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MicroCT/Micromechanics-Based Finite Element Models
and Quasi-Static Unloading Tests Deliver Consistent

Values for Young’s Modulus of Rapid-Prototyped
Polymer-Ceramic Tissue Engineering Scaffold
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Abstract: A 71 volume-% macroporous tissue engineering scaffold made of poly-
l-lactide (PLLA) with 10 mass-% of pseudo-spherical tri-calcium phosphate (TCP)
inclusions (exhibiting diameters in the range of several nanometers) was microCT-
scanned. The corresponding stack of images was converted into regular Finite
Element (FE) models consisting of around 100,000 to 1,000,000 finite elements.
Therefore, the attenuation-related, voxel-specific grey values were converted into
TCP-contents, and the latter, together with nanoindentation tests,entered a homog-
enization scheme of the Mori-Tanaka type, as to deliver voxel-specific (and hence,
finite element-specific) elastic properties. These FE models were uniaxially loaded,
giving access to the macroscopic Young’s modulus of the entire scaffold, amount-
ing to EFE=142.86±2.68MPa. The reliability of the FE simulations was shown
through comparison with results from quasi-static unloading tests on the same scaf-
fold sample, delivering an experimental value of the longitudinal Young’s modulus,
Eunl = 125.85± 19.33MPa. The uniaxial test simulations also provided access to
Poisson’s ratios in the transverse material directions, which turned out to be quasi-
cubic, and amounted, on average, to 0.0638±0.0136.This is much smaller than
the Poisson’s ratio of the solid phase made up of PLLA-TCP, which amounted
to 0.44. This indicates that on the microscopic level, the pores are, on average,
much more deformed, than the solid phase made of PLLA-TCP. Namely, signif-
icant (micro)deformation of the latter is restricted to the junctions between the
rapid-prototyped beams making up the scaffold.
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unloading tests, tissue engineering scaffolds.

1 Introduction

Tissue engineering is a discipline striving for regeneration of such biological tissues
which a priori do not have any self-healing capability (as is e.g. the case for carti-
lage or large bone defects); this task is tackled through the combination of growth
factors and biological cells, with so-called tissue engineering scaffolds to be im-
planted in the damaged organism [Langer and Vacanti (1993); Khademhosseini et
al. (2005); Park et al. (2007); Mouriño et al. (2012)]. Traditionally, trial-and-error
strategies were employed to find out functioning scaffold-factor-cell combinations
[Khademhosseini et al. (2005)]. In the course of such studies, it became obvi-
ous that tissue engineering scaffolds have not only to be biocompatible, but they
also need to ensure sufficient load carrying capacity, and nevertheless they have
to enable tissue ingrowth [Rezwan et al. (2006); Wagoner Johnson and Herschler
(2011); Janicki and Schmidmaier (2011)]. The latter requirement implies use of
porous scaffolds, with pore sizes of one to several hundred micrometers [Rezwan
et al. (2006); Woodard et al. (2007)]. With increasing porosity, the mechanical
strength of the scaffolds decreases (Fritsch et al. 2009), while bone ingrowth is fa-
cilitated [Rezwan et al. (2006); Janicki and Schmidmaier (2011); Woodard et al.
(2007)]. Besides the scaffolds’ mechanical strength, their elasticity is of impor-
tance, since it is the elasticity which predominantly drives the stress distribution in
organ-implant systems [Rezwan et al. (2006); Chen et al. (2011)], and this distri-
bution should deviate as little as possible from the natural state (without implant).
In this context, the potential benefit of computer-based design tools for tissue engi-
neering solutions has been realized more and more in recent years, and engineering
scientists have proposed the application of numerical methods such as the Finite
Element (FE) method [Zienkiewicz and Taylor (2005)] and of semi-analytical tools
such as homogenization theory and continuum micromechanics [Eshelby (1957);
Benveniste (1987); Zaoui (2002); Dormieux et al. (2006)] for the simulation of the
mechanical behavior of tissue engineering scaffolds, or of compounds built up of
both scaffolds and tissue engineered, e.g. biological cell-produced, new bone tis-
sue [Lacroix et al. (2006); Sandino et al. (2008); Bertrand and Hellmich (2009);
Fritsch et al. (2009); Scheiner et al. (2009); Dejaco et al. (2012)]. While it is gen-
erally accepted that geometrical and microstructural details of such scaffolds can
be straightforwardly extracted from micro Computer Tomographic (microCT) im-
ages, and transferred to fine Finite Element meshes [Lacroix et al. (2006)], the
assignment of material properties on an element-per-element basis turns out as
a much more tricky issue. As a respective remedy for ceramic-based biomate-
rials [Komlev et al. (2010)], we have recently proposed [Scheiner et al. (2009);
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Dejaco et al. (2012)] to translate the X-ray attenuation-related grey values mak-
ing up a microCT image, into voxel-specific (nano)porosities, and to resolve the
microstructure (or nanostructure) within each finite element in terms of a contin-
uum micromechanics representation [Fritsch et al. (2009)] linking (nano) porosity
to material properties, as to arrive at tissue property maps across the entire im-
aged scaffold. These property maps turned out as reasonable input for FE sim-
ulations [Scheiner et al. (2009); Dejaco et al. (2012)]. In the present paper, we
extend this strategy to rapid-prototyped polymer-ceramic scaffolds [Swieszkowski
et al. (2007)]. Therefore, we undertake the following steps: We report microCT
scanning and porosity determination of a scaffold made of poly-l-lactide (PLLA)
reinforced by nanometer-sized particles of tri-calcium phosphate (TCP), see Sec-
tion 2.1. Thereafter, we report on a nanoindentation campaign giving access to
the micrometer-scale elastic properties of the aforementioned material, see Section
2.2. These experimental data enter a Finite Element study based on voxel-specific
elastic properties derived from X-ray physics [Crawley et al.(1988); Hellmich et
al. (2008); Scheiner et al. (2009)] and micromechanics, see Section 3.1, where we
are interested in uniaxial compression as a typical loading scenario, see Section 3.2.
As a rule [Popper (1934)], simulation results, as any other theoretical propositions,
need independent experimental validation, and therefore, in Section 4, we report
on quasi-static unloading tests performed on the very scaffold which was simulated
before. The key results of FE simulations are documented and discussed thereafter,
in Section 5.

2 Experiments for model development

2.1 MicroCT imaging for geometry and porosity assessment

A tissue engineering scaffold [see Fig. 1(a)] with dimensions of 12.05mm× 6.15mm
× 6.10mm, and mass density of 0.42g/cm3 was produced by rapid-prototyping
via fused deposition modeling, as described in [Swieszkowski et al. (2007)]. The
solid material consisted of a poly-l-lactide (PLLA) matrix and pseudo-spherical
tri-calcium phosphate inclusions (TCP powder p08004c, Progentix, Bilthoven, The
Netherlands; with particle diameters in the range of several nanometers). These
TCP nanocrystals, which partially cluster, at mutually distant spots, into larger ag-
glomerations appearing as light spots in Fig. 1(b), make up 10% of the total mass.
A region of interest (ROI), comprising the first 5.46 mm of the 12.05 mm height
of the tested scaffold sample, was scanned in a SKYSCAN 1172 desktop microCT
machine. Respective projection images were Radon-transformed, by means of the
SKYSCAN’s NRecon v1.6.1.2 software, to a stack of 8bit grey-scaled 2D images
with a pixel size of 9.92 microns, which led to 3D image volume of 760×760×550
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voxels.

It is instructive to plot a histogram of all X-ray attenuation-related grey values mak-
ing up the 3D image domain (see Fig. 2). The histogram shows two peaks, with
corresponding grey values belonging to the gaseous domain and the solid domain
of the scaffold, respectively. We use the minimum between the “air peak” and
the “solid peak” as the threshold GVthr=65 to distinguish between the solid voxels
(with GV> GVthr) and the air voxels (with GV≤ GVthr).The macroporosity was
quantified as the ratio of the number of voxels occupied by pores to the total num-
ber of voxels within the chosen ROI, using the image treatment software CTAn
v1.12 (SKYSCAN, Belgium): it amounted to Φ=71%.

 
 a)         b) 

 Figure 1: PLLA-TCP tissue engineering scaffold with 71% macroporosity: (a) pho-
tograph,(b) micro-CT slice of the scaffold’s transversal cross-section, with partially
visible TCP inclusions (white spots marking high local TCP concentration)

2.2 Micromechanics of solid portion of scaffold: nanoindentation

Nanoindentation has become a standard technique for biomaterial characterization
[Khanna et al. (2009)]. Herein, we followed the subsequent protocol: A specimen
of the same origin and solid phase composition as the one scanned according to
the protocol given in Section 2.1, was embedded in resin (Epofix, Struers, Denn-
mark), and then it was polished with increasingly fine sandpaper (1PM51, Logitech,
United Kingdom), until a satisfactorily scratch-free surface of the PLLA-TCP solid
was achieved. Thereafter, this surface was indented by means of a Berkovich in-
denter (TI 900 Triboindenter, Hysitron, Minneapolis, USA). The loading-unloading
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Figure 2: Probability density function of X-ray attenuation-related grey values
(GV) throughout the entire 3D microCTimageof the macroporous PLLA-TCP scaf-
fold: all GV values higher than GVthr=65 correspond to solid-filled voxels

rate was set to 300µN/s. A trapezoidal loading mode with 30s holding time, and
two different maximum loads of 3mN and 6mN were chosen. This choice re-
sulted in contact areas ranging from 12.04±0.52µm2 to 23.53±0.80µm2. When
comparing these sizes to the nanometric size of TCP particles dispersed in the
PLLA matrix, it becomes obvious that the indentation tests were carried out on
the PLLA-TCP composite. For each load, approximately 40 measurements were
performed. Load-displacement data were evaluated according to the method of
Oliver and Pharr [Oliver and Pharr (2004)], whereby Poisson’s ratio of the scaf-
fold’s solid portion was assumed to be equal to the one of PLLA, i.e., equal to
νPLLA=0.45 [Balac et al. (2002)]. For the TCP volume fraction prevailing in the
present paper, this assumption was validated by a micromechanical approach based
on the Mori-Tanaka estimate [Mori and Tanaka (1973)]: Accordingly, the PLLA-
TCP composite exhibits a Poisson’s ratio which is only 2% (or even less than that)
smaller than the one of pure PLLA [Luczynski et al. (2012)]. When averaged over
all conducted nanoindentation tests, the Young’s modulus of the solid PLLA-TCP
portion amounted to E indent=4.52±0.16GPa.
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3 Finite Element model development

3.1 Voxel- and finite element-specific elastic properties, based on X-ray physics
and micromechanics

The elastic properties of the solid matrix were derived from X-ray attenuation coef-
ficients as follows: Each voxel occupied by the solid contains a composite material
consisting of PLLA matrix (filling volume fraction fPLLA) with TCP inclusions
(filling volume fraction fTCP). Hence, the volume fractions fulfill

fPLLA + fTCP = 1 (1)

For this PLLA-TCP composite, the averagerule for X-ray attenuation coefficients
µ reads as [Crawley et al. (1988); Hellmich et al. (2008); Scheiner et al. (2009)]

µ = µPLLA fPLLA + µTCP fTCP (2)

where µPLLA and µTCP are the X-ray attenuation coefficients of PLLA and of TCP,
respectively. Since the X-ray attenuation coefficients are linearly related to the grey
values GV shown in microCT images, it follows from Eq. (2) that

GV = GVPLLA fPLLA +GVTCP fTCP (3)

with GVPLLA=66 and GVTCP as the grey values of a voxel which is entirely filled
by PLLA or by TCP material, respectively. The densest voxel in the images char-
acterized by GV=255, is not entirely filled with TCP, so that we need to identify a
TCP-related grey value larger than 255. For the respective “calibration process”,
we rely on mass and volume measurements, together with mass density averaging,
adapting the strategy proposed by [Dejaco et al. (2012)]: at the voxel level, the
mass density ρvox reads as

ρvox(x) = fTCP(x)ρTCP +[1− fTCP(x)]ρPLLA (4)

with ρPLLA=1.25g/cm3 as the mass density of PLLA, and ρTCP=3.14g/cm3 as the
mass density of TCP [Blazewicz and Stoch (2004)]. The average, over the entire
scaffold, of these voxel-specific mass densities equals to the overall “apparent”
mass density of the scaffold sample, ρapp=0.42g/cm3 (identified as the scaffold’s
mass over its “apparent” volume; whereby the latter, in case of a cuboid sample,
was computed from its dimensions as Vapp=12.05mm×6.15mm×6.10mm)

(1−Φ)
1
V

∫
V

ρvox(x)dV = ρapp (5)
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with Φ as the scaffold’s macroporosity (see Section 2.1), V scaffold’s solid phase
volume, and x representing each voxel occupied by the solid.

Finally, Eq. (1), (3), (4) and (5) allow for numerical determination of GVTCP, re-
sulting in GVTCP=293.5. Then, Eq. (3) can be used to convert voxel-specific grey
values into voxel-specific volume fractions of TCP,

fTCP = (GV − GVPLLA)/(GVTCP−GVPLLA) (6)

resulting in volume fractions of TCP ranging from 0 to 0.83 for grey values from
66 to 255, respectively.

Next, this volume fraction enters a micromechanical description of the material
found within the individual voxels. Consequently, we regard each and every voxel
as a representative volume element (RVE) in the sense of continuum micromechan-
ics (Zaoui, 2002; Dormieux et al, 2006), which has to fulfill the so-called separation
of scales requirement: (i) the RVE size (being equal to the voxel size) needs to be
small as compared to the characteristic length of the overall structure and/or load-
ing (this will be checked through the convergence study documented in Fig. 5);
and (ii) the characteristic length of the RVE needs to be larger than the character-
istic size of the inhomogenities within the RVE – in other words, the voxel size
needs to be significantly larger than the size of the TCP particles dispersed in the
PLLA matrix. Comparing the 9.92 microns edge length of the employed voxels
to the nanometer size of the TCP particles entails the second scale separation re-
quirement as fulfilled. Given, in addition, the matrix-inclusion-type morphology of
the microstructure found within the individual voxels, we employ the Mori-Tanaka
scheme [Eshelby (1957); Mori and Tanaka (1973); Benveniste (1987)] for deter-
mination of the voxel-specific fourth-order (homogenized) stiffness tensor Chom of
the PLLA-TCP composite,

Chom =
{
(1− fTCP)cPLLA + fTCPcTCP :

[
I+PPLLA,sph : (cTCP− cPLLA)

]−1
}

:{
(1− fTCP)I+ fTCP

[
I+PPLLA,sph : (cTCP− cPLLA)

]−1
}−1

(7)

with

CPLLA = 3kPLLAIvol +2GPLLAIdev (8)

and

CTCP = 3kTCPIvol +2GTCPIdev (9)
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as the isotropic phase stiffnesses of the matrix and the inclusions, respectively. In
Eq. (8) and (9) Ivol , with components Ivol,i jkl=1/3δ i jδ kl is the volumetric part of the
fourth-order unity tensor I, with components Ii jkl=1/2(δ ikδ jl+δ ilδ jk); and Idev =
I− Ivol is the deviatoric part of I. The Kronecker delta δ i j is defined as δ i j =0 for
i 6= j and δ i j=1 for i = j. Moreover, in Eq. (7), PPLLA,sph denotes the fourth-order
Hill tensor accounting for the spherical shape of the TCP inclusions embedded in
the PLLA-matrix. Given the strong chemical similarity of TCP and hydroxyapatite
[Dorozhkin (2009)], the elastic properties of the latter were considered: Ultrasound
experiments of [Katz and Ukraincik (1971)] on hydroxyapatite deliver the bulk and
shear moduliof TCP as kTCP=82.60GPa and GTCP=44.90GPa, respectively. The
elastic properties of PLLA, expressed in terms of bulk modulus

kPLLA = EPLLA/(3(1−2νPLLA)) (10)

and of shear modulus

GPLLA = EPLLA/(2(1+νPLLA)) (11)

followed from the nanoindentation tests of Section 2.2, and from the literature.
Namely, Poisson’s ratio of PLLA was taken from [Balac et al. (2002)], amounting
to νPLLA = 0.45. Concerning Young’s modulus of PLLA (EPLLA), the nanoinden-
tation measurementsof Section 2.2 gave access to the mean value of the Young’s
modulus of PLLA-TCP composite material, E indent . The latter needs to be equal to
the average, over all voxels making up the solid portion of the scaffold in the mi-
croCT image, of the attenuation- and micromechanics-based Young’s moduli Ehom

[whereby Ehom is the inverse of the first component of the homogenized compliance
tensor being itself the inverse of the stiffness tensor of Eq. (7)]. In mathematical
terms, this reads as

E indent =
1
V

∫
V

Ehom(EPLLA,νPLLA,kTCP,GTCP,GV )dV (12)

where the functional relationship for Ehom follows from Eq. (6) - (11). Eq. (12)
allows for the determination of the Young’s modulus of PLLA, and the numerically
obtained value, EPLLA=3.59GPa, is in a perfect agreement with corresponding value
of 3.60GPa found in [Blazewicz and Stoch (2004)].

Finally, use of the aforementioned elastic properties of PLLA and TCP in Eq. (7),
while considering Eq. (6), gives access to grey value-specific Young’s moduli Ehom(GV)
and Poisson’s ratios νhom(GV) throughout the scaffold’s solid phase; more pre-
cisely, the latter are, in a standard fashion, computed from the compliance tensor
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Dhom=(Chom)−1, according to:

Ehom(GV) = 1/Dhom
1111(GV) (13)

ν
hom(GV) =−Ehom(GV)/Dhom

1122(GV) (14)

In addition to these heterogeneous (grey value-specific) elastic properties through-
out the solid portion of the scaffold, also “smeared” homogeneous elastic properties
(see Tab. 1) were considered. Remembering that averaging over elastic properties
does not per se have a theoretical basis [Zaoui (2002)], while the evaluation of
volume fractions within reasonably chosen RVEs is one of the fundamentals of mi-
cromechanics, we average over all volume fraction-related grey values [see Eq. (6)]
in the solid compartment of the microCT image, as to arrive at an averaged grey
value GVavg according to

GVavg =
1

Nsol

GV=255

∑
GV=66

(NGV ×GV ) = 90 (15)

where Nsol is the total number of voxels in the solid portion of the scaffold, and
NGV is the number of voxels with grey value GV. Specification of Eq. (13) and
(14) for GV=GVavg yields the "average" homogeneous elastic properties in terms
of Young’s modulus and Poisson’s ratio as EGVavg=4.51GPa and νGVavg=0.44, re-
spectively (see also Tab. 1).

Table 1: Elastic properties related to solid compartment of scaffold: poly-l-lactide
(PLLA) from nanoindentation and micromechanics (Sections 2.2 and 3.1), tri-
calcium phosphate (TCP) from ultrasonic experiments (Section 3.1), "average"
PLLA-TCP nanocomposite from micromechanics (Section 3.1)

Young’s modulus [GPa] Poisson’s ratio [-]
PLLA 3.59 0.45
TCP 114.04 0.27
PLLA-TCP 4.52 0.44

Finally, regular FE models of the PLLA-TCP-based scaffold were generated from
the stack of microCT images analogously to the procedure described in [Dejaco et
al. (2012)]. Thereby, 8×8×8, 7×7×7, 6×6×6, 5×5×5, and 4×4×4 voxels were
combined into one finite element each, which resulted in Finite Element models
with 1.1×105, 1.7×105, 2.7×105, 4.8×105, and 9.6×105 elements. Thereby, the
grey values GV were either averaged over the 64 to 512 voxels merged into one
finite element each, and converted, according to Eq. (6) - (11) and (13) - (14) into
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finite element-specific stiffness properties; or all solid finite elements were assigned
one pair of Young’s modulus and Poisson’s ratio, according to Eq. (6) - (11) and
(13) - (14) evaluated for GV=GVavg according to Eq. (15). The heterogeneous
distribution of elastic properties across the tissue engineering scaffold is depicted
in Fig. 3 and 4.

3.2 Evaluation of simulated uniaxial test: determination of longitudinal macro-
scopic Young’s modulus

The FE models developed in the last subsection are subjected to uniaxial com-
pression conditions in vertical (longitudinal) direction (orthogonal to the rapid-
prototyped “beams”, “piled” on each other), indicated by unit vector e3. Based
on the Abaqus simulation package (Abaqus 6.10-2, Simulia, USA), a vertical dis-
placement of magnitude ∆l3 = 0.05l3, l3=5.46mm being the height of the scanned
scaffold portion measured in e3 direction, is prescribed at the top surface of the
scaffold. The bottom surface is held at fixed displacements in e3 direction, i.e. in
the direction of the applied displacement, while this surface is free to deform in
the plane orthogonal to e3. The lateral walls of the scaffold are kept stress-free.
After stiffness matrix inversion and determination of internal forces, the resulting
reaction force F (being the sum of all reaction forces in e3 direction triggered at
the nodes of the upper surface of the finite element mesh) is used for evaluation of
a macroscopic, whole scaffold-related, Young’s modulus (EFE) asfollows

EFE =
Fl3

A ·∆l3
(16)

with A as the area of the loaded surface. The corresponding results are depicted
in Fig. 5, as a function of the number of elements making up the respective FE
meshes, resulting from the voxel merging procedure described in Section 3.1.

It becomes obvious that all meshes deliver, numerically speaking, fully converged
results, i.e. the entity of all displacement shape functions of all elements satisfac-
torily represents the deformation of the investigated structure. Also, the overall
deformation under macroscopic uniaxial load is fairly independent on the actual
microscopic distribution of elastic properties, as can be seen from fair agreement
of the results obtained from simulations based on heterogeneous and homogeneous
material properties, respectively (see Tab. 2).

Still, we are left with the question whether the physical representation of the scaf-
fold, i.e. the assignment of the (element-specific or overall averaged) elastic prop-
erties was reasonable. Therefore, we compare the macroscopic elastic modulus
derived from the FE simulations with direct measurements of this property, as de-
scribed next.
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Figure 3: Young’s modulus distribution in three orthogonal cross-sections of the
heterogeneous FE model composed of 1.1×105 finite elements
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Figure 4: Poisson’s ratio distribution in three orthogonal cross-sections of the het-
erogeneous FE model composed of 1.1×105 finite elements
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Figure 5: Young’s modulus of the macroporous scaffold computed from homoge-
neous and heterogeneous FE simulations,based on meshes with different numbers
of elements

Table 2: FE-predicted macroscopic scaffold-related Young’s modulus averaged
over the values given in Fig. 5, for homogeneous and heterogeneous microscopic
elastic properties

< EFE > [MPa]
heterogeneous model 145.02±1.68
homogenous model 140.71±1.28
averaged over both models 142.86±2.68

4 Experiments for model validation: quasi-static loading-unloading tests

Experimental determination of macroscopic elasticity is a delicate issue, since, e.g.
due to not perfectly plane specimen surfaces, inelastic phenomena may occur right
from the beginning of loading. As a remedy, we recall from thermodynamics
[Salençon (2001)] that elasticity is related to the energy which can be released
as efficient mechanical work, and this release is made possible through unloading
of the sample (which is similar to what is done in standard nanoindentation proto-
cols). Accordingly, the microCT-scanned tissue engineering scaffold sample was
uniaxially tested in an electromechanical testing stand (LFM 150, Wille Geotech-
nik, Germany). Thereby, first a „slightly-above-zero“ compressive load of approx-
imately 5N was applied, in order to generate sufficient initial contact between the
tested sample and the stamp.Then, the scaffold sample was repeatedly loaded and
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unloaded, up to increasing compressive nominal strain levels, namely -0.02, -0.03,
-0.04, and -0.05. Thereby, nominal strain (ε) is defined as:

ε = (h3−h3,0)/h3,0 (17)

with h3 and h3,0 being the heights in the loading direction, of the deformed and the
undeformed sample, respectively. During each cycle, both loading and unloading
were performed with a displacement rate of 4mm/min, relating to a strain rate of
0.005s−1. This is a typical quasi-static strain rate for biological and biomimetic
materials [Brynk et al. (2011)]. Force-displacement curves were recorded through-
out the whole procedure, and the unloading regimes of these curves were evaluated.
From the load maxima at the aforementioned maximum strain levels and the corre-
sponding displacements, the unloading curve was followed for a minimum of 50µm
along the displacement axis, and a maximum of 350µm, in 50µm intervals. These
different unloading portions were checked with respect to their linearity (indicating
linear elastic properties as discussed throughout this article), in terms of R2, the
coefficient of determination between the measured forces and displacements. The
slopes S of all unloading portions with R2 > 0.90 are used to determine the Young’s
modulus of the macroporous scaffold according to

Eunl = Sh3/A (18)

with A as the cross sectional area perpendicular to the loading direction.

In this way, we obtain an experimental macroscopic Young’s modulus of the scaf-
fold of Eunl=125.5±19.33MPa(mean value ± standard deviation evaluated over 17
unloading branches).This value perfectly confirms the relevance of our simulated
value of EFE=142.86±2.68MPa (mean value ± standard deviation evaluated over
all simulations recorded in Fig. 5, see also Tab. 2). This supports our confidence
into the chosen modeling approach combining X-ray physics and analytical mi-
cromechanics with finite element technology, and to report in detail the simulation
results obtained from our models.

5 Key results of Finite Element simulations

In addition to the macroscopic longitudinal Young’s modulus of the scaffold, also
the scaffold’s transverse Poisson’s ratiosνzx and νzy can be determined from the FE
simulations described above according to the following procedure: the displace-
ments of points on each of the six mutually perpendicular or parallel surfaces of
the roughly box-shaped scaffold were averaged over the respective surface. The
resulting displacement components in the direction normal to the respective sur-
face are denoted as u+

i and u−i , i=1,2,3, indicating the positive or negative surface



MicroCT/Micromechanics-Based Finite Element Models 519

normal direction, and these components are defined as positive values when the re-
spective points move in i-direction. Together with the scaffolds lineal dimension in
i-direction, denoted as li, the aforementioned averaged displacement components
give access to the macroscopic, whole scaffold-related normal strain components,
in the form

Eii = (u+
i −u−i )/li; for i = 1,2,3 (19)

These normal strains allow for determination of the Poisson’s ratios measuring the
lateral effects of longitudinal stress in the two transverse directions e1 and e2,

ν31 =−E11/E33 ν32 =−E22/E33 (20)

The resulting macroscopic Poisson’s ratios are reported in Fig. 6 and Tab. 3. As it
was the case with the longitudinal macroscopic Young’s modulus, they do not vary
too much between the simulations based on heterogeneous material properties, and
those based on homogeneous properties. Also, the rather small difference between
ν32 and ν31 suggests that, in a first approximation, the scaffold, at the macrosale,
might be regarded as roughly cubic, hencea quasi-cubic Poisson’s ratio averaged
over all values depicted in Fig. 6, amounts to 0.0638±0.0136.
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Figure 6: Transverse Poisson’s ratios of the macroscopic scaffold computed from
homogeneous and heterogeneous FE simulations,based on meshes with different
numbers of elements

It is remarkable that the macroscopic Poisson’s ratio is significantly lower than that
of the PLLA-TCP composite solid (amounting to 0.44, see Tab.1). This indicates
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Table 3: Transverse Poisson’s ratios of the macroscopic scaffold computed from
FE simulations, based on a mesh with 1.1×105 number of elements

ν31 [-] ν32 [-]
heterogeneous model 0.0593±0.0024 0.0596±0.0045
homogenous model 0.0586±0.0038 0.0779±0.0224
averaged over both models 0.0590±0.0030 0.0687±0.0180

that, on the microstructural level, the solid phase undergoes much less deforma-
tions and strains than the pore phase. In order to quantify this effect, we apply the
strain average rule of micromechanics [Zaoui (2002)] to the entire scaffold, which
allows us to derive from the average microstrain components in the solid phase εs

i j,
i, j=1,2,3, obtained directly from the simulations, the average strains ε

p
i j, i, j=1,2,3

in the pores, according to

ε
p
i j = [Ei j− (1−Φ)εs

i j]/Φ; or i, j = 1,2,3 (21)

with Φ as the macroporosity of the scaffold, as determined in Section 2.1. Indeed,
the average vertical normal strains in the pores are much larger than those in the
solid (compare ε33 and ε33 in Tab. 4 and 5). This is consistent with the very lo-
calized (“concentrated”) stress and strain peaks in the solid, occurring only at the
joints between the individual “struts” “piled” one above the other, see Fig. 7 and
8 for principal stress and strain distributions across the investigated structure. The
shear microstrains, both in the solid and in the pores, are at least two orders of
magnitude smaller than the normal microstrains, which indicates that the overall
scaffold’s deformation process is largely “free” from shear deformations.

Table 4: Microstrains averaged over solid compartment of scaffold<εs >, for het-
erogeneous and homogeneous simulations with 1.1×105 elements; index “3” labels
(longitudinal) loading direction, indices “1” and “2” label (transverse) orthogonal
to the loading directions

<εs
11 > [-] <εs

22 > [-] <εs
33 > [-]

heterogen-
eous
model

(0.24 ± 0.00)×10−2 (0.24 ± 0.00)×10−2 (-0.54 ± 0.02)×10−2

homogen-
ous
model

(0.24 ± 0.00)×10−2 (0.24 ± 0.00)×10−2 (-0.54 ± 0.02)×10−2
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Figure 7: Minimum principal strain distribution in three orthogonal cross-sections
through the scaffold, derived from the heterogeneous simulation based on a mesh
with 1.1x105 elements
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Table 5: Average microstrains in pores <εs >, computed from average microstrains
in solid and macro strains according to Eq. (21), for heterogeneous and homoge-
neous simulations with 1.1×105 elements; index “3” labels (longitudinal) loading
direction, indices “1” and “2” label (transverse) orthogonal to the loading directions

<ε
p
11 > [-] <ε

p
22 > [-] <ε

p
33 > [-]

heterogeneous model 0.32×10−2 0.32×10−2 -6.83×10−2

homogenous model 0.31×10−2 0.45×10−2 -6.83×10−2

Next, we wish to discuss the effect of considering heterogeneous versus homoge-
neous elastic properties across the solid part of the investigated scaffold. Therefore,
it is beneficial [Dejaco et al. (2012)] to compute first-order as well as second-order
moments of deviatoric stresses, averaged over the solid portion of the scanned scaf-
fold, forming the Finite Element mesh. In mathematical terms, the deviatoric stress
tensor reads as

σσσdev(x) = σσσ(x)− 1
3

1tr(σσσ(x)) (22)

where σσσ is the Cauchy stress tensor, x gives the position of the considered finite
element, tr is the trace operator, and 1 is the second-order unity tensor.

The first-order average of deviatoric stresses is evaluated according to [Dormieux
et al. (2002)]

σdev =

√
1
2
〈σσσdev(x)〉 : 〈σσσdev(x)〉 (23)

with

〈(·)〉= 1
Vs

∫
Vs

(·)dV (24)

as the average of quantity (·) over all (solid) finite elements, filling volume Vs. The
second-order average of deviatoric stresses is evaluated as [Dormieux et al. (2002)]

σdev =

√
1
2
〈σσσdev(x) : σσσdev(x)〉 (25)

As a result, the homogeneous model delivered a marginally lower value of the first
order moment of deviatoric stresses than the heterogeneous one (see Tab. 6). This
means that the homogeneous model is slightly softer than the heterogeneous one,
which is in agreement with the macroscopic Young’s moduli reported in Tab. 1.



MicroCT/Micromechanics-Based Finite Element Models 523

 
Figure 8: Minimum principal stress distribution in three orthogonal cross-sections
through the scaffold, derived from the heterogeneous simulation based on a mesh
with 1.1x105 elements
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Also the second order moment of deviatoric stresses was (albeit only slightly)
higher in the heterogeneous model than in the homogeneous one (see Tab. 6). This
indicates a slightly higher heterogeneity of the microstress distribution in the het-
erogeneous as compared to the homogeneous simulations.

Table 6: First and second order moments of deviatoric stresses computed for het-
erogeneous an homogeneous FE models with 1.1×105 elements

deviatoric stresses [MPa] heterogeneous model homogenous model
first-order moment 15.16 14.81
second-order moment 43.57 42.43

6 Conclusion

Young’s modulus of a macroporous tissue engineering scaffold made of PLLA with
TCP inclusions can be well estimated from FE models based on merging of mi-
croCT voxels into finite elements of regular meshes, and relating the X-ray at-
tenuation values, via the rules of X-ray physics and micromechanics, into finite
element-specific elastic properties. Both heterogeneous and homogeneous models
deliver results which agree well with experimental values of quasi-static uniaxial
unloading tests. This indicates the significant homogeneity of the produced scaf-
fold. Close investigation of simulation results, such as microstresses and micros-
trains both in the solid and in the pores, show that the strains in the solid phase
are concentrated at the junctions between the rapid-prototyped “beams”, so that
the average pore microstrains are much larger than the average solid microstrains,
which is also expressed by macroscopic Poisson’s ratios being much smaller than
the Poisson’s ratio of the solid (nano)composite made up by PLLA and TCP.
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