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Prandtl Number Signature on Flow Patterns of
Electrically Conducting Fluid in Square Enclosure
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Abstract: We present in this study a numerical investigation of unsteady two-
dimensional natural convection of an electrically conducting fluid in a square cav-
ity under an externally imposed magnetic field. A temperature gradient is applied
between the two opposing side walls parallel to y-direction, while the floor and ceil-
ing parallel to x-direction are adiabatic. The flow is characterized by the Rayleigh
number Ra raged in 103-106, the Prandtl number Pr ranged in 0.01-10, the Hart-
man number Ha determined by the strength of the imposed magnetic field ranged in
0-100 and its tilting angle from x-axis ranging from 0˚ to 90˚. The coupled momen-
tum and energy equations associated with the Lorentz retarding force as well as the
buoyancy force terms are solved using the single relaxation lattice Boltzmann (LB)
approach. The changes in the buoyant flow patterns and temperature contours due
to the effects of varying the controlling parameters and associated heat transfer are
examined. It was found that the developed thermal LB model gives excellent results
by comparison with former experimental and numerical findings. Starting from the
values 105 of the Rayleigh number Ra and Ha=0, the flow is unsteady multicellular
for low Prandtl number typical of liquid metal. Increasing gradually Pr, the flow
undergoes transition to steady bicellular, the transition occurs at a threshold value
between Pr=0.01 and 0.1. Increasing more the Prandtl number, the flow structure is
distorted due to the viscous forces which outweigh the buoyancy forces and a ther-
mal stratification is clearly established. For high Hartman number, the damping
effects suppress the unsteady behaviour and results in steady state with extended
unicellular pattern in the direction of Lorentz force and diminishes considerably
the heat transfer rate.
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Nomenclature

B Magnetic field Nu0 Nusselt number at the hot wall
ek Discrete lattice velocity Ra Rayleigh

numbergβ∆T H3/να

g Gravity field Greek symbols
u Velocity vector (u,v) wk Weighting factors
x Lattice node in (x,y) coordi-

nates
ρ Fluid density

cs Lattice sound speed υ Kinetic viscosity
fk,gk Discrete distribution functions. α Thermal diffusivity
H Height of the enclosure τυ , τα Relaxation times for fk and gk
p Ideal gas pressure ρ2

s β Thermal expansion coefficient
T Temperature field σ Electrical conductivity of the

fluid
∆T Horizontal temperature gradi-

ent Th−Tc

γ Magnetic field inclination an-
gle

∆t Time step Subscripts Suscripts
∆x Lattice spacing units (=∆) eq Equilibrium part
Ha Hartmann number i, j Lattice vector components
Pr Prandtl number υ / α k Discrete velocity direction

1 Introduction

Study of magnetohydrodynamic (MHD) flows, has been the subject of a great num-
ber of numerical investigations [Gelfgat and Bar-Yosaf (2001), Roussellet, Niu et
al. (2011) and Hadavand and Sousa (2011)] Moreover, flows under external mag-
netic field are of practical interest such as crystal growth in liquids, cooling of nu-
clear reactors, electronic packages, micro electronic devices; and have been the
subject of many earlier and recent studies for free fluid flows [Ece and Büyük
(2006), Hasanpour, Farhadi et al. (2012) and Jina and Zhang (2013))]. Further-
more, the study of flow and heat transfer in electrically conducting fluid has re-
ceived considerable attention and renewed interest due to the many applications in
engineering problems such as MHD generators, plasma studies, nuclear reactors,
and because of the effect on magnetic fields on the performance of many systems
including liquid metals and alloys, mercury amalgams, and blood, known as “low-
Prandtl number flows”.

Natural convection in enclosures depends strongly on many parameters monitoring
the flow behaviour in special industrial situations, namely the Rayleigh and the
Prandtl number, the medium tilting angle and its configuration.
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Besides, several numerical simulations have been conducted in the past using con-
ventional numerical method based on discretization of macroscopic equations. Re-
cently, the Lattice Boltzmann Method (LBM) has met with significant success for
numerical simulation and modeling of many classical and complex flows [Chen and
Doolen (1998), Seta, Takegoshi et al. (2006), Semma, El Ganaoui et al. (2008),
Djebali, ElGanaoui et al. (2012)]. The LBM have been used recently to investi-
gate flows under external magnetic field. For citation, Hao, Xinhua and Yongzhi
(2011) simulated a multicomponent system formed by fluid and magnetic particles
using a multiphase LB model, under external magnetic field. Authors concluded
that the LB method is so helpful to explore and understand the chainlike parti-
cles behavior when applying external magnetic field on a random distribution of
particles. Chatterjee and Amiroudine (2011) used a non-isothermal LB model to
predict the thermo-fluidic phenomena in a direct current MHD micropump. It was
remarked that flow and heat transfer characteristics depend strongly on Hartmann,
Prandtl and Eckert numbers and channel aspect ratios. An excellent agreement is
also observed between LB results and experimental, analytical and other available
numerical results in the literature. Han (2009) used the FV approach to investi-
gate MHD natural convection flow for a tilted square cavity. It was concluded that
for high magnetic field strength, the velocities are suppressed and the convective
heat transfer rate is reduced and that the effect of a magnetic field is found to de-
crease the Nusselt number considerably, regardless of the inclination angle. Ece
and Büyük (2006) have investigated the steady laminar natural-convection flow in
an inclined square enclosure heated and cooled from adjacent sides in the presence
of a magnetic field. The governing equations based on the stream function, vortic-
ity and temperature have been solved using the Differential Quadrature Method for
various Grashof and Hartman numbers and aspect ratios, inclination of the cavity
and magnetic field orientations. Its has been observed that the flow characteristics,
therefore the heat transfer rate are affected significantly by the variation of Hart-
man number, the aspect ratio and the inclination of the enclosure. Zhang, Jin et al.
(2010) introduced a LB model to investigate a thermo-sensitive magnetic fluid in
porous medium. Authors obtained excellent agreement with previous results and
concluded that the LB method is a promising tool for understanding magnetic fluid
non-isothermal behavior in porous media.

Through this literature review, one can state that flow patterns and temperature field
exhibit distinctly different behavior in differentially heated enclosures by varying
the monitoring parameters: Rayleigh number and Hartmann number (Magnetic
field strength). Additionally, no / very little works has been reported on this topic
with regard to the Prandtl number effects. In the present paper, a thermal lattice
Boltzmann model is developed and used to investigate the dynamic and thermal
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behavior in electrically conducting fluid in a square enclosure. The effects of the
Rayleigh number, the Prandtl number and the magnetic field strength and its ori-
entation -in wide ranges- on flow and heat transfer are analyzed and tabulated for
benchmarking purposes.

2 Problem statement

The investigated problem is a two-dimensional square enclosure of edge H(= L)
filled with a viscous, incompressible and electrically conducting fluid. The non-slip
boundary conditions hold on the four walls. A temperature difference ∆=Th−Tc is
applied between walls parallel to y-direction (T = Thforx =0 andT = Tc forx = H)
and zero heat flux is imposed to walls parallel to x-direction. The fluid is permeated
by a uniform magnetic field of strength B tilted by an angle γ with respect to x-axis
(Fig. 1). The gravity field reigns in the vertical descendant direction. It is assumed
that the induced magnetic field can be neglected in comparison with the imposed
magnetic field.

We assume all fluid properties including the electrical conductivity to be constant,
except the density which is linearly temperature-dependent, so that the Boussinesq
approximation is used: ρ = ρ0 (1−β (T −T∞)) where T∞ is the reference tempera-
ture taken here the cold temperature. Neglecting viscous heat dissipation and com-
pression work done by the pressure, the unsteady state governing equations can be
summarized as follows:

Continuity

∇.U = 0 (1)

Momentum

∂tU+(U.∇)U = −∇P+∇.(υ ∇U)+ρF/ρ0 (2)

Energy

∂tT +(U.∇)T = ∇.(α ∇T ) (3)

Where Fi = β (T−T∞)gδi2 +σ [(B ju j)Bi−B2ui] and B j denotes the magnetic fields
components Bx=B cos(γ) and By=B sin(γ). We assume the Joule heating can be
neglected since Ra>103 and Ha<200.

For the sake of comparison with previous studies, all predicted quantities are pre-
sented in a non-dimensional form. The reference scales l0 = H, U0=α/H t0 = H2/α ,
p0=ρ0U2

0 and ∆T=Th−Tc are used for length, velocity, time pressure and relative
temperature respectively. The reference temperature is chosen to be Tc.
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The flow is characterized by the Rayleigh number (103 ≤ Ra ≤ 106), the Prandtl
number (0.01≤ Pr≤ 10), the Hartmann number (0≤Ha≤ 100) and the magnetic
field orientation (0◦ ≤ γ ≤ 90◦), defined as:

Ra = gβ ∆T H3/να, Pr =
ν

α
and Ha = H B

√
σ/µ (4)

The convective heat transfer is described using the average Nusselt number Nu0
along the hot wall:

Nu =
1

∆T/H
1
H

H∫
0

− ∂T
∂x

∣∣∣∣
x=0

dy (5)

The convergence criterion for steady state is defined as follows:∣∣∣∣Nu(t +5000∆t)−Nu(t)
Nu(t)

∣∣∣∣≤ 10−4 (6)

3 Computational method

The lattice Boltzmann is considered in this study for simulating the fluid flow and
heat transfer. In the LBM approach, the fluid is modeled by fictitious particle mod-
eled by distribution functions that occupy nodes and transit to neighboring nodes
in a streaming phase. In traditional CFD solvers, the Poisson equation is time
consuming and its solution takes typically 80–90% of the CPU time [Madabhushi
and Vanka (1991)], its absence in LBM means that codes are comparatively fast
based on time step per grid point. In our previous works [Djebali, Pateyron and
El Ganaoui (2011), Djebali and El Ganaoui (2011), Djebali, El Ganaoui, Pateyron
and Sammouda (2011), Djebali, El Ganaoui and Pateyron (2012) and Djebali, El
Ganaoui and Naffouti (2012)], we have found that a D2Q9-D2Q4 lattice is a suit-
able model for simulating thermal flows, for its stability compared to the D2Q9-
D2Q9 thermal model (see Fig. 2), it preserves the computational efforts, since the
collision step takes around 70% of the CPU time.

The evolution of the distribution functions in the D2Q9-D2Q4 lattice model in the
presence of source term Sk is written as follows:{

fk(x′, t ′)− fk(x, t) = −
(

fk(x, t)− f eq
k (x, t)

)
/τυ +∆t Sk, k = 0,8

gk(x′, t ′)−gk(x, t) = −
(
gk(x, t)−geq

k (x, t)
)
/τα , k = 1,4

(7)

Where x′ = x + ek∆t, t ′ = t + ∆t, x is the lattice site, ∆t is the time step, ∆x is
the lattice grid spacing unit (=∆y=1), ekdiscrete lattice velocity, and fk and gk are
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the density and temperature distribution functions. The correspondent equilibrium
parts f eq

k and geq
k are defined as:{

f eq
k (x, t) = ωkρ[1+3 ek.u+4.5(ek.u)2−1.5u2]

geq
k (x, t) = T [1+2 ek.u]/4

(8)

The forcing term Sk for incompressible fluid flow is chosen as:

Sk = F.
(e−u)

c2
s

f eq
k (9)

The single-relaxation-times τυ and τα are linked to the kinematic viscosity and the
heat diffusivity as

υ =
2τυ −1

6
∆x2

∆t
, α =

2τα −1
4

∆x2

∆t
(10)

Where ωk are weighting factors and ek are the lattice velocity vectors.

In LB heat and flow modeling philosophy, the macroscopic variables: density, ve-
locity and temperature are computed as [ρ (x, t), ρ u(x, t),T ] = ∑ [ f eq, e. f eq, geq].
Since it affects the accuracy of the computations, implementation of boundaries
conditions is a very important issue in LBM. The second-order bounce back bound-
ary rule for the non-equilibrium distribution function proposed by Zou and He
(1997) is used to account for the no-slip boundary condition along the four walls
as: ( f − f eq)< = ( f − f eq)>, where the asterisk "<" and ">" denote for inner (un-
known) and outer (known) particles respectively at the wall node. For the tem-
perature field, the temperature distribution functions at the isothermal walls obey:
g< =−g> +0.5Twall . The adiabatic boundary condition is transferred to Dirichlet-
type condition using the conventional second-order finite difference approximation
as: gwall = (4g1− g2)/3.

We have to mention that the grid size sensitivity has been tested previously for
the same range of the Rayleigh number Ra, a uniform grid size 150×150 will be
adopted for the following. To establish the credibility of the thermal lattice Boltz-
mann developed code, we made two test cases involving different situations of the
above mentioned monitoring parameters.

First a square cavity counter-clockwise tilted to 0˚ or 20˚ from horizontal is con-
sidered, the Prandtl number is set to 0.733 and Ra=2×105. The streamline traces
of the present calculations are plotted in Fig. 3 side-by-side with former numerical
and experimental findings reported by Linthorst, Schinkel, et al. (1981) and Han
(2009). Qualitatively, the present streamlines distributions are consistent with the
literature results. At the same case, the dimensionless y-velocity calculated at the
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cavity mid-plane for Ra=1.3×105 when the enclosure is 0˚ or 50˚ tilted, are plotted
in Fig. 4. As one can see, the LB method present a good level of predictability
compared to the previous experimental results (symbolized in Fig. 4) and numeri-
cal predictions of finite volume method using a refined mesh near walls 51×51 or
either using non-uniform control volumes 201×201. In the second test case, the LB
present predictions are compared to the ADI (Alternating Direction Implicit) and
FE methods for natural convection flow in square cavity under external magnetic
field effects for different Hartmann numbers. The present LB results are tabulated
in Table 1 and gathered with the references findings. As one can remark, our results
are in excellent agreement with predictions of conventional approaches. In the fol-
lowing the Rayleigh number Ra is set to 105, Ha=0 or 50 and Pr=0.01, 0.1, 1 or 10
and the left hot wall of the cavity is kept parallel to y-direction.

 
Figure 1: Configuration model.

 
Figure 2: The nine particle speeds used in the hydrodynamic of lattice Boltzmann
equation. Only the four blue velocities are necessary for the temperature field.
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Figure 3: Comparison of present streamlines calculation with former experimental
and numerical findings for Pr=0.733, Ra = 2×105 and different cavity inclinations.

Table 1: Comparison of the calculated Nusselt number on the left wall of the cavity
with reference to former works using different methods.

Ra/Pr Ha Rudraiah et al. (1995):
ADI

Sathiyamoorthy et al.
(2011): FEM

Present LBM

2×104 0 2.5188 2.5439 2.5516
10 2.2234 2.2385 2.2458
100 1.0110 1.0066 1.0128

2×105 0 4.9198 5.0245 5.1276
10 4.8053 4.9136 4.9252
100 1.4317 1.4292 1.4467



Prandtl Number Signature on Flow Patterns 301

 
Figure 4: Comparison of dimensionless y-velocities at cavity mid-plane for
Pr=0.733, Ra = 1.3×105and different cavity inclinations. Symbols: experimen-
tal results of [Linthorst, Schinkel, et al. (1981)], Dashdotted lines: FVM results of
[Han (2009)] and blue-solid lines: present predictions.

4 Results and discussions

Free buoyant flow (Ha=0): The temperature contours and the streamtraces of
a fluid flowing for Ra=105 without external magnetic field under the effects of
varying the Prandtl number are computed. For Pr=0.01, the flows is unsteady
(chaotic) and the dynamic structure changes continually with time showing two
centro-symmetric cells at the core of the cavity; a principle quasi-circle clockwise
rotating large cell occupies the enclosure. The flow exhibits also two counter ro-
tating secondary cells at the four corners symmetric by the cavity center. The
isotherms are distorted at the cavity core and more stretched and piled near the
cavity mid-height. It is worth-noting that this type-flow (low Prandtl number flows)
characterizing liquid metal show usually time dependent behaviors and instabilities.
The Nusselt number time history is gathered to its spectra of amplitude frequency
in Figure 5, the spectra exhibit four principal oscillating frequency close to 46, 567,
1250 and 1822. The time-average Nusselt number is close to 3.19. Increasing the
Prandtl number to 0.1 the flows behaviour changes distinctly (see Fig. 6): a thermal
stratification appears and the dynamic structure shows only three counter rotating
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cells, and the flow is also steady. The Nusselt number is close to 3.92 and the ab-
solute maximum stream-function is 7.84. Increasing more the Pr number to 1 and
10, the flow exhibits only two centro-symmetric rotating cells at the cavity core.
For Pr=1 the left cell center is the highest, however it is the lower for Pr=10 and
the cells are smaller compared to the Pr=1 case. This is certainly due to the fact
that a rise in the Pr number leads to a rise in viscosity (against the diffusivity of
the fluid) which requires the sufficient buoyancy force to conquer viscous forces.
The isotherms are more stretched to the isothermal walls and the thermal stratifi-
cation is intensified. The Nusselt numbers Nu are 4.60 and 4.72 and the maximum
stream-function magnitudes |ψ|max are 10.02 and 11.11 for respectively Pr=1 and
Pr=10.

 

 
 

Figure 5: Nusselt time history (left) and its spectra of amplitude frequency (right)
for Ra=105, Pr=0.01 and Ha=0.

Fluid flow under horizontal magnetic field (γ=0˚): A simple scaling procedure
leads to the following form of the non-dimensional Lorentz force Fl ≡Pr.Ha2 [sinγ(−u.sinγ +
v.cosγ), cosγ(u.sinγ−v.cosγ)] and the buoyancy force G = Pr.Ra.T.ey. When the
magnetic field is applied parallel to the x-axis (case γ=0˚) the Lorentz force reduces
to Fl = −Pr.Ha2v, so it acts directly against the buoyancy force. Accordingly, the
magnitude of ratio buoyancy force by the Lorentz force is proportional to Ra/Ha2.
Furthermore, one knows that the Lorentz force reduces velocities and dumps the
convection currents and consequently reduces the heat transfer. As a result, major
effects are observed between the cases: with/without applying magnetic field (see
Fig. 7): the dynamic and thermal structures of the flow for Ha=0 change entirely
for a moderate magnetic field magnitude of Ha=50; a like-elongated core-cell pat-
tern is remarked for Pr ≥ 0.1 and a thermal stratification along the first diagonal
of the cavity occurs. The stream-function magnitude does not changed much, for
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Figure 6: Streamtraces and isotherms plots for Ra= 105, Ha=0 and different Prandtl
numbers.

Pr=0.01, 0.1, 1 and 10 we have |ψ|max=3.22, 3.48, 3.36 and 3.35 respectively, then
a maximal change amount of 8.1%. The same conclusion applies for the heat trans-
fer, the Nusselt number is 2.03, 2.15, 2.16 and 2.17 when increasing the Prandtl
number, then a maximal change amount of 15.6% to reference value Nu=2.03. We
should mention that the lower Nusselt number Nu=2.03 is superior to unit then the
convective currents still act, this is due to the fact that the ratio Ra/Ha2=105/502=40
which is so greater than unit.

Fluid flow under vertical magnetic field (γ=90˚): The results of our predic-
tions are shown in Fig. 8. In this case of γ=90˚ the Lorentz force reduces to
Fl = −Pr.Ha2u and consequently it acts counter the horizontal flow currents. Ef-
fectively, for low Prandtl number (Pr=0.01) the core-cell is extended according to
the second diagonal with two small cells at the correspondent corners. However,
by increasing the Prandtl number (ie increasing the viscous force) the viscous force
acts according to “-y”; the resulting force leads to a two cells elongated according
to the first diagonal, with alteration rising with increasing the Prandtl number to
10. The Prandtl number effect is, as one can see, more expressed on the dynamic
structure more than the thermal structure. The isotherms exhibit a stretching pat-
tern along the first diagonal with slight clockwise rotation under increasing Pr; this
behavior is more expressed compared to the case of horizontal magnetic field, but
examining the flow pattern under increasing the Prandtl number at vertical mag-
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Figure 7: Streamtraces and isotherms plots for Ra= 105, Ha=50, γ=0˚ and different
Prandtl numbers.
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Figure 8: Streamtraces and isotherms plots for Ra= 105, Ha=50, γ=90˚ and different
Prandtl numbers.
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netic field we can state that Pr has a minor effect at high values, this conclusion
remains valid either for the case without external magnetic. The behavior is the
same for the stream-function magnitude |ψ|max which is close 3.09, 3.42, 3.54 and
3.54 and the hot-wall Nusselt number to 2.05, 2.32, 2.37 and 2.37 for respectively
Pr=0.01, 0.1, 1 and 10, then a decreased heat transfer rate.

5 Conclusions

We consider in present study an unsteady, two-dimensional MHD natural convec-
tion within a electrically conducting filled square enclosure in the presence of in-
clined magnetic field for different Prandtl number. The governing equations are
solved using the lattice Boltzmann method for the differentially heated cavity prob-
lem. It was found that for low Prantdl number flow without magnetic field, the cav-
ity hot wall Nusselt number exhibited time dependent behaviour and the the flow is
multicellular; however increasing the Prandtl number, a transition to bicellular flow
occurs.

Besides, by applying the external magnetic field at low Prandtl number, the convec-
tive heat transfer rate is reduced considerably and no unsteady state are observed
in the tested monitoring parameters ranges. Furthermore, by increasing the Prandtl
number, the flow is always bicellular and the coupled effect of the Lorentz force and
viscous force results in dumping the convective currents so that no great changes
are observed between Pr=1 and 10 on isotherms and heat transfer quantified us-
ing the Nusselt number, however the signature (of varying Pr) is well clear on the
streamtraces.

It is found also through this study, that the LB method is a promising tool for in-
vestigating MHD convective heat transfer in confined space. Moreover, the LB ap-
proach allows more simply accounting for complex physics such as external mag-
netic force and particularly preserves the computational cost.
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