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Haar Wavelet Operational Matrix Method for Solving
Fractional Partial Differential Equations
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Abstract: In this paper, Haar wavelet operational matrix method is proposed to
solve a class of fractional partial differential equations. We derive the Haar wavelet
operational matrix of fractional order integration. Meanwhile, the Haar wavelet
operational matrix of fractional order differentiation is obtained. The operational
matrix of fractional order differentiation is utilized to reduce the initial equation to
a Sylvester equation. Some numerical examples are included to demonstrate the
validity and applicability of the approach.
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1 Introduction

Wavelet analysis is a relatively new area in different fields of science and engi-
neering. It is a developing of Fourier analysis. Wavelet analysis has been ap-
plied widely in time-frequency analysis, signal analysis and numerical analysis.
It permits the accurate representation of a variety of functions and operators, and
establishes a connection with fast numerical algorithms [Beylkin, Coifman, and
Rokhlin (1991)]. Functions are decomposed into summation of “basic functions”,
and every “basic function” is achieved by compression and translation of a mother
wavelet function with good properties of smoothness and locality, which makes
people analyse the properties of locality and integer in the process of expressing
functions [Li and Luo (2005); Ge and Sha (2007)]. Consequently, wavelet analysis
can describe the properties of functions more accurate than Fourier analysis.

Fractional differential equations are generalized from classical integer order ones,
which are obtained by replacing integer order derivatives by fractional ones. Frac-
tional calculus is an old mathematical topic with history as long as that of integer
order calculus. Several forms of fractional differential equations have been pro-
posed in standard models, and there has been significant interest in developing nu-
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merical schemes for their solution. Fractional calculus and many fractional differ-
ential equations have been found applications in several different disciplines, both
physicists and mathematicians have also engaged in studying the numerical meth-
ods for solving fractional differential equations in recent years. These methods in-
clude variational iteration method (VIM) [Odibat (2010)], Adomian decomposition
method (ADM) [EI-Sayed (1998); EI-Kalla (2011)], generalized differential trans-
form method (GDTM) [Odibat and Momani (2008); Momani and Odibat (2007)],
generalized block pulse operational matrix method [Li and Sun (2011)] and wavelet
method [Chen and Wu et al. (2010)]. The operational matrix of fractional order in-
tegration for the Legendre wavelet and the Chebyshev wavelet [Jafari and Yousefi
(2011); Wang and Fan (2012)] have been derived to the fractional differential equa-
tions. In [Saeedi and Moghadam et al. (2011); Saeedi and Moghadam (2011)],
a CAS wavelet operational matrix of fractional order integration has been used to
solve integro- differential equations of fractional order.

In this paper, our study focuses on a class of fractional partial differential equations:

∂ αu
∂xα

+
∂ β u
∂ tβ

= f (x, t) (1)

subject to the initial conditions

u(0, t) = u(x,0) = 0 (2)

where ∂ α u(x,t)
∂xα and ∂ β u(x,t)

∂ tβ
are fractional derivative of Caputo sense, f (x, t) is the

known continuous function, u(x, t) is the unknown function, 0 < α,β ≤ 1.

There have been several methods for solving the fractional partial differential equa-
tions. Podlubny [Podlubny (1999)] used the Laplace Transform method to solve
the fractional partial differential equations with constant coefficients. Zaid Odibat
and Shaher Momani [Odibat and Momani (2008)] applied generalized differential
transform method to solve the numerical solution of linear partial differential equa-
tions of fractional order.

Our purpose is to proposed Haar wavelet operational matrix method to solve a class
of fractional partial differential equations. We introduce Haar wavelet operational
matrix of fractional order integration without using the block pulse functions. Here,
we adopt the orthogonal Haar wavelet matrix which is different from the Haar
wavelet matrix in the Ref. [Ray (2012)]. We need not calculate the inverse of
Haar wavelet matrix in this way.

2 Definitions of fractional derivatives and integrals

In this section, we give some necessary definitions and preliminaries of the frac-
tional calculus theory which will be used in this article [Podlubny (1999) and Odi-
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bat (2006)].

Definition 1. The Riemann-Liouville fractional integral operator Jαof order α is
given by

Jαu(t) =
1

Γ(α)

∫ t

0
(t−T )α−1u(T )dT, α > 0 (3)

J0u(t) = u(t) (4)

Its properties as following:

(i) JαJβ u(t) = Jα+β u(t), (ii) JαJβ u(t) = Jβ Jαu(t), (iii) Jαxγ = Γ(γ+1)
Γ(α+γ+1)xα+γ

Definition 2. The Caputo fractional differential operator Dα
∗ is given by

Dα
∗ u(t) =

{dru(t)
dtr , α = r ∈ N;

1
Γ(r−α)

∫ t
0

u(r)(T )
(t−T )α−r+1 dT, 0≤ r−1 < α < r.

(5)

The Caputo fractional derivatives of order α is also defined as Dα
∗ u(t)= Jr−αDru(t),

where Dr is the usual integer differential operator of order r. The relation between
the Riemann- Liouville operator and Caputo operator is given by the following
expressions:

Dα
∗ Jαu(t) = u(t) (6)

JαDα
∗ u(t) = u(t)−

r−1

∑
k=0

u(k)(0+)
tk

k!
, t > 0 (7)

3 Haar wavelet and function approximation

For t ∈ [0,1], Haar wavelet functions are defined as follows [Chen and Wu et al.
(2010)]:

h0(t) =
1√
m

hi(t) =
1√
m


2 j/2, k−1

2 j ≤ t < k−1/2
2 j

−2 j/2, k−1/2
2 j ≤ t < k

2 j

0, otherwise

where i = 0,1,2, . . . ,m− 1, m = 2M and M is a positive integer. j and krepresent
integer decomposition of the index i, i.e. i = 2 j + k−1.
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For arbitrary function u(x, t) ∈ L2([0,1)× [0,1)), it can be expanded into Haar se-
ries by

u(x, t)∼=
m−1

∑
i=0

m−1

∑
j=0

ci, jhi(x)h j(t) (8)

where ci, j =
∫ 1

0 u(x, t)hi(x)dx ·
∫ 1

0 u(x, t)h j(t)dt are wavelet coefficients, m is a power
of 2.

Let Hm(x) = [h0(x),h1(x), . . . ,hm−1(x)]T , Hm(t) = [h0(t),h1(t), . . . ,hm−1(t)]T , then
Eq.(8) will be written as u(x, t)∼= HT

m(x) ·C ·Hm(t).
In this paper, we use wavelet collocation method to determine the coefficients ci, j.
These collocation points are shown in the following:

xl = tl = (l−1/2)/m, l = 1,2, . . . ,m. (9)

Discreting Eq.(8) by the step (9), we can obtain the matrix form of Eq.(8)

U = HT ·C ·H (10)

where C = [ci, j]m×m and U = [u(xi, t j)]m×m. H is called Haar wavelet matrix of
order m, i.e.

H =


h0(t0) h0(t1) · · · h0(tm−1)
h1(t0) h1(t1) · · · h1(tm−1)

...
...

. . .
...

hm−1(t0) hm−1(t1) · · · hm−1(tm−1)

 .

From the definition of Haar wavelet functions, we may know easily that H is a
orthogonal matrix, then we have

C = H ·U ·HT (11)

4 Haar wavelet operational matrix of fractional order integration and differenti-
ation

The integration of the Hm(t) can be approximated by Chen and Hsiao [Chen and
Hsiao]:∫ t

0
Hm(s)ds∼= PHm(t) (12)

where P is called the Haar wavelet operational matrix of integration.
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Now, we are able to derive the Haar wavelet operational matrix of fractional order
integration. For this purpose, we may make full use of the definition of Riemann-
Liouville fractional integral operator Jα which is given by Definition 1.
Haar wavelet operational matrix of fractional order integration Pα will be deduced
by

PαHm(t) =JαHm(t)

=[Jαh0(t),Jαh1(t), . . . ,Jαhm−1(t)]T

=
[

1
Γ(α)

∫ t

0
(t−T )α−1h0(T )dT,

1
Γ(α)

∫ t

0
(t−T )α−1h1(T )dT, . . . ,

1
Γ(α)

∫ t

0
(t−T )α−1hm−1(T )dT

]T

=[Ph0(t),Ph1(t), . . . ,Phm−1(t)]T

where

Ph0(t) =
1√
m

tα

Γ(α +1)
t ∈ [0,1) (13)

Phi(t) =
1√
m


0, 0≤ t < k−1

2 j

2 j/2λ1(t), k−1
2 j ≤ t < k−1/2

2 j

2 j/2λ2(t),
k−1/2

2 j ≤ t < k
2 j

2 j/2λ3(t), k
2 j ≤ t < 1

(14)

where

λ1(t) =
1

Γ(α +1)

(
t− k−1

2 j

)α

;

λ2(t) =
1

Γ(α +1)

(
t− k−1

2 j

)α

− 2
Γ(α +1)

(
t− k−1/2

2 j

)α

;

λ3(t)=
1

Γ(α +1)

(
t− k−1

2 j

)α

− 2
Γ(α +1)

(
t− k−1/2

2 j

)α

+
1

Γ(α +1)

(
t− k

2 j

)α

.

The derived Haar wavelet operational matrix of fractional integration is Pα =(PαH)·
HT . Let Dα is the Haar wavelet operational matrix of fractional differentiation. Ac-
cording to the property of fractional calculus DαPα = I, we can obtain the matrix
Dα by inverting the matrix Pα . For instance, if α = 0.5,m = 8, we have

P1/2 =
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0.7549 −0.2180 −0.1072 −0.0579 −0.0516 −0.0289 −0.0223 −0.0189
0.2180 0.3190 −0.1072 0.1565 −0.0516 −0.0289 0.0809 0.0389
0.0579 0.1565 0.2337 −0.0312 −0.0730 0.1052 −0.0229 −0.0044
0.1072 −0.1072 0 0.2337 0 0 −0.0730 0.1052
0.0189 0.0389 0.1052 −0.0044 0.1788 −0.0189 −0.0025 −0.0009
0.0223 0.0809 −0.0730 −0.0229 0 0.1788 −0.0189 −0.0025
0.0289 −0.0289 0 0.1052 0 0 0.1788 −0.0189
0.0516 −0.0516 0 −0.0730 0 0 0 0.1788


,

D1/2 =

1.1229 0.4694 0.4589 0.0396 0.6488 0.0568 0.0185 0.0108
−0.4694 2.0678 0.4589 −0.8783 0.6488 0.0568 −1.2790 −0.1028
−0.0396 −0.8783 2.8964 0.4711 0.9175 −1.7547 0.7831 0.0432
−0.4589 0.4589 0 2.8964 0 0 0.9175 −1.7547
−0.0108 −0.1028 −1.7547 0.0432 4.8424 1.5241 0.0671 0.0051
−0.0185 −1.2790 0.9175 0.7831 0 4.8424 1.5241 0.0671
−0.0568 0.0568 0 −1.7547 0 0 4.8424 1.5241
−0.6488 0.6488 0 0.9175 0 0 −0 4.8424


.

The fractional order integration and differentiation of the function t was selected to
verify the correctness of matrix Pα and Dα . The fractional order integration and
differentiation of the function u(t) = t is obtained in the following:

Jαu(t) =
Γ(2)

Γ(α +2)
tα+1

and

Dα
∗ u(t) =

Γ(2)
Γ(2−α)

t1−α .

When α = 0.5,m = 32, the comparison results for the fractional integration and
differentiation are shown in Fig. 1 and Fig. 2, respectively.

5 Numerical solution of the fractional partial differential equations

Consider the fractional partial differential equation Eq.(1). If we approximate func-
tion u(x, t) by using Haar wavelet, we have

u(x, t)∼= HT
m(x) ·C ·Hm(t) (15)
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Figure 1: 0.5-order integration of the function u(t) = t.
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Figure 2: 0.5-order differentiation of the function u(t) = t.
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Then we can get

∂ αu
∂xα
∼=

∂ α(HT
m(x)CHm(t))

∂xα
=
[

∂ αHm(x)
∂xα

]T

CHm(t)

= [DαHm(x)]TCHm(t)

= HT
m(x)[Dα ]TCHm(t)

(16)

∂ β u
∂ tβ

∼=
∂ β (HT

m(x)CHm(t))
∂ tβ

= HT
m(x)C

∂ β (Hm(t))
∂ tβ

= HT
m(x)CDβ Hm(t) (17)

The function f (x, t) of Eq.(1) can be also expressed as

f (x, t)∼= HT
m(x) ·F ·Hm(t) (18)

where F = [ fi, j]m×m.

Substituting Eq.(16), Eq.(17) and Eq.(18) into Eq.(1), we have

HT
m(x)[Dα ]TCHm(t)+HT

m(x)CDβ Hm(t) = HT
m(x)FHm(t) (19)

Dispersing Eq.(19) by the points (xi, t j), i = 1,2, · · · ,m and j = 1,2, · · · ,m, we can
obtain

[Dα ]TC +CDβ = F (20)

Eq.(19) is a Sylvester equation. The Sylvester equation can be solved easily by
using Matlab software.

6 Numerical examples

To demonstrate the efficiency and the practicability of the proposed method based
on Haar wavelet operational matrix method, we consider some examples.

Example 1: Consider the following nonhomogeneous partial differential equation

∂ 1/4u
∂x1/4 +

∂ 1/4u
∂ t1/4 = f (x, t),x, t ≥ 0,

such that u(0, t) = u(x,0) = 0 and f (x, t) = 4(x3/4t+xt3/4)
3Γ(3/4) . The numerical results for

m = 8, m = 16, m = 32 are shown in Fig. 3, Fig. 4, Fig. 5. The exact solution of
the partial differential equation is given by xt which is shown in Fig. 6. From the
Fig. 3-6, we can see clearly that the numerical solutions are in very good agreement
with the exact solution.
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Figure 3: Numerical solution of m = 8
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Figure 4: Numerical solution of m = 16
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Figure 5: Numerical solution of m = 32
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Figure 6: Exact solution for Example 1

Example 2: Consider the following fractional partial differential equation

∂ 1/3u
∂x1/3 +

∂ 1/2u
∂ t1/2 = f (x, t), x, t ≥ 0,

subject to the initial conditions u(0, t) = u(x,0) = 0, f (x, t) = 9x2t5/3

5Γ(2/3) + 8x3/2t2

3Γ(1/2) . Fig.
7- 10 show the numerical solutions for various m and the exact solution x2t2. The
absolute error for different m is shown in Table 1. From the Fig. 7-10 and Table 1,
we can conclude that the numerical solutions are more and more close to the exact
solution when m increases.
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Figure 7: Numerical solution of m = 16

Example 3: Consider the below fractional partial differential equation

∂ αu
∂xα

+
∂ β u
∂ tβ

= sin(x+ t), x, t ≥ 0
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Figure 8: Numerical solution of m = 32
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Figure 9: Numerical solution of m = 64
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Figure 10: Exact solution for Example 2
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Table 1: The absolute error of different m for Example 2
(x, t) Exact m = 8 m = 16 m = 32 m = 64

solution
(0,0) 0 2.4165e-006 5.9331e-007 3.7408e-008 4.3981e-009

(1/8,1/8) 0.0002 8.3295e-005 1.8652e-005 1.4567e-006 2.3435e-007
(2/8,2/8) 0.0039 4.4467e-004 4.1953e-005 2.2503e-005 1.0247e-005
(3/8,3/8) 0.0198 1.3310e-003 1.7432e-005 9.6749e-006 6.5843e-006
(4/8,4/8) 0.0625 2.9517e-003 1.2828e-004 8.7434e-005 7.0127e-005
(5/8,5/8) 0.1526 5.4704e-003 4.8133e-004 3.1627e-004 1.3465e-004
(6/8,6/8) 0.3164 8.9731e-003 1.1364e-003 8.9431e-004 6.6143e-004
(7/8,7/8) 0.5862 1.3454e-002 2.1938e-003 1.0468e-003 8.3421e-004

such that u(0, t) = u(x,0) = 0. When α = β = 1, the exact solution of this partial
differential equation is sinxsin t. We can achieve its numerical solution which is
shown in Fig. 11, and the exact solution is shown in Fig. 12. Fig.13 and Fig.14
show the numerical solutions for different values of α,β . Here, we may take m =
32.

They demonstrate the simplicity, and powerfulness of the proposed method. Com-
pared with the generalized differential transform method in the Ref. [16], taking
advantage of above method can greatly reduce the computation. Moreover, the
method in this paper is easy implementation.
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Figure 11: Numerical solution of α = β = 1
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Figure 12: Exact solution of α = β = 1
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Figure 13: Numerical solution of α = 1/2,β = 1/3
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Figure 14: Numerical solution of α = 3/7,β = 3/5
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7 Conclusion

Another operational matrix for the Haar wavelet operational matrix of fractional
differentiation has been derived. The fractional derivatives are described in the Ca-
puto sense. This matrix is used to solve the numerical solutions of a class of frac-
tional partial differential equations effectively. We translate the fractional partial
differential equation into a Sylvester equation which is easily to solve. Numerical
examples illustrate the powerful of the proposed method. The solutions obtained
using the suggested method show that numerical solutions are in very good coin-
cidence with the exact solution. The method can be applied by developing for the
other fractional problem.

Acknowledgement: This work is supported by the Natural Foundation of Hebei
Province (A2012203047).

References

Beylkin, G.; Coifman, R.; Rokhlin, V. (1991): Fast wavelet transform and nu-
merical algorithms I. Commun. Pur. Appl. Math., vol. 44, pp.141-183.

Chen Y. M.; Wu Y. B. et al. (2010): Wavelet method for a class of fractional
convection-diffusion equation with variable coefficients. Journal of Computational
Science , vol.1, pp.146- 149.

Chen, C. F.; Hsiao, C. H. (1997): Haar wavelet method for solving lumped and
distributed- parameter systems. IEE Proc.-Control Theory Appl., vol.144, pp.87-
94.

EI-Sayed, A. M. A. (1998): Nonlinear functional differential equations of arbitrary
orders. Nonliear Analysis, vol.33, pp.181-186.

EI-Kalla, I. L. (2011): Error estimate of the series solution to a class of nonlinear
fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat., vol.16,
pp.1408-1413.

Ge, Z. X.; Sha, W. (2007): Wavelet analysis theorem and MATLAB application,
Electronic Industrial Publication, Beijing.

Jafari H.; Yousefi S. A. (2011): Application of Legendre wavelets for solving frac-
tional differential equations Computers and Mathematics with Application , vol.62
pp.1038-1045.

Li, Z. C.; Luo, J. S. (2005): Wavelet analysis and its application. Electronic
Industrial Publication, Beijing.

Li, Y. L.; Sun, N. (2011): Numerical solution of fractional differential equations
using the generalized block pulse operational matrix. Computers and Mathematics



Haar Wavelet Operational Matrix Method 243

with Application , vol.62 pp.1046 -1054.

Momani, S.; Odibat, Z. (2007): Generalized differential transform method for
solving a space and time-fractional diffusion-wave equation. Physics Letters A ,
vol.370, pp.379-387.

Odibat, Z. M. (2010): A study on the convergence of variational iteration method.
Mathematical and Computer Modelling, vol. 51, pp.1181-1192.

Odibat, Z.; Momani, S. (2008): Generalized differential transform method: Ap-
plication to differential equations of fractional order. Applied Mathematics and
Computation, vol.197, pp. 467-477.

Odibat, Z.; Momani, S. (2008): A generalized differential transform method for
linear partial differential equations of fractional order. Applied Mathematics Letters
, vol.21, pp.194-199.

Odibat, Z. (2006): Approximations of fractional integrals and Caputo fractional
derivatives. Applied Mathematics and Computation , vol.178 pp.527-533.

Podlubny, I. (1999): Fractional Differential Equations. Academic press.

Ray S. S (2012): On Haar wavelet operational matrix of general order and its
application for the numerical solution of fractional Bagley Torvik equation Applied
Mathematics and Computation , vol.218, pp.5239-5248.

Saeedi, H.; Moghadam, M. M. et al. (2011): A CAS wavelet method for solving
nonlinear Fredholm integro-differential equations of fractional order. Commun.
Nonlinear Sci. Numer. Simulat., vol.16, pp.1154-1163.

Saeedi, H.; Moghadam, M. M. (2011): Numerical solution of nonlinear Volterra
integro- differential equations of arbitrary order by CAS wavelets. Applied Mathe-
matics and Computation , vol.16, pp.1216-1226.

Wang, Y. X.; Fan, Q.B. (2012): The second kind Chebyshev wavelet method for
solving fractional differential equations. Applied Mathematics and Computation,
vol.218, pp.8592-8601.




