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Boundary Knot Method: An Overview and Some Novel
Approaches

J.Y. Zhang1 and F.Z. Wang2,3

Abstract: The boundary knot method (BKM) is a kind of boundary-type mesh-
less method, only boundary points are needed in the solution process. Since the
BKM is mathematically simple and easy to implement, it is superior in dealing with
Helmholtz problems with high wavenumbers and high dimensional problems. In
this paper, we give an overview of the traditional BKM with collocation approach
and provide three novel approaches for the BKM, as far as they are relevant for the
other boundary-type techniques. The promising research directions are expected
from an improved BKM aspect.

Keywords: Collocation; least-square; Galerkin; variational; Helmholtz equation;
non-singular general solution.

1 Introduction

The boundary knot method (BKM), named by Chen and Tanaka [Chen and Tanaka
(2000a);Chen and Tanaka (2000b)], was pioneered by Kang et al. [Kang, Lee, and
Kang (1996)] for the vibration analysis of arbitrarily shaped membranes. Since
only boundary points are needed in the solution procedure, the BKM belongs to
the category of boundary-type meshless methods which also include the method of
fundamental solutions [Fairweather and Karageorghis (1998);Chen, Karageorghis,
and Smyrlis (2008);Liu (2008);Lin, Chen, and Wang (2011);Wang, Chen, and Ling
(2012)] and regularized meshless method [Young, Chen, and Lee (2005)] as typical
examples.

Compared with the method of fundamental solutions, the BKM do not need the
fictitious boundary since the basis functions used in the BKM has no singularity at
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the origin. In contrast with the regularized meshless method, the BKM has higher
accurate solutions. Meanwhile, the BKM is superior in dealing with Helmholtz
problems with high wavenumbers and high dimensional problems in terms of sta-
bility and solution accuracy [Chen and Hon (2003)].

Although the BKM has the above-mentioned various advantages, it is less popular
than traditional numerical methods such as the finite difference, finite element and
boundary element methods. The aim of this paper is to overview the traditional
BKM approach and provide three other new approaches for the BKM which is
shown in Section 2. Followed by Section 3, we review the development of the tra-
ditional BKM with collocation approach. In Section 4, we make some concluding
remarks and expect some research directions.

2 Boundary knot method

For brevity, we consider the Helmhotz equation

∇
2u(x)+λ

2u(x) = f (x), x ∈Ω (1)

u(x) = ū(x), x ∈ ΓD (2)
∂u(x)

∂n
= q(x) = q̄(x), x ∈ ΓN (3)

where ∇2 = ∆ is Laplace operator, Ω ∈ Rd , d is the dimensionality, ū(x) and q̄(x)
are known boundary conditions on the Dirichlet boundary ΓD and Neumann bound-
ary ΓN (∂Ω = ΓD∪ΓN), respectively. λ = ω/c represents the wavenumber, where
ω , c and n are sound speed, frequency and normal dirivative, respectively.

The fundamental theory of the BKM is similar with the method of fundamental so-
lutions. However, the superiority of the BKM lies in that all collocation points and
source points can be located on the physical boundary simultaneously. This advan-
tage attributes to the use of non-singular general solutions which can circumvent
the singularity generated by the superposition of the source and collocation points.

By using the non-singular general solutions, we have the approximate solution
uN(x) in the form of [Chen and Tanaka (2000a)]

uN(x) =
N

∑
j=1

c jQH(x,y j), y j ∈ ∂Ω (4)

where y j are source points on the physical boundary, c j the unknown coefficients,
N the total number of source points,

QH(x,y) = (
λ

2πr
)(d/2)−1J(d/2)−1(λ r), d ≥ 2 (5)



Boundary Knot Method: An Overview and Some Novel Approaches 143

the non-singular general solution for the Helmholtz equation, where J is the Bessel
function of the first kind, d the dimensionality, r =‖ x− y ‖ the distance between
points x and y with ‖ · ‖ denoting the Euclidean norm.

Especially, we have the following non-singular general solution

QH(x,y) = J0(λ r), x ∈ R2 (6)

for 2D Helmholtz equation, and

QH(x,y) =
sin(λ r)

r
, x ∈ R3, (7)

for 3D Helmholtz equation. Table 1 shows non-singular general solutions for the
other two types of commonly-used operators.

Table 1: Non-singular general solutions for general operators

Operator 2D 3D
∆−λ 2 1

2π
I0(λ r) sinh(λ r)

r

D∆+ν∇− k 1
2π

e(−νr)/(2D)I0(λ r) e(−νr)/(2D) sinh(λ r)
r

where D represents the diffusivity, k means the reaction coefficient, and ν stands
for the velocity vector.

The normal derivative of Eq. (4) leads to

qN(x) =
∂uN(x)

∂n
=

N

∑
j=1

c j
∂QH(x,y j)

∂n
. x ∈ ∂Ω (8)

Generally speaking, the approximate solution uN(x) can not match the boundary
conditions Eqs. (2)-(3) exactly. Therefore, some residuals will appear

xi ∈ Γ1 : R1(x) =
N

∑
j=1

c jQH(x,y j)− ū(x) = α
T ũ(x)− ū(x), (9)

x ∈ Γ2 : R2(x) =
N

∑
j=1

c j
∂QH(x,y j)

∂n
− q̄(x) = α

T q̃(x)− q̄(x), (10)

where α = (c1,c2, . . . ,cN)T , ũ(x) = (QH(x,y1),QH(x,y2), . . . ,QH(x,yN))T with T

denoting the transpose of a matrix or vector, q̃(x) = ∂ ũ(x)
∂n , R1 and R2 represent

residuals on boundary Γ1 and Γ2, respectively.
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2.1 Traditional approach: collocation

So far, all researches related to the BKM is based on the collocation approach, that
is, the residuals on points {xi}N

i=1 are forced to vanish. More specifically, Eqs.
(9)-(10) leads to

xi ∈ Γ1 : R1(xi) =
N

∑
j=1

c jQH(xi,y j)− ū(xi) = 0, i = 1, . . . ,N1 (11)

xk ∈ Γ2 : R2(xk) =
N

∑
j=1

c j
∂QH(xk,y j)

∂n
− q̄(xk) = 0, k = 1, . . . ,N2 (12)

where N1 and N2 are numbers of collocation points on boundary ΓD and ΓN (N1 +
N2 = N), respectively.

Eqs. (11)-(12) can be rewritten in the following matrix system

Qα = b, (13)

where

Q =



Q1,1 Q1,2 . . . Q1,N

. . . . . . . . . . . .
QN1,1 QN1,2 . . . QN1,N
∂Q1,1

∂n
∂Q1,2

∂n . . .
∂Q1,N

∂n
. . . . . . . . . . . .

∂QN2,1

∂n
∂QN2 ,2

∂n . . .
∂QN2 ,N

∂n


(14)

is a (N×N) coefficient matrix, α = (c1,c2, . . . ,cN)T is a (N×1) coefficient vector
to be determined, b = (ū1, . . . , ūN1 , q̄1, . . . , q̄N2)

T is a (N× 1) vector composed by
boundary conditions.

The collocation approach has the following characters. For each point, only shape
functions and their derivations are needed, while integration is excluded during
the whole solution procedure. This can be easily implemented and has high com-
putation efficiency. No need to worry about the boundary conditions that can be
implemented freely. However, the coefficient matrix is non-symmetric, and some-
times is ill-conditioned which will lead to the instability of the numerical solution
[Wang, Chen, and Jiang (2010)].

As is known to all, there are several approaches for numerical methods [Kita and
Kamiya (1995)]. In addition to the collocation approach, we provide three other
approaches for the BKM, i.e., the least-square approach, Galerkin approach and
variational approach. Detailed expressions are given in the remaining part.
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2.2 Least-square approach

Here, we define a function

F(α) =
∫

Γ1

R2
1dΓ+ τ

∫
Γ2

R2
2dΓ

=
∫

Γ1

(ũT
α− ū)2dΓ+ τ

∫
Γ2

(q̃T
α− q̄)2dΓ,

where τ is an weight parameter which is used to balance the numerical value be-
tween the first and second terms in right-hand of the above equation. In the least-
square approach, we impose the derivative related to α to 0.

∂F
∂α

=
∂

∂α
[
∫

Γ1

(ũT
α− ū)2dΓ+ τ

∫
Γ2

(q̃T
α− q̄)2dΓ]

= 2
∫

Γ1

ũ(ũT
α− ū)dΓ+2τ

∫
Γ2

q̃T (q̃T
α− q̄)dΓ

= 0.

Rearrange the above equation, we have

[
∫

Γ1

ũũT dΓ+ τ

∫
Γ2

q̃q̃T dΓ]α =
∫

Γ1

ũūdΓ+ τ

∫
Γ2

q̃q̄dΓ, (15)

or

Qα = b, (16)

where

Qi j =
∫

Γ1

ũiũ jdΓ+ τ

∫
Γ2

q̃iq̃ jdΓ, (17)

bi =
∫

Γ1

ũiūdΓ+ τ

∫
Γ2

q̃iq̄dΓ. (18)

It should be noted that it is difficult to pre-define a proper weight parameter τ in the
least-square approach [Kita and Kamiya (1995)].

2.3 Galerkin approach

In this approach, qN and −uN are chosen as the weight function for residuals R1
and R2, respectively [Nguyen, Rabczuk, Bordas, and Duflot (2008)]. Under such
condition, we can get the following weight residual equation∫

Γ1

qNR1dΓ−
∫

Γ2

uNR2dΓ = 0. (19)



146 Copyright © 2012 Tech Science Press CMES, vol.88, no.2, pp.141-152, 2012

Substitute Eqs. (4) and (8) into the above equation, we have∫
Γ1

q̃T
α(ũT

α− ū)dΓ−
∫

Γ2

ũT
α(q̃T

α− q̄)dΓ = 0, (20)

α
T [

∫
Γ1

q̃T (ũT
α− ū)dΓ−

∫
Γ2

ũT (q̃T
α− q̄)dΓ] = 0. (21)

Therefore,∫
Γ1

q̃(ũT
α− ū)dΓ−

∫
Γ2

ũ(q̃T
α− q̄)dΓ = 0. (22)

Rearrange the above equation lead to

[
∫

Γ1

q̃ũT dΓ−
∫

Γ2

ũq̃T dΓ]α =
∫

Γ1

q̃ūdΓ−
∫

Γ2

ũq̄dΓ, (23)

or

Qα = b, (24)

where

Qi j =
∫

Γ1

q̃iũ jdΓ−
∫

Γ2

ũiq̃ jdΓ, (25)

bi =
∫

Γ1

q̃iūdΓ−
∫

Γ2

ũiq̄dΓ. (26)

Motivated by the work of Cheung and his coworkers [Jin, Cheung, and Zienkiewicz
(1993)], we can prove that the coefficient matrix Q, generated by the BKM with
Galerkin approach, is symmetric. Subtracting the element Qi j from the element Q ji

results in

Qi j−Q ji =
∫

Γ1

q̃iũ jdΓ−
∫

Γ2

ũiq̃ jdΓ− (
∫

Γ1

q̃ jũidΓ−
∫

Γ2

ũ jq̃idΓ)

=
∫

Γ1+Γ2

q̃iũ jdΓ−
∫

Γ2+Γ1

ũiq̃ jdΓ

= 0,

or

Qi j = Q ji. (27)

Note that the Galerkin approach ensures that the coefficient matrix is symmetric.
For this reason, the corresponding solution accuracy and computational efficiency
is higher than the other approaches.
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Furthermore, we can propose another Galerkin approach based on the research of
Hochard and Proslier [Hochard and Proslier (1992)]. The weight function qN and
uN are considered for the residual R1 and R2 which generates∫

Γ1

qNR1dΓ+
∫

Γ2

uNR2dΓ = 0. (28)

Hochard and Proslier proved that this approach can ensure the uniqueness of solu-
tion.

2.4 Variational formulation

Based on the energy functional [Zienkiewicz, Kelly, and Bettes (1979)], we can
propose the variational formulation

Φ =
∫

Γ

1
2

qNuNdΓ−
∫

Γ2

uN q̄dΓ−
∫

Γ1

(uN− ū)q̄dΓ. (29)

Substituting Eqs. (4) and (8) into the above equation gives rise to

Φ =
∫

Γ

1
2
(αT q̃)T (αT ũ)dΓ−

∫
Γ2

(αT ũ)T q̄dΓ−
∫

Γ1

(αT ũ− ū)T (αT q̃)dΓ

= α
T

∫
Γ2

1
2

q̃ũT dΓα−α
T

∫
Γ1

1
2

ũq̃T dΓα−α
T

∫
Γ2

q̄ũdΓ+α
T

∫
Γ1

ūq̃dΓ.

Vanishing the first variation of this equation gives

δΦ = δα
T [

∫
Γ2

q̃ũT dΓα−
∫

Γ1

ũq̃T dΓα−
∫

Γ2

q̄ũdΓ+
∫

Γ1

ūq̃dΓ] = 0, (30)

or

[
∫

Γ2

q̃ũT dΓ−
∫

Γ1

ũq̃T dΓ]α =
∫

Γ2

q̄ũdΓ−
∫

Γ1

ūq̃dΓ. (31)

This equation is identical with Eq. (23) in the Galerkin formulation.

Once the coefficient α is derived, we can calculate the value of each point on the
whole physical domain Ω through Eqs. (4) and (8).

3 Overview of the BKM with collocation approach

Up to now, all BKM-related literatures, mainly focused on numerical algorithms
and practical applications, are based on the traditional collocation approach.

Chen and He [Chen and He (2001)] introduced a new scheme employing the BKM
to deal with nonlinear convection-diffusion problem. Chen and Tanaka [Chen
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and Tanaka (2002)] extends the BKM to general problems such as Laplace and
convection-diffusion problems by a combined use of the dual reciprocity method
[Patridge, Brebbia, and Wrobel (1992)]. Furthermore, Chen proposed the symmet-
ric BKM [Chen (2002)] to deal with boundary value problems with mixed boundary
conditions where the coefficient matrix is non-symmetric. Hon and Chen [Hon and
Chen (2003)] extended the BKM to solve 2D Helmholtz and convection-diffusion
problems under rather complicated irregular geometry. They also applied the BKM
to 3D problems for the first time and found that some inner points are necessary to
guarantee accuracy and stability for inhomogeneous cases. Chen and Hon [Chen
and Hon (2003)] made a numerical study of convergence properties of the BKM by
solving 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-
diffusion problems. Since there is no non-singular general solutions for the Laplace
equation, Chen and his coworkers [Hon and Chen (2003)] used the high-order gen-
eral solutions of the Helmholtz and modified Helmholtz equations to evaluate the
particular solution for the Laplacian equation.

Jin and Yao [Jin and Zheng (2005a);Jin and Zheng (2005b)] applied the BKM to
the solution of some inverse problems for the homogeneous and inhomogeneous
Helmholtz equation, including the highly ill-posed Cauchy problem. Since the
resulting matrix equation is badly ill-conditioned, they employed the truncated
singular value decomposition under parameter choice of L-curve method to get
a regularized solution. Zhang and Tan [Zhang and Tan (2005)] solved homoge-
neous and nonhomogeneous partial differential equations using BKM combined
with overlapped DDM which is a good choice to avoid singular fundamental so-
lution and ill-conditioned coefficient matrix. Jin and Chen [Jin and Chen (2006)]
made the first attempt to use the geodesic distance with the BKM to solve 2D and
3D anisotropic Helmholtz-type and convection-diffusion problems.

Recently, Shi et al. [Shi, Chen, and Wang (2009)] used the BKM to calculate the
free vibration of free and simply-supported thin plates of complex shape subjected
to different boundary conditions. Canelas and Sensale [Canelas and Berardi (2010)]
derived specialized radial basis function for harmonic elastic and viscoelastic prob-
lems, and proposed a boundary knot method for the solution of these problems.
They also discussed the completeness issue regarding the proposed set of radial ba-
sis functions, and presented a formal proof of incompleteness for the circular ring
problem.

Wang et al. [Wang, Chen, and Jiang (2010)] used the BKM, together with three
regularization techniques [Hansen (1994);Tikhonov, Goncharsky, Stepanov, and
Yagola (1995);Liu (2007);Liu, Hong, and Atluri (2010); Liu and Kuo (2011);Liu,
Kuo, and Liu (2011)] and two algorithms for selecting regularization parameters, to
investigate the numerical instability induced from highly dense and ill-conditioned
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BKM interpolation matrix. On the other hand, the effective condition number
[Drombosky, Meyer, and Ling (2009);Wang (2011)] is considered to be a supe-
rior indicator, to the traditional L2 condition number, to scale the ill-conditioned
interpolation system. Wang et al. [Wang, Ling, and Chen (2009)] also pointed that
the ECN is roughly inversely proportional to the solution accuracy. And one can
fine-tune the user-defined parameters (without the knowledge of exact solution) to
ensure high numerical accuracy from the BKM. Dehghan and Salehi [Dehghan and
Salehi (2011)] successfully used the analog equation method [Katsikadelis (1994)]
accompanied with the BKM to solve the Eikonal equation. Recently, Zheng et
al. [Zheng and Ma (in press)] used an improved the analogy equation method to-
gether with the BKM to the nonlinear problems. Fu et al. [Fu, Chen, and Qin
(2011)] firstly derived the nonsingular general solution of heat conduction in non-
linear functionally graded materials(FGMs), and then presents the BKM in con-
junction with Kirchhoff transformation and various variable transformations in the
solution of nonlinear FGM problems.

4 Conclusions

In this paper, we have presented an overview of the BKM focusing on the collo-
cation approach. Meanwhile, three novel approaches, which are promising for the
future investigations, are proposed for the BKM. Compared to the traditional fi-
nite and boundary element methods, the advantages of the BKM is that there’s no
need to worry about the mesh-generation and the solution accuracy is very high.
On the other hand, the BKM has great challenges in developing the theory, speed
and robustness. Details include the adaptivity for choosing the optimal location
and number of collocation points, the theoretical investigation on the error analysis
and efficient algorithms for high-dimensional or large-scale problems [Liu (2009)].
Breakthroughs in these directions will have considerable impact on the BKM.
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search project funded by Huaibei Normal University (Project No. 600571).
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