subjected to a
uniaxial tension/compression will be used as an example to illustrate the applica-
tion of the method. Numerical results will be discussed and compared with the
experimental and MD results to verify the feasibility of this new method.

2 Principle and Procedure

Our CCM is based on the traditional FEM. For simplicity and convenience, we use
a single element to demonstrate the implementation procedure and principle of the
method.

First, the displacement field within an element can be approximated by the shape
functions and nodal displacements as

u =
NEN

∑
i=1

Ni (X)U i (1)

in which U i and Ni (X) denote the displacement vector and shape function of node
i. NEN is the number of element nodes. Neglecting the dynamic effect, the potential
energy in the material can be expressed as

Π = ∑w(u)dv−
NEN

∑
i=1

U iT .F
i

(2)
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where w(u) represents the strain energy density and F i is the nodal force vector.
Then the principle of the minimum potential energy gives

δΠ =
NGP

∑
j=1

[α j(δuT .
∂w j (u)

∂u
)]−

NEN

∑
i=1

δU iT .F
i
= 0 (3)

when the Gauss integration scheme is adopted. In Eq. (3), α j and NGP are the
weight of Gauss point j and the number of Gauss points, respectively. In our CCM,
the strain energy density in Eq. (3) is not calculated from the stress and strain at the
Gauss point, and therefore the constitutive relationship of continuum mechanics
is not needed. Instead, it is deduced from the energy equivalence that the strain
energy is equal to the interatomic potential of a material according to the C-B rule.
To do so, a virtual atomic cell in which the atoms before deformation are arranged
according to the crystal structure of material is constructed with the Gauss point in
the centre. The strain energy density can then be calculated by

w(u) =
1

VVAC

NRA

∑
m,n=1
m 6=n

Emn(u) (4)

where VVAC is the volume of the VAC before deformation with NRA being the num-
ber of atoms in the VAC and Emn(u) is the interatomic potential function.

Rewriting Eq. (3) in terms of the displacement of the VAC atoms and using Eq.
(1), the balance equations associated with the strain energy density can be obtained
as

NGP

∑
j=1

[α j
NRA

∑
k=1

(
Ni(Xk)

∂w j(u)
∂uk

)
] = F i (i = 1,2, . . .NEN). (5)

Substituting Eq. (4) into Eq. (5), the equilibrium equations of our new CCM for
one element finally becomes

NGP

∑
j=1

[
1

VVAC
α

j NRA

∑
k=1

Ni(Xk)
NRA

∑
m,n=1
m 6=n

∂Emn
j(u)

∂uk

] = F i (i = 1,2, . . .NEN). (6)

The above equations are nonlinear; thus a numerical method, such as the Newton-
Raphson method or the arc-length method, should be applied for a solution.

Compared to the computational methods based on the C-B rule, our CCM stated
above has the same form of equilibrium equations. The difference lies in the way



314 Copyright © 2012 Tech Science Press CMES, vol.88, no.4, pp.309-324, 2012

to obtain the bond length after deformation, i.e., the atom position after deforma-
tion. According to the C-B rule, when a lattice structure is centrosymmetric, the
bond length after deformation can be described by rmn = |F.Rmn| in which Rmn is
the undeformed vector from atom m to atom n and F denotes the deformation gra-
dient at the central point of the VAC. In our CCM, however, rmn = |Rmn +un−um|.
It is easy to see that our CCM and the methods based on the C-B rule give rise
to the same results when the deformation gradient in the VAC is uniform. When
deformation gradient becomes non-uniform in the VAC, nevertheless, the formula
in our CCM is more accurate than that from the C-B rule where only the deforma-
tion gradient at the central point is involved. As can be seen from the procedure,
meshless technique can be readily incorporated into our CCM, provided that the
displacement field is constructed in the same way as in meshless methods. More-
over, any dynamic effect can be taken into account when the kinematic term is
added in the potential energy. It is noted that the term ∑

NRA
m,n=1
m 6=n

∂Emn
j(u)

∂uk in Eq. (6)

represents the force on the kth atom in the VAC. Therefore, the equilibrium equa-
tions of the CCM are also similar to those in the fully non-local QC method [Knap
and Ortiz (2001)] where the internal force on a node was mathematically assumed
to be approximated by the forces of a cluster of atoms around the node. Hence, the
equilibrium equations of our CCM are physically more reasonable.

3 Results and Discussion

First, let us apply the CCM to simulate and predict the mechanical response of
a bar to uniaxial tension and compression, using the Young’s modulus of the bar
material as a measure to validate this method. Assume that the bar has a length of
L and cross-section area of A with one end fixed and force F on the other end, as
shown in Fig. 1.

 
F X 

Figure 1: Configuration of a bar subjected to uniaxial tension

Assumed that only the displacement component in X direction is non-zero and is
the function of coordinate variable X. The whole bar can then be modeled as a
two-node element with the following shape functions

N1 (X) = (L−X)/L and N2(X) = X/L. (7)
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With the consideration of the boundary conditions, the equilibrium equations for
this case can be simplified from Eq. (6) and has the form of

NGP

∑
j=1

[
A

VVAC
α

j NRA

∑
k=1

N1(Xk)
NRA

∑
m,n=1
m6=n

∂Emn
j(u)

∂uk

] = F. (8)

If the bar material is single crystal Si which has a diamond cubic lattice structure,
the three dimensional virtual atomic cell can be constructed around each Gauss
point by piling up the unit cell of Si crystal structure along three basic lattice vec-
tors, i.e., [100], [010] and [001] directions. The numbers of the unit cells in the
three directions are N1, N2 and N3, respectively. Fig. 2(a) schematically illustrates
the construction of the VAC on the (a) plane for <100> Si where the [100] direc-
tion of the VAC is the same as the coordinate X-axis. Since monocrystalline Si is an
anisotropic material, Young’s modulii in three directions, namely <100>, <110>
and <111> directions, will be different. To build up the VACs for <110> Si and
<111> Si, the VAC of <100> Si is rotated around the center point of the VAC,
i.e., Gauss point, so that the X direction is aligned with the <110> and <111>
directions respectively, as shown in Fig. 2(b) for <110> Si.

        

(a)                                                          (b) 
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Figure 2: Schematic illustration of the construction of VAC on (001) plane (a) For
<100> Si, and (b) For <110> Si

Generally, the Tersoff potential is the proper interatomic potential for Si-Si bond
[Zhang and Tanaka (1998); Zhang and Tanaka (1999)], and is therefore adopted in
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the present CCM. Hence [Tersoff (1989)],

Emn (u) = E (rmn) =
1
2

fc (rmn) [ fR (rmn)+bmn fA(rmn)] (9)

Where

fR (r) = Ae(−λ r), fA (r) =−Be(−µr),

fc (r) =


1 r < R

{1+ cos
[

π(r−R)
S−R

]
}/2 R < r < S

0 r > S

bmn = [1+(βζmn)
η ]−1/2η

, ζmn = ∑
l 6=m,n

fc

(
rml
)

g(θmnl)

g(θmnl) = 1+
( c

d

)2
− c2

d2 +[h− cos(θmnl)]
2 , cos(θmnl) =

rmn2 + rml2− rnl2

2rmnrml .

In the calculation, If not specified, L = 1(µm), A = 1.0× 10−14 (m2
)
, NGP = 20,

N1 = N2 = N3 = N = 1, and the Newton-Raphson method can be used to solve the
nonlinear Eq. (8). Parameters of the Tersoff potential for Si together with the lattice
constant a are listed in Table 1.

Table 1: Parameters in Tersoff potential and lattice constants for Si and Ge [Tersoff
(1989)]

Si Ge
A (eV) 1.8308×103 1.7690×103
B (eV) 4.7118×102 4.1923×102
λ (Å-1) 2.4799 2.4451
µ (Å-1) 1.7322 1.7047
β 1.1000×10-6 9.0166×10-7
η 7.8734×10-1 7.5627×10-1
c 1.0039×105 1.0643×105
d 1.6217×101 1.5652×101
h -5.9825×10-1 -4.3884×10-1
R (Å) 2.7 2.8
S (Å) 3.0 3.1
a (Å) 5.430 5.657
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The stress-strain curves of single crystal Si under uniaxial tension and compres-
sion along <100>, <110> and <111> directions are plotted in Fig. 3, with the
maximum strain less than 0.8%. As can be seen, at the small deformation stage,
Si under both tension and compression exhibits explicit linear behavior in the three
directions. It is at this stage that the Young’s modulus is calculated when the stress
is ±0.1GPa. Here the Young’s moduli from tension and compression are found to
be the same, indicating that single crystal Si has symmetric tensile and compressive
behavior when the deformation is linear. Numerical results are summarized in Table
2 and compared with the experimental measurements in the literature [Ono, Kita-
mura, Nakajima and Shimanuki (2000)]. As expected, the maximum Young’s mod-
ulus is in the <111> direction and the minimum in the <100> direction. We can
see that the predicted Young’s modulus is in good agreement with the experimental
results along the <100> direction, has considerable discrepancy in the <110> and
<111> directions. Numerical simulation is also carried out on monocrystalline Ge
under uniaxial tension and compression with relevant parameters in Table 1. Simi-
larly, the Young’s moduli of Ge predicted by the CCM simulation showed the same
phenomenon in comparison with the reported testing results [Wortman and Evans
(1956)], as shown in Table 3. In addition, the MD simulation on the uniaxial ten-
sion of <100> Si and Ge [Komanduri, Chandrasekaran and Raff (2003)] gave the
Young’s modulus of 130GPa for Si and 103GPa for Ge respectively, which agree
well with our numerical results.

Table 2: Young’s modulii of Si from the CCM simulation and literature

E(Gpa) CCM Ref.
<100> 127.48 130
<110> 224.56 169
<111> 261.72 188

Table 3: Young’s modulii of Ge from the CCM simulation and literature

E(Gpa) CCM Ref.
<100> 113.21 103
<110> 173.49 138
<111> 194.60 155

It is suspected that inaccurate prediction of Young’s modulii in <110> and <111>
directions may be attributed to the configuration of the VAC, including the size and
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Figure 3: Stress-Strain curves at the linear deformation stage of Si under uniaxial
tension and compression in <100>, <110> and <111> directions

shape. With increasing the number of unit cells in the VAC, Young’s modulii of
Si in three directions are obtained from our CCM and listed in Table 4. Numerical
results indicate that the effect of the volume of the VAC is very small and therefore
does not contribute to the discrepancy between the CCM simulation and the experi-
mental measurements. When the VACs of <110> Si and <111> Si are constructed
in the way mentioned above, its facets are not perpendicular to the coordinate axes.
It may lead to errors in the atomic potential calculation because some atoms do not
have proper environment of neighboring atoms, such as atom A in Fig. 2(b). In-
spired by the case of <100> Si, we conclude that a VAC of which facets are normal
to the coordinate axes, rather than the basic lattice vectors, can be more appropri-
ate. Following this, a large volume of single crystal Si is first constructed using
the previous method with N ≥ 10. Then a cube of side length a’ is cut from the
center of the large Si crystal structure as the VAC, as demonstrated by the square at
the center in Fig. 2(b) for <110> Si. With the newly-constructed VAC, numerical
simulations are carried out to predict the Young’s modulii of anisotropic monocrys-
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talline Si when a′/a = 1, i.e., the VAC is the same size as the unit cell. The results
in Table 5 show that the predicted all the Young’s modulii of Si in <100>, <110>
and <111> directions are in good agreement with the reference values in the lit-
erature. This means that a proper construction of the VAC has a vital influence on
the numerical prediction. This new way of VAC construction will be used in the
following sections.

Table 4: Young’s modulii of Si from the CCM simulation with different volume of
the VAC

E(Gpa) N=1 N=2 N=3 Ref.
<100> 127.48 134.00 136.58 130
<110> 224.56 225.94 226.49 168
<111> 261.72 259.22 258.20 185

Table 5: Young’s modulii of Si from the CCM simulation when the VAC is built in
different methods

E(Gpa) a’/a=1 N=1 Ref.
<100> 127.48 127.48 130
<110> 166.94 224.56 168
<111> 197.10 261.72 185

Apart from all above, the effect of the assumption that each node has only one
degree of freedom (DoF) is investigated. Here a new element type is used which is
still two-node element and therefore has the same forms of shape functions in Eq.
(7); but now each node of the element has three DoFs, and hence three displacement
components (Ux, Uy and Uz). Using the new element in the modeling, our CCM
gives quite close Young’s modulii of anisotropic Si in comparison to those under
the one DoF assumption and to the experimental measurements, as shown in Table
6. In the case of uniaxial tension and compression, therefore, the assumption of one
DoF at each node is feasible and does not reduce the simulation accuracy. However,
it can be expected that an element with multiple DoFs could be more appropriate
for complicate deformation status.

The response of single crystal Si to large deformation is displayed in Figs. 4 and 5
when it is subjected to uniaxial tension and compression along <100>, <110> and
<111> directions. The stress-strain curves in the two figures clearly show that with
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Table 6: Young’s modulii of Si from the CCM simulation for different elements
(NE represents the element with three DoFs at each node)

E(Gpa) a’/a=1(NE) a’/a=1 Ref.
<100> 140.67 127.48 130
<110> 167.10 166.94 168
<111> 197.56 197.10 185

the increase of deformation, the deformation linearity no longer maintains, so does
the symmetry of deformation between tension and compression. A comparison
between Figs. 4 and 5 indicates that the resistance to compressive deformation is
much higher than that to tension when the deformation is beyond the linear phase.
This material behaviour is consistent with the interaction between atoms. In the
vicinity of the balance position, i.e., when the deformation is small, the repulsive
force and attractive force are linear to the interatomic distance and almost equal.
When the distance is far from the balance position, the repulsive force rises much
faster than the attractive. Moreover, it can be seen from Fig. 4 that <100> Si
has the ultimate tensile strength (UTS), of about 28GPa, which is again reasonably
close to the MD result (˜25GPa) [Komanduri, Chandrasekaran and Raff (2003)].
The UTS of Si in <110> and <111> directions are 19GPa and 15GPa respectively.
In compression, the maximum ultimate compressive strength of Si crystalline is
along the <111> direction but the minimum is in the <100> direction.

4 Conclusions

This paper has developed a new continuum computational method (CCM) based on
the finite element method. Compared to the currently available multi-scale compu-
tational methods, the new method does not need the unreasonable assumption of
uniform deformation in a virtual atomic cell. Therefore this CCM is expected to
be more feasible for different length and time scales and more accurate for prob-
lems where high deformation gradient exists. Its application to a bar under uni-
axial tension and compression showed that when the VAC is properly constructed,
the CCM can provide good Young’s modulii of single crystal materials such as Si
in the <100>, <110> and <111> directions when compared to the experiment
and MD simulation. It is also applied to predict the ultimate tensile strength and
the anisotropic material behavior through the stress-strain curves. The comparison
with the MD results indicates that the predicted material response to the uniaxial
tension and compression is consistent with the atomic interaction.



A Multi-Scale Computational Method Integrating Finite Element Method 321

 

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

St
re

ss
(
G
P
a
)

Strain

Tension

<100>

<110>

<111>

Figure 4: Anisotropic stress vs strain curves of Si under uniaxial tension
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