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The Jordan Structure of Residual Dynamics Used to Solve
Linear Inverse Problems

Chein-Shan Liu', Su-Ying Zhang” and Satya N. Atluri’

Abstract: With a detailed investigation of n linear algebraic equations Bx = b,
we find that the scaled residual dynamics for y € S"~! is equipped with four struc-
tures: the Jordan dynamics, the rotation group SO(n), a generalized Hamiltonian
formulation, as well as a metric bracket system. Therefore, it is the first time that we
can compute the steplength used in the iterative method by a novel algorithm based
on the Jordan structure. The algorithms preserving the length of y are developed
as the structure preserving algorithms (SPAs), which can significantly accelerate
the convergence speed and are robust enough against the noise in the numerical
solutions of ill-posed linear inverse problems.
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1 Introduction

In this paper we investigate the residual dynamics of the residual vector:
r=Bx-b (1
for a linear algebraic equations system:

Bx = b, 2

where x € R” is an unknown vector, to be determined from a given coefficient
matrix B € R™" and the input b € R”. Eq. (2) might be an ill-posed system if it is
used to solve the linear inverse problems of which the condition number Cond(B)
is quite large.
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The relaxed steepest descent method (RSDM) to solve Eq. (2) is given by [Liu
(2011a); Liu (2012a)]:

(1) Select a suitable value of 0 < y < 1 and give an initial X¢, and then Ry = Cx¢ —
b;.

@ii) For k =0,1,2,..., we repeat the following computations:
R
=x;—(1— 3
Xer1 =X — (1-7) RCR, > (3)
Rit1 = Cxp1 —br. “)

If |Rgy1]| < € for a prescribed convergence criterion € then stop; otherwise, go
to step (ii). In the above, C = B'B, b; = B'b, Ry =B'r;, and 0 < y < l is a
relaxation parameter.

To account of the sensitivity to noise it is often used a regularization method to solve
the ill-posed problem [Kunisch and Zou (1998); Wang and Xiao (2001); Xie and
Zou (2002); Resmerita (2005)], where a suitable regularization parameter is used to
depress the bias in the computed solution by a better balance of approximation error
and propagated data error. There are many methods developed after the pioneering
work of Tikhonov and Arsenin (1977). Previously, the first author and his co-
workers have developed several methods to solve the ill-posed linear problems,
like that using the fictitious time integration method as a filter for ill-posed linear
system [Liu and Atluri (2009a)], a modified polynomial expansion method [Liu
and Atluri (2009b)], the non-standard group preserving scheme [Liu and Chang
(2009)], a vector regularization method [Liu, Hong and Atluri (2010); Liu (2012b)],
the relaxed steepest descent method [Liu (2011a, 2012a)], the optimal iterative
algorithm [Liu and Atluri (2011)], the globally optimal iterative algorithm [Liu
(2012¢)], an adaptive Tikhonov regularization method [Liu (2012d)], an optimally
generalized Tikhonov regularization method [Liu (2012e)], as well as an optimal
tri-vector iterative algorithm [Liu (2012f)].

In this paper we will modify the steplength used in the iterative algorithm from a
theoretical foundation of a future cone and the Jordan structure of a scaled resid-
ual vector y € S"~!. The remaining parts of this paper are arranged as follows. In
Section 2 we start from a future cone in the Minkowski space to derive a system
of nonlinear ODEs for the numerical solution of Eq. (2). Then, the scaled resid-
ual dynamics on the future cone is constructed in Section 3, resulting to a Jordan
dynamics, a skew-symmetric dynamical system, a generalized Hamiltonian system
and a metric bracket system. Accordingly, two structure preserving algorithms to
solve Eq. (2) are developed in Section 4. The numerical examples of linear inverse
problems are given in Section 5 to display some advantages of the newly developed
structure preserving algorithms (SPAs). Finally, the conclusions are drawn in Sec-
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tion 6.

2 A future cone in the MinkowskKi space

For Eq. (1) we can introduce a scalar function:

1 1
h(x,1) = 50(0)[[r(X¥)|* = 5 [rol|* =0, (5)

where we let X be a function of a time-like variable ¢, with the initial values of
x(0) =xp and ryp =r(Xg), and Q(r) > 0 with Q(0) = 1 is a monotonically increasing
function of ¢. In terms of

r_
o(r)

X =

Eq. (5) represents a positive cone:
XTgX =0 @)

in the Minkowski space M"*!, which is endowed with an indefinite Minkowski
metric tensor:

o In 0n><1

where I, is the n x n identity matrix. Because the last component 1/,/0(¢) of X is
positive, the cone in Eq. (7) is a future cone [Liu (2001)] as shown in Fig. 1.

When Q > 0, the manifold defined by Eq. (5) is continuous and differentiable, and
as a consequence of the consistency condition, we have

S0 ()| + Q)R- x =0, ©)

which is obtained by taking the differential of Eq. (5) with respect to ¢ and consid-
ering x = x(¢) and h(x,7) = 0 for all .
Corresponding to r in Eq. (1),

R:=B'r (10)
is the steepest descent vector. We suppose that the evolution of x is driven by R:

%= AR. (11)
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Figure 1: A cone structure in the Minkowski space for the evolution of residual
dynamics of linear system.

Inserting Eq. (11) into Eq. (9) we can derive a nonlinear ODEs system:

oo el gr

X= Q(t)I'TAl'B r, (12)

where

A :=BBT, (13)
0@

q(t) = 200) > 0. (14)

Hence, in our algorithm, if Q(¢) can be guaranteed to be a monotonically increas-
ing function of #, we have an absolutely convergent property in solving the linear
equations system (2):
o[

2 _
GO = G

wherein we can observe that the path of X gradually tends down to the vertex point
along the cone defined by Eq. (7) as schematically shown in Fig. 1. When the path
of r reaches to the vertex point r = 0, we can obtain the solution of Bx —b = 0.

15)
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3 Dynamics on the future cone

From Eq. (12) we can observe that it is utmost important to study the dynamics of
r in order to have a better understanding of the solution behavior of x. In order to
keep x on the manifold (15) we can consider the evolution of r along the path x()
of Eq. (12) by

R L (16)
rTAr
3.1 The Jordan dynamics
Let
y=ryQ() (17)

be a scaled residual vector, and from Eq. (15) we know that y € S"~! with a radius
|lro||. At the same time, Eq. (12) can be written as

X = —q(z)HTy—”zBTr. (18)
y Ay
Below we will develop a new theory to compute the steplength:

Iyl

q(t )

Several modifications to the steepest descent method (SDM) have been recurred
[Liu (2011a, 2012a)], which have stimulated a new interest in the SDM because
it is recognized that the gradient vector itself is not a bad choice of the solution
direction, but rather that the steplength:

IR
RTCR

originally used in the SDM causes the slow convergence behavior. Barzilai and
Borwein (1988) have presented a new choice of steplength through two-point step-
size. But its performance and numerical stability are not good [Liu (2012d)].

Now we derive the governing equation for y. From Eqgs. (16), (17) and (14) we can
derive

o L IIyHZA 19
y=4q(t) |L v (19)
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If we define the following operator:

p-1,— ¥, (20)
y Ay

we have a new dynamical system for y:

¥y =q(t)Dy, @1
where D satisfies the following properties:

D'=D, y'Dy=0, (22)

dueto AT = A.

Usually, if the length of y is preserved, the matrix D is skew-symmetric, but the
present D is a negative-definite matrix. Indeed, it is a perpendicular operator, send-
ing y to a new vector which is perpendicular to y itself.

Liu (2000) has derived a system of ODEs based on the Jordan algebra:
X=[y,z,ul=y-zu—u-zy. (23)

The triplet y, z and u are functions of x and ¢. If y, z and u do not depend on ¢ the
system is autonomous; otherwise, it is non-autonomous.

From Eq. (19) we can define a new time scale to absorb the time function ¢(z), such
that we have

- ||YH2A
y=|Li———=Aly, (24)
y- Ay

where for saving notation we also use ¢ to denote the new time and now the super-
imposed dot denotes the differential with respect to the new time ¢.

In terms of the Jordan dynamics in Eq. (23) we can write Eq. (24) as

Ay ]

Y=o VY| (25)
[y -Ay

3.2 The rotation group SO(n)

Obviously, Eq. (25) can be written as

. Ay Ay }
Y=y —————-QYy|Y, (26)
[ y-Ay y-Ay

where u®y denotes the dyadic operation of u and y, i.e., (u®y)z=y-zu.
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Furthermore, we have

) 1 T T
y=— Yy A—Ayy |y. (27)
y-Ay[ }

Because the coefficient matrix is skew-symmetric, the Lie-group for the above dy-
namical system is a rotation group SO(n).

3.3 Generalized Hamiltonian formulation

Let us define

Ay Ay

J=|y® ——— Qy|, (28)
y-Ay y-Ay

and thus a bracket follows:

[f,8]:=Vf-IJVg (29)

for arbitrary functions f(y) and g(y). As being a Poisson bracket, the non-canonical
metric J must be skew-symmetric and satisfies the Jacobi identity, that is,

Jij=—Jji, 1,j=12,---,n (30)
Jif-]jkf +ij-]ki,5 +ka~]ij,€ = Oa iajvk = 1727 YL (31)
where J;; is the i j-component of J, J ¢ denotes oJ ik /9y, and so on. In this formu-
lation J is allowed to depend on y, and the dimension # is not necessarily restricted
to be an even number. The first condition is obvious via Eq. (28); however, the
second condition is more complex, which can be proved through a lengthy sym-

bolic operation. Furthermore, if we let H = ||y||>/2 be a Hamiltonian function,
then Eq. (26) becomes a generalized Hamiltonian system:

y = JVH. (32)

3.4 Metric bracket system

Eq. (24) can be written as

y=ny, (33)
where

T
=1, W (34)

y- Ay
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is a projection operator because of % = 1.

1 is a singular metric for the following reasons:

detn =0, (35)
Ay
_— 07 36
M Ay (36)
n=>0. (37)

The first indicates that there is at least one zero eigenvalue of 7). In fact, the metric
1 defined by Eq. (34) is a degenerate Riemannian metric. Simultaneously, Eq. (33)
becomes

y=nVH. (38)
In terms of the metric bracket,

(f.8):==Vf-nVg (39)
defined for arbitrary functions f(y) and g(y), system (38) can be recast to

vy =(0"H), i=1,2,-n. (40)

Two functions f(y) and g(y) are said to be involutive, if

(f.8)=Vf-nVg=0. 4D
Let
F= %lny-Ay, 42)

and by using Eq. (36) it follows that

NVF =0; (43)
hence, one has

(¢,F)=Vg-nVF =0 (44)

for every functions g(y). It means that F is involutive with every functions. We
may call such F(y) a Casimir function of the metric bracket system. It is apparent
that the existence of the Casimir function confines the trajectory of y on a hyper-
surface as defined by ||y|| = ||ro||-
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4 Structure preserving algorithms
4.1 The first structure preserving algorithm

Based on the above results we can develop the first structure preserving algorithm
(SPAT) to solve Eq. (2):

(i) Select a suitable value of 0 < y < 1 and give an initial Xg.

(i1) Calculate ro = Bxg — b and yg = ry.

(iii) For k = 1,2,..., we repeat the following computations:

(Vi Ayi-1)?

Bi-1=(1-7)

ye—11]?]|Ayx—1 ]|’
Iye-ill® 1
Xp =Xk 1~ Br1 B 11,
yz_1AYk71
2
k—1
Yk = Vi1 + Br-1 In—ﬂyiuA Yi—15
ykflAkal
el :
r= el Yk, (preserving the length of y),
k
I'k:BXk—b,
R; =B'r;. (45)

If x; converges according to a given stopping criterion ||R|| < € then stop; other-
wise, go to step (iii). In the above we have inserted f; = gAt by

(i Ayi)?
[y lI? | Ay

according to Liu (2011a) with ry being replaced by yx, where 0 < y < 1 is a relax-
ation parameter.

Bi=(1-y) (46)

4.2 The second structure preserving algorithm

Suppose that

2
Y = O—1Yk—1 + Br—1 [In - WA] Yi—1, 47

where 0 is a factor to be determined, such that the length of yy, is preserved:

yell® = llye-1]*. (48)
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Inserting Eq. (47) into Eq. (48) we can derive

(49)

12| Aye_1])?
S e ll_mlu [ yklul

(YL Ayk-1)?

Based on the above results we can derive the second structure preserving algorithm
(SPA2) to solve Eq. (2):

(1) Select a suitable value of 0 < y < 1 and give an initial Xo.

(i1) Calculate ro = Bxg — b and yg = rg.

(iii) For k = 1,2,..., we repeat the following computations:

(yzflAka 1 )2
ye—1]]?|Ayx—1[]*’

|yk_1uz||Ayk_1||2]

Bi-1=(1-7)

1=, 14+B2, |[1—
k—1 +ﬁk—1 [ (yz,lAYk—1)2

X = Xp—| —5k—1MBTI’ ~1
Yi_1AYk-1
Yk = O 1Yk—1+ Bt L — ﬂYk—l | Al Yi-1,
Vi 1AYk-1
Iy = BXk — b,
R, =B'r,. (50)

If x; converges to satisfy a given stopping criterion ||Rx|| < € then stop; otherwise,
go to step (iii).

5 Numerical examples

In order to investigate the influence from noise to the novel algorithms, we subject
the right-hand side data b of Eq. (2) by random noise:

b =b;+0R(i), i=1,...,n, (51)

where R(i) are Gaussian random numbers in [—1, 1], and o is the intensity of noise.
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5.1 Example 1

In this example we consider a two-dimensional but highly ill-conditioned linear
system:

2 6 X 8
[ 2 6.00001 } [ y ] - [ 8.00001 ] ‘ (52)

The condition number of this system is Cond(C) = 1.59 x 10'3, where C = BTB
and B denotes the coefficient matrix . The exact solution is (x,y) = (1,1).

No matter what regularization parameter is used in the Tikhonov regularization
method for the above equation, an incorrect solution of (x,y) = (1356.4, —450.8)
is obtained by the Tikhonov regularization method.

Now we fix the noise to be 6 = 0.01, € = 10~? and starting from an initial condition
(x0,y0) = (0.8,0.5). The SDM led to an incorrect result (x,y) = (415.8,—137.3).
Then we apply the present SPA1 with ¥ = 0.05 to this problem under £ = 1078,
which led to an approximate solution of (x,y) = (0.97,1.01) through 9 iterations.
The residual error of SPA1 is shown in Fig. 2. We also apply the SPA2 with y =
0.04 to this problem, which led to an approximate solution of (x,y) = (0.97,1.01)
through 8 iterations. The residual error of SPA2 is shown in Fig. 2. When the SDM
is vulnerable to the disturbance of noise for the above ill-posed linear system, the
SPAs can work very well against the disturbance of noise.

1E+2

1E+1 \ ———- SPAIl
1E+0 \\\ ——  SPA2

1E-1

1E-2 N

1E-3 ~

1E-4 \\\
N

1E-5 O

Residual error

1E-6 >
1E-7 N

N
1E-8 \\\\\

1E-9
Ferrtr T r T T T T

0 1 2 4 5

3 6
Number of Steps

Figure 2: For example 1 comparing the residual errors obtained by the SPA1 and
SPA2.
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5.2 Example 2
The Hilbert matrix

1
Bijj=—"— 53
= (53)
is notoriously ill-conditioned. It is known that the condition number of Hilbert
matrix grows as e>>" when 7 is very large. For the case with n = 200 the condition
number is extremely huge to the order 10348

We take n = 200, and suppose that x; = 1, i = 1...,200 is the exact solution. The
noise is o = 0.01, € = 10~ and we start from an initial condition x; = 0.5,i=
1...,200. The RSDM with ¥ = 0.25 led to a less accurate result, whose residual
error is shown in Fig. 3(a), and the numerical error is shown in Fig. 3(b). The max-
imum error is 0.1745. Then we apply the SPA1 and SPA2 with the same y = 0.25
to this problem, which led to good approximate solutions as shown in Fig. 3(b).
The maximum error of SPA1 is 0.071, while the maximum error of SPA2 is 0.068.
The residual errors of SPA1 and SPA2 are shown in Fig. 3(a), of which the SPA2
converges faster than the other two algorithms.

RSDM
o 1E+2
S 1En
T 1E+0
Té 1E-1
= 1E-2
E 1E-3
% 1E-4
m 1E-5
0 100 200 300 400 500
Number of steps

—
o) 1E+0 (b)
—
o
) 1E-1
—_
<
O 1E-2
or—
- a
(D]
E 1E-3 " q
=

1E-4
= | | | | | |

0 40 80 120 160 200

Figure 3: For example 2: (a) comparing the residual errors obtained by the RSDM
and the present methods SPA1 and SPA2, and (b) comparing the numerical errors.
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1E+4
1E+3

8
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w
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Figure 4: For example 3: (a) comparing the residual errors obtained by SPA1 and
SPA2, and (b) comparing the numerical errors obtained by SPA1, SPA2, and the
regularized MFS of Wei, Hon and Ling (2007).

5.3 Example 3

We solve the Cauchy problem of the Laplace equation under overspecified bound-
ary conditions on the upper contour:

1 1
Au:urr—i-;uﬁ-ﬁugezo, r<p, 0<6<2m, (54)
u(p,0)=h(0), 0<6<m, (59)
u,(p,0) =g(0), 0<6<m, (56)

where h(60) and g(0) are given functions, and p = p(0) is a given contour to de-
scribe the boundary shape. The contour in the polar coordinates is specified by
I'={(rn0)|r=p(0), 0 <6 <2r}, which is the boundary of the problem domain
Q, and n denotes the normal direction.

In the potential theory, it is well known that the method of fundamental solutions
(MFES) can be used to solve the Laplacian problems when a fundamental solution
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is known [Kupradze and Aleksidze (1964)]. In the MFES the trial solution of u at
the field point z = (rcos 6, rsin 0) can be expressed as a linear combination of the
fundamental solutions U (z,s;):

u(z) =Y c;U(zs)), sj€Q, (57)
j=1

where n is the number of source points, c¢; are the unknown coefficients, s; are the
source points, and Q€ is the complementary set of Q. For the Laplace equation (54)
we have the fundamental solutions:

U(z,s;) =1Inr;, r;j=|z—s;|. (58)

In a practical application of MFS, frequently the source points are uniformly lo-
cated on a circle with a radius R, such that after imposing the boundary conditions
(55) and (56) on Eq. (57) we can obtain a linear equations system:

Bx — b, (59)
where

z; = (z1,27) = (p(6;) cos 6;,p(6;)sin 6;),

Sj = (s}-,s?) = (Rcos 6;,Rsin ),

Bij =In|jz; —s;||, ifiis odd,

0; .
Bij = % (p(6:) —S}COS 0; —s?smei
1z — sl
PG 2 N s
(6, [s;sin6; —sjcos 6] | ,if i is even,
X:(Cl7...,Cn)T, b:(h(e]),g(e]),...,h(@m)7g<9m))T? (60)

in which n = 2m, and

_ p(6) .
VP2(6)+1p'(0)]?

This example imposes a great challenge to test the efficiency of linear equations
solver, because the Cauchy problem is highly ill-posed. We fix n = 38 and employ
a circle with a constant radius R = 15 to distribute the source points. We apply
both the SPA1 and the SPA2 with ¥ = 0.05 to solve the linear system (59) under
a convergence criterion € = 1072, where a noise with an intensity ¢ = 10% is im-
posed on the given data. Under the initial guess with x; = 0.1, the residual errors

n(o) (61)
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are plotted in Fig. 4(a), where the SPA1 is convergent with 8682 iterations and the
SPA2 is convergent with 7650 iterations. Along the lower half contour p(0) =
\/10—6¢c0s(20), ® < 6 < 2, in Fig. 4(b) we compare the numerical solutions
obtained by SPA1 and SPA2 with the data given by u = pZcos(260), 7 < 6 < 27.
For the purpose of comparison with the regularized MFS proposed by Wei, Hon
and Ling (2007), we first plot the L-curve and thus take the optimal value of « to
be o = 8.7437 x 107°. Through the regularized MFS, the maximum error is found
to be 0.39 as shown in Fig. 4(b). We can observe that the results obtained by the
SPA1 and SPA2 are very close to the exact one, where the maximum error for the
SPA1 is 0.14, while that for the SPA2 is 0.21. Obviously, as shown in Fig. 4(b) the
SPA2 is more accurate than the SPA1, and the regularized MFS.

5.4 Example 4

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < £ by subjecting to the boundary conditions at two ends of a slab:

u(x,1) = Oy (x,1), 0<t<T, 0<x<U, (62)
u(0,1) = up(t), u(l,t)=uy(t), (63)

we solve u under a final time condition:
u(x,T) = u’ (x). (64)

The fundamental solution of Eq. (62) is given as follows:

_ H(1) —x?
K(x,t) = NG exp <4oct) ; (65)

where H (1) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineering
computations. In the MFS the solution of u at the field point z = (x,7) can be
expressed as a linear combination of the fundamental solutions U (z,s;):

”(Z) = Z CJU<Z’SJ)’ Sj = (njarj) € QC7 (66)
j=1

where n is the number of source points, c; are unknown coefficients, and s; are
source points being located in the complement Q¢ of Q = [0,/] x [0,T]. For the
heat conduction equation we have

U(Z,Sj):K(x—le,t—Tj). (67)
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Figure 5: For example 4: (a) comparing the residual errors obtained by SPA1 and
SPA2, and (b) comparing the numerical solutions with the exact one.

It is known that the distribution of source points in the MFS has a great influence
on the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to the
t-axis and one horizontal line over the final time, which was adopted by Hon and
Li (2009) and Liu (2011b), showing a large improvement than the line location of
source points below the initial time. After imposing the boundary conditions and
the final time condition on Eq. (66) we can obtain a linear equations system:

Bx = b, (68)
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where
Bij = U(Z,‘,Sj), X= (Cly"' 7cn)T7
b= (ut;), i = 1,...,m1;uT(xj), J=1,....mpup(ty), k:ml,...,l)T, (69)

and n = 2m +my.

Since the BHCP is highly ill-posed, the ill-condition of the coefficient matrix B in
Eq. (68) is serious. To overcome the ill-posedness of Eq. (68) we can use the new
method to solve this problem. Here we compare the numerical solution with an
exact solution:

u(x,1) = cos(mx) exp(—mt).

For the case with T = 1 the value of final time data is in the order of 10~%, which
is much small in a comparison with the value of the initial temperature uo(x) =
cos(7x) to be retrieved, which is O(1). We solve this problem by the SPA1 and
SPA2 with ¥ = 0.05. The initial guess is x; = 1. As shown in Fig. 5(a), both the
SPAT and the SPA2 converge very fast with respectively 1123 and 1364 iterations
under the convergence criterion € = 10~*. We have added a relative random noise
with an intensity ¢ = 10% on the final time data, of which we compare the numer-
ical solutions with the exact initial data in Fig. 5(b), of which the maximum error
is smaller than 0.035 for the SPA1, and 0.038 for the SPA2. It indicates that the
present iterative algorithms are rather robust against noise, and which can provide
rather accurate numerical results.

6 Conclusions

In the present paper we have extended the classical steepest descent method and
developed two structure preserving algorithms, SPA1 and SPA2, which can largely
accelerate the convergence speed in the numerical solution of an ill-posed linear
system Bx = b. In the framework of the future cone we have found four structures
in the scaled residual dynamics, namely the Jordan dynamics, the Lie-group SO(n),
the generalized Hamiltonian formulation, as well as a metric bracket system. An
extra variable y on S"~! was introduced, of which the two simple algorithms SPA1
and SPA2 can preserve the length of y. Obviously, the present SPA1 and SPA2 can
be implemented easily and effectively used to solve the linear inverse problems.
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