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A New Optimal Scheme for Solving Nonlinear Heat
Conduction Problems
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Abstract: In this article, we utilize an optimal vector driven algorithm (OVDA)
to cope with the nonlinear heat conduction problems (HCPs). From this set of
nonlinear ordinary differential equations, we propose a purely iterative scheme and
the spatial-discretization of finite difference method for revealing the solution vec-
tor x, without having to invert the Jacobian matrix D. Furthermore, we introduce
three new ideas of bifurcation, attracting set and optimal combination, which are
restrained by two parameters γ and α . Several numerical instances of nonlinear
systems under noise are examined, finding that the OVDA has a fast convergence
rate, great computation accuracy and efficiency.
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1 Introduction

Heat conduction problems that appear from engineering applications are often cate-
gorized as linear heat conduction problems and nonlinear heat conduction problems
(HCPs). In most situations, solving those problems analytically and exactly is im-
possible, or at least highly impractical. Hence, numerical algorithms such as finite
difference method (FDM) and finite element method (FEM) are often employed
to estimate the linear HCPs [Necati Özisik (1994); Zienkiewicz, Taylor and Zhu
(2005)]. Because the mesh establishment of domain is time-consuming and cannot
always be totally automated, [Zhu, Liu and Lu (1998); Bulgakov, Sarler and Kuhn
(1998); Zhu (1998); Sutradhar, Paulino and Gray (2002); Bialecki, Jurgas and Kuhn
(2002); Zerroukat (1999)] employed the boundary element method (BEM) to solve
the linear HCPs. However, the mesh generation of boundary increases the computa-
tion time and capacity necessity. Comparing with those mesh-dependent schemes
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like as FDM, FEM and BEM, the meshless approaches [Chantasiriwan (2006);
Walker (1992); Johansson and Lesnic (2008)], which do not need any domain or
boundary discretization, have been proposed.

For the nonlinear HCPs, Zokayi, Hadizadeh, Darania and Rajabi (2006) analyzed
the RF-pair method for the relation between the Emden-Fowler equation and the
nonlinear heat conduction problem with the variable transfer coefficient. This
scheme demonstrates that, under the RF-pair operations, the solution of trans-
formed equation can be changed into the solution of the mention equation. Nev-
ertheless, they did not show the numerical results and mention how the initial data
were disturbed by noise. Recently, Chu and Chen (2008) have used the hybrid
method of differential transform and finite difference scheme to solve the transient
responses of a nonlinear heat conduction problem; however, this study did not dis-
cuss how the initial data were perturbed by noise.

This research is organized as follows. Section 2 demonstrates a theoretical basis
of the proposed scheme. We begin from a continuous manifold defined in terms
of residual-norm, and arrive at a system of ordinary differential equations (ODEs)
driven by a vector, which is a combination of the vectors E and DTE, where D is
the Jacobian. Section 3 is dedicated to deriving a scalar equation to keep the dis-
cretely iterative orbit on the manifold, and then we propose two new concepts of
bifurcation and optimization to choose the weighting factor and optimal parameter
α , which automatically have a convergent behavior of the residual-error curve. In
Section 4, we employ the present approach with different weighting factors and
combination parameters to resolve three numerical experiments. At last, some con-
cluding remarks are drawn in Section 5.

2 An invariant manifold

In this study, we propose a new iterative approach to solve a system of nonlinear
algebraic equations (NAEs): Ei(x1, . . . , xn) = 0, i =1,. . . , n, or in their vector-form:

E(x) = 0. (1)

For the NAEs in Eq. (1), we can formulate a scalar Newton homotopy function:

g(x, t) =
Q(t)‖E(x)‖2

2
− ‖E(x0)‖2

2
= 0, (2)

in which, let x be a function of a fictitious time-like variable t, and its initial value
is x(0) = x0.

We anticipate g(x, t) = 0 to be an invariant manifold in the space of (x, t) for
a dynamical system g(x(t), t) = 0 to be specified further. While Q > 0, the
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manifold clarified by Eq. (2) is continuous, and therefore the following operation
of differential accomplished on the manifold makes sense [Liu and Atluri (2011a)].
As a “consistency condition”, by taking the time differential of Eq. (2) with respect
to t and contemplating x = x(t), we obtain

Q̇(t)‖E(x)‖2

2
−Q(t)(DTE) · ẋ = 0. (3)

We presume that the evolution of x is driven by a vector w:

ẋ = λw, (4)

where λ in general is a scalar function of t, and

w = αE+(1−α)DTE, (5)

is a suitable combination of the residual vector E as well as gradient vector DTE,
and is α a parameter to be optimized below. Inserting Eq. (4) into Eq. (3), we can
derive

ẋ =−p(t)
‖E‖2

ETq
w, (6)

in which

F := DDT, (7)

q := Dw = q1 +αq2 = FE+α(D-F)E, (8)

p(t) :=
Q̇(t)
2Q(t)

. (9)

Thus, in this algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, we may have an absolutely convergent property in solving the NAEs
in Eq. (1):

‖E(x)‖2 =
C

Q(t)
, (10)

where

C = ‖E(x0)‖2 (11)

is chosen by the initial value x0. We do not require to specify the function Q(t) a
prior; however,

√
C/Q(t) only acts as a measure of the residual error of E at the

same time. Therefore, we impose on our scheme that Q(t) > 0 is a monotonically
increasing function of t. When t is enormous, the above equation will compel the
residual error ‖E(x)‖ to tend to zero, and meanwhile the solution of Eq. (1) is
acquired accessibly.
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3 Dynamics of the proposed iterative schemes

3.1 Discretizing, yet keeping x on the manifol

Now, we discretize the foregoing continuous time dynamics embodied in Eq. (6)
into a discrete time dynamics:

x(t +∆t) = x(t)−β
‖E‖2

ETq
w, (12)

where

β = p(t)∆t (13)

is the step-length. Eq. (12) is acquired from the ODEs in Eq. (6) by employing the
Euler algorithm.

To keep x on the manifold defined by Eq. (10), we can contemplate the evolution
of E along the path x(t) by

Ė = Dẋ =−p(t)
‖E‖2

ETq
q. (14)

Similarly, we utilize the Euler algorithm to integrate Eq. (14) and acquire

E(t +∆t) = E(t)−β
‖E‖2

ETq
q, (15)

Taking the square-norms of both the sides of Eq. (15) and employing Eq. (10), we
can acquire

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖E‖2

(ETq)2 ‖q‖
2 . (16)

Hence, we can derive the following scalar equation:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (17)

where

a0 :=
‖E‖2 ‖q‖2

(ETq)2 . (18)

Consequently, g(x, t) = 0, t ∈ {0, 1, 2, . . .} remains to be an invariant manifold in
the space of (x, t) for the discrete time dynamical system g(x(t), t) = 0, which will
be explored further in the next two sections. Liu and Atluri (2011a) first derived
the formula (18) for a simply gradient-vector driven dynamical system.
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3.2 A trial discrete dynamics

Presently, we specify the discrete time dynamics g(x(t), t) = 0, t ∈ {0, 1, 2, . . .},
through specifying the discrete time dynamics of Q(t), t ∈ {0, 1, 2, . . .}. Note that
discrete time dynamics is an iterative dynamics, which in turn amounts to an itera-
tive approach.

We first utilize the Euler algorithm:

Q(t +∆t) = Q(t)+ Q̇(t)∆t. (19)

Then from Eq. (9) we obtain

β = p(t)∆t = 0.5[G(t)−1], (20)

where the ratio G(t) is defined by

G(t) =
Q(t)

Q(t +∆t)
. (21)

As a necessity of Q̇(t) > 0, we require R(t) > 1.

Therefore, through some operations, Eq. (17) becomes

a0G3(t)− (2a0 +4)G2(t)+(a0 +8)G(t)−4 = 0, (22)

which can be further written as

[G(t)−1]2[a0G(t)−4] = 0. (23)

Because G = 1 is a double root and does not satisfy G > 1, which is not the wanted
one, we take

G(t) =
4
a0

=
4(ETq)2

‖E‖2 ‖q‖2 . (24)

By utilizing Eq. (20), Eq. (12) can be written as

x(t +∆t) = x(t)−0.5[G(t)−1]
‖E‖2

ETq
w. (25)

However, this scheme has an unfortunate drawback in that when the iterated a0
begins to close to 4 before it grows up a large value, the approach stagnates at
a point which is not a necessary answer. We will evade following this kind of
dynamics by developing a better dynamics as below. This denotes that the present
method will confront this fate to lose its dynamics force if we stress the iterative
orbit as being situated on the manifold clarified by Eq. (10). This idea has been
first found by Liu and Atluri (2011a) for a gradient-driven approach.
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3.3 A good discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖E(x(t +∆t))‖2

‖E(x(t))‖2 , (26)

which is a significant quantity to evaluate the convergence property of numerical
scheme for solving NAEs. If s can be promised to be s < 1, then the residual error
‖E‖ will be decreased step-by-step.

From Eqs. (17) and (26), we can acquire

a0β
2−2β +1− s = 0, (27)

in which

a0 :=
‖E‖2 ‖q‖2

(ETq)2 ≥ 1, (28)

by employing the Cauchy-Schwarz inequality:

ETq≤ ‖E‖ ‖q‖ .

From Eq. (27), we can obtain the solution of β to be

β =
1−

√
1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (29)

Let

1− (1− s)a0 = γ
2 ≥ 0, (30)

s = 1− 1− γ2

a0
. (31)

Hence, from Eq. (29) it follows that

β =
1− γ

a0
, (32)

and from Eqs. (12) and (18) we can acquire the approach as follows:

x(t +∆t) = x(t)−η
ETq
‖q‖2 w, (33)
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in which

η = 1− γ. (34)

Here 0≤ γ < 1 is a weighting parameter. Then, in the numerical instances, we will
interpret that γ plays a major role for the bifurcation of discrete dynamics. Under
the above condition, we can prove that the new scheme satisfies

‖E(t +∆t)‖
‖E(t)‖

=
√

s < 1, (35)

which indicates that the residual error is absolutely decreased.

We do not need ∆t to be integrated in the above method. Moreover, the property in
Eq. (35) is pivotal because it promises the new scheme to be absolutely convergent
to the true solution.

3.4 Optimal value for α

The scheme (33) does not specify how to determine the parameter α . One way is
that α is determined by the user. Furthermore, we can choose a suitable α such
that s clarified in Eq. (31) is minimized with respect to α , because a smaller s will
result in a faster convergence as displayed in Eq. (35). The concept of optimizing
α , was first developed by Liu and Atluri (2011b) for other scheme.

Therefore, by inserting Eq. (28) for a0 into Eq. (31), we can obtain s as follows:

s = 1− (1− γ2)(E ·q)2

‖E‖2 ‖q‖2 , (36)

where q as defined by Eq. (8) includes a parameter α . Let ∂ s/∂α = 0, and through
some algebraic operations we can resolve α by

α =
(q1 ·E)(q1 ·q2)− (q2 ·E)‖q1‖2

(q2 ·E)(q1 ·q2)− (q1 ·E)‖q2‖2 . (37)

Remark 1: For the usual three-dimensional vectors a, b, c ∈ R3, the following
formula is famous:

a× (b× c) = (a · c)b− (a ·b)c . (38)

Liu (2000) has utilized a Jordan algebra by extending the above formula to vectors
in n-dimension:

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn. (39)
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Hence α in Eq. (37) can be expressed as

α =
[q1,q2,E] ·q1

[q2,q1,E] ·q2
. (40)

The above parameter α can be called the optimal α because it brings us a new
strategy to determine the best orientation to find the solution of NAEs. Furthermore,
we have an explicit form to implement it into the numerical program, and therefore
it is time-saving for calculating it.

3.5 Optimal value for α

Since the fictitious time variable is now discrete, t ∈ {0, 1, 2, . . .}, we let xk denote
the numerical value of x at the k-th step. Hence, we arrive at a purely iterative
method through Eqs. (33) and (34):

xk+1 = xk− (1− γ)
ET

k qk

‖qk‖2 wk. (41)

After that, we devise the following scheme:

(1) Choose 0≤ γ < 1, and give an initial guess of x0.

(2) For k= 0, 1, 2. . . we repeat the following calculations:

qk
1 = FkEk, (42)

qk
2 = (Dk−Fk)Ek, (43)

αk =
[qk

1,q
k
2,Ek] ·qk

1

[qk
2,q

k
1,Ek] ·qk

2
, (44)

wk = αkEk +(1−αk)DT
k Ek (45)

qk = Dkwk (46)

xk+1 = xk− (1− γ)
Ek ·qk

‖qk‖2 wk. (47)

If xk+1 converges according to a given stopping criterion ‖Ek+1‖ < ε, then stop;
otherwise, go to step (2).
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4 Nonlinear heat conduction problems and numerical examples

We deliberate the following equations about the nonlinear HCP:

c(x)
∂u
∂ t

= k(x)uxx + k′(x)ux +um + f (x, t),0≤ x≤ `,0≤ t ≤ T , (48)

with the boundary conditions

u(0, t) = g(t), u(`, t) = h(t), (49)

and the initial condition

u(x,0) = p(x). (50)

where u is the temperature field of a rod, k(x) is a thermal conductivity, ` is the
length of a rod, and f (x,t) is a linear function of x and t.

We will utilize the OVDA and the spatial-discretization of finite difference ap-
proach to the calculations of nonlinear HCP through numerical experiments. We
are concerned about the stability of our scheme when the input initial measured
data are polluted by random noise for different issues. We can evaluate the stability
by increasing the different levels of random noise in the initial data:

ûi = ui + s[2R(i)−1], (51)

where ui is the initial exact data. We use the function RANDOM_NUMBER given
in Fortran to generate the noisy data R(i), which are random numbers in [-1, 1],
and s means the level of absolute noise. Then, the final noisy data ûi are employed
in the calculations.

4.1 Example 1

In this example, we apply the proposed method involving the vector w of Eq. (5)
to solve the following one-dimensional nonlinear HCP:

ut = x3uxx +u2−6x4et − x6e2t + x3et , 0≤ x≤ 1, 0≤ t ≤ T, (52)

with the boundary conditions

u(0, t) = 0, u(1, t) = et , (53)

and the initial condition

u(x,0) = x3. (54)
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The exact solution is

u(x, t) = x3et . (55)

By applying the new algorithm to solve the above equation in the domain of 0 ≤
x≤ 1 and 0≤ t ≤ 1, we use n1 = 17 and n2 = 21, which are numbers of nodal points
in a standard finite difference approximation of Eq. (52). Because a0 defined in Eq.
(18) is a very important factor of our new algorithms, we show it in Fig. 1(b) for
the present algorithm with γ = 0, while the residual error is shown in Fig. 1(a), and
α is shown in Fig. 1(c) by the dashed lines. Under a convergence criterion ε = 0.1,
the present algorithm with γ = 0 can also converge with 110 steps, and attains an
accurate solution with the maximum error 6.33×10−3. The optimal α varies in a
narrow band with the range from 0.9981 to 0.9990, and a0 approaches to a constant,
which reveals an attracting set for the iterative orbit. Under the same convergence
criterion, the present algorithm with γ = 0.15 converges much fast with only 104
steps. The residual error, a0 and α are shown in Fig. 1 by the solid lines. By
employing γ = 0.15 the value of a0 does not tend to a constant, and its value is
smaller than the a0 obtained from the present algorithm with γ = 0 and optimal α ,
which is the main reason to cause the fast convergence of the present algorithm
with γ = 0.15.

In this example, when the input initial measured data are disturbed by random
noise, we are interested in the stability of OVDA, which is investigated by adding
the level of random noise on the initial data. The results of T = 1 are compared
with the numerical result without contemplating the absolute random noise in Fig.
2. Note that the absolute noise level with s = 0.2 perturbs the numerical solutions
a little from that without adding the noise. The exact solutions and numerical so-
lutions are plotted in Figs. 3(a)-(c) sequentially. Even under the large noise, the
numerical solution indicated in Fig. 3(c) is a good approximation to the exact ini-
tial data as illustrated in Fig. 3(a).

4.2 Example 2

Then, we ponder the following one-dimensional nonlinear HCP:

ut = (x−5)3uxx +3(x−5)2ux +u3−15(x−5)4e−t − (x−5)9e−3t − (x−5)3e−t ,

0 ≤ x ≤ 1, 0 ≤ t ≤ T, (56)

with the boundary conditions

u(0, t) =−125e−t , u(1, t) =−64e−t , (57)
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Figure 1: For example 1, with different α and γ , comparing residual errors, a0 and
α .
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of noise s = 0, 0.2, and (b) the corresponding numerical errors.
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Figure 3: The exact solution for Example 1 of one-dimensional nonlinear HCP with
T = 1 are shown in (a), in (b) the OVDA solution without random noise effect, and
in (c) the OVDA solution with random noise.
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and the initial condition

u(x,0) = (x−5)3. (58)

The exact solution is

u(x, t) = (x−5)3e−t . (59)

By using the proposed scheme to tackle the above problem in the domain of 0 ≤
x≤ 1 and 0≤ t ≤ 10, we employ n1 = 11 and n2 = 19, which are numbers of nodal
points in a standard finite difference approximation of Eq. (56). Because a0 defined
in Eq. (18) is a very important factor of our new algorithms, we show it in Fig. 4(b)
for the present algorithm with γ = 0, while the residual error is shown in Fig. 4(a),
and α is shown in Fig. 4(c) by the dashed lines. Under a convergence criterion
ε = 0.01, the present algorithm with γ = 0 can also converge with 103 steps, and
attains an accurate solution with the maximum error 3.80×10−3. The optimal α

varies in a narrow band with the range from 0.99996 to 1.00004, and a0 approaches
to a constant, which reveals an attracting set for the iterative orbit. Under the same
convergence criterion, the present algorithm with γ = 0.14 converges much fast with
only 49 steps. The residual error, a0 and α are shown in Fig. 4 by the solid lines.
By employing γ = 0.14 the value of a0 does not tend to a constant, and its value
is smaller than the a0 obtained from the present method with γ = 0 and optimal α ,
which is the main reason to cause the fast convergence of the proposed approach
with γ = 0.14.

In this example, when the input initial measured data are perturbed by random
noise, we are concerned about the stability of OVDA, which is investigated by
adding the level of random noise on the initial data. The results of T = 10 are
compared with the numerical result without contemplating the absolute random
noise in Fig. 5. Note that the absolute noise level with s = 1 perturbs the numerical
solutions a little from that without adding the noise, and the maximum error is
2.03×10−6. The exact solutions and numerical solutions are plotted in Figs. 6(a)-
(c) sequentially. Even under the large noise, the numerical solution indicated in
Fig. 6(c) is a good approximation to the exact initial data as exhibited in Fig. 6(a).

4.3 Example 3

Let us further consider another one-dimensional highly nonlinear HCP:

x6ut = (x−3)6uxx−6(x−3)5ux−u3− x3u2 +6(x−3)10e−2t + x3(x−3)12e−4t

+(x−3)18e−6t −2x6(x−3)6e−2t , 0≤ x≤ 1, 0≤ t ≤ T,

(60)
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Figure 4: For example 2, with different α and γ , comparing residual errors, a0 and
α .
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Figure 5: Comparisons of numerical solutions were made in (a) with different levels
of noise s = 0, 1, and (b) the corresponding numerical errors.
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Figure 6: The exact solution for Example 2 of one-dimensional nonlinear HCP with
T = 10 are shown in (a), in (b) the OVDA solution without random noise effect, and
in (c) the OVDA solution with random noise.
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with the boundary conditions

u(0, t) = 729e−2t , u(1, t) = 64e−2t , (61)

and the initial condition

u(x,0) = (x−3)6. (62)

The exact solution is

u(x, t) = (x−3)6e−2t . (63)

By employing the present approach to resolve the above equation in the domain
of 0 ≤ x ≤ 1 and 0 ≤ t ≤ 3, we utilize n1 = 26 and n2 = 6, which are numbers of
nodal points in a standard finite difference approximation of Eq. (60). Because a0
defined in Eq. (18) is a very important factor of our new method, we demonstrate
it in Fig. 7(b) for the present scheme with γ = 0, when the residual error is drawn
in Fig. 7(a), and α is shown in Fig. 7(c) by the dashed lines. Under a convergence
criterion ε = 0.1, the proposed scheme with γ = 0 can also converge with 996 steps,
and acquires an accurate solution with the maximum error 4.79×10−3. The optimal
α varies in a narrow band with the range from 0.9999 to 1.0000, and a0 approaches
to a constant, which finds an attracting set for the iterative orbit. Under the same
convergence criterion, the present algorithm with γ = 0.17 converges much fast with
only 465 steps. The residual error, a0 and α are shown in Fig. 7 by the solid lines.
By employing γ = 0.17 the value of a0 does not tend to a constant, and its value is
smaller than the a0 acquired from the present algorithm with γ = 0 and optimal α ,
which is the main reason to cause the fast convergence of the new method with γ =
0.15.

In this example, when the input initial measured data are disturbed by random
noise, we are interested in the stability of OVDA, which is investigated by adding
the level of random noise on the final data. The results of T = 3 are compared with
the numerical result without contemplating the absolute random noise in Fig. 8.
Note that the absolute noise level with s = 1 perturbs the numerical solutions a little
from that without adding the noise, and the maximum error is 2.02×10−4. The
exact solutions and numerical solutions are drawn in Figs. 9(a)-(c) sequentially.
Even under the large noise, the numerical solution indicated in Fig. 9(c) is a good
approximation to the exact initial data as displayed in Fig. 9(a).

5 Conclusions

We proved that the proposed scheme is convergent automatically, and without cal-
culating the inversions of the Jacobian matrices. It can resolve a large system of
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Figure 9: The exact solution for Example 3 of one-dimensional nonlinear HCP with
T = 3 are shown in (a), in (b) the OVDA solution without random noise effect, and
in (c) the OVDA solution with random noise.
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nonlinear algebraic equations very quickly. On the basis of those numerical experi-
ments, we exhibit that the OVDA is applicable to the nonlinear HCPs, and validate
the accuracy and efficiency of the proposed approach. Two mechanisms for im-
proving the convergence speed of the present method were discovered. For some
problems merely the employment of the bifurcation parameter γ > 0, or merely
the utilization of the optimization parameter α is already enough to accelerate the
convergence speed. Furthermore, when both the effects of optimization and bifur-
cation were utilized in all the examined problems, we can obtain high efficient and
accurate results.
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