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Frequency Domain Analysis of Fluid-Solid Interaction
Problems by Means of Iteratively Coupled Meshless
Approaches

L. Godinho! and D. Soares Jr.2

Abstract: In this work, a coupling strategy between the Method of Fundamen-
tal Solutions (MFS) and the Kansa’s Method (KM) for the analysis of fluid-solid
interaction problems in the frequency domain is proposed. In this approach, the
MES is used to model the acoustic fluid medium, while KM accounts for the elas-
todynamic solid medium. The coupling between the two methods is performed
iteratively, with independent discretizations being used for the two methods, with-
out requiring matching between the boundary nodes along the solid-fluid interface.
Two application examples, with single and multiple solid sub-domains, are pre-
sented, illustrating the behavior of the proposed approach.
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mental Solutions; Kansa’s Method; Frequency Domain Analysis.

1 Introduction

The investigation of interacting fluid and solid systems (e.g., fluids, such as air,
water, lubricants, blood etc., coupled with structural elements, such as buildings,
dams, offshore structures, mechanical components, pressure vessels, live organs
etc.) is a research field of particular importance in engineering and science. In
many cases, this interaction is quite expressive and must not be neglected, other-
wise the related analyses may only represent a very crude approximation of the real
model. This is particularly true in the case of a heavy fluid, such as water, interact-
ing with a rather light solid, such as a membrane type structure. Up to now, a con-
siderable amount of publications is available concerning the numerical modeling
of coupled acoustic fluids and elastodynamic solids [Belytschko and Geers (1977);
Mathews (1986); von Estorff and Antes (1991); Maman and Farhat (1995); Farhat,
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Lesoinne and LeTallec (1998); Lie, Yu and Zhao (2001); Park Felippa and Ohayon
(2001); Czygan and von Estorff (2002); Lombard and Piraux (2004); Soares et al.
(2007; 2010; 2011); Godinho, Amado-Mendes and Pereira (2011); among others],
several of them even considering the coupling of different numerical procedures.
However, few publications concentrate on the topic when meshless techniques are
focused. Moreover, most coupling algorithms are formulated in a way that a cou-
pled system of equations is established, which afterwards has to be solved using a
standard direct solution scheme. Such a procedure leads to several problems with
respect to efficiency, accuracy and flexibility. First, the coupled system of equa-
tions is usually rather large and it may no longer be able to make use of optimized
solvers, due to the features of one of the involved sub-systems, which leads to rather
expensive calculations with respect to computer time. Second, fluid and solid me-
dia usually have quite different physical properties, resulting in bad-conditioned
coupled matrices when standard coupling procedures are considered, which may
affect the accuracy of the methodology, providing misleading results. Third, the
standard coupling methodology does not allow independent discretization for each
sub-domain of the model, requiring matching nodes at common interfaces, which
drastically affects the flexibility and versatility of the technique.

In order to evade these drawbacks, iterative coupling procedures have been re-
cently presented, taking into account time domain fluid-solid interacting analyses,
mostly considering boundary element - finite element coupled formulations [Soares
et al. (2005; 2009); Warszawski, Soares and Mansur (2008)]. As it has been re-
ported, iterative coupling approaches allow acoustic fluid and elastodynamic solid
sub-domains to be analysed separately, leading to smaller and better-conditioned
systems of equations (different solvers, suitable for each sub-domain, may be em-
ployed). Moreover, a small number of iterations is required for the algorithm to
converge and the matrices related to the smaller governing systems of equations
do not need to be treated (inverted, triangularized etc.) at each iterative step, pro-
viding an efficient methodology. As a matter of fact, in time domain analyses,
iterative coupling procedures have been reported as effective techniques taking into
account several wave propagation problems, being not restricted to fluid-solid ap-
plications [Soares von Estorff and Mansur (2004), Soares (2008), Soares(2012)], as
well as not only to boundary element - finite element coupling procedures [Soares
(2011)]. In non-transient problems, iterative coupling methodologies have also
been reported as appropriate numerical tools, being several works presented on the
topic, mostly considering potential and elastostatic problems [Lin (1996); Elleithy,
Al-Gahtani and El-Gebeily (2001); Ya, Du and Hu (2006)].

In frequency domain analyses, although rarely, iterative coupling procedures have
been reported in the literature, mostly considering acoustic-acoustic coupling [Ben-
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amou and Despres (1997); Soares et al. (2012)]. As it has been reported, frequency
domain wave propagation analyses usually give rise to ill-posed problems and, in
these cases, the convergence of the iterative coupling algorithm can be either too
slow or unachievable. This is the case in fluid-solid interacting models and, as dis-
cussed in this work, convergence can be hardly achieved if no special procedure
is considered, especially if higher frequencies are focused. In order to deal with
this ill-posed problem and ensure convergence of the iterative coupling algorithm,
an optimal iterative procedure is adopted here, with optimal relaxation parame-
ters being computed at each iterative step. As it is described along the paper, the
introduction of these optimal relaxation parameters allows the iterative coupling
technique to be very effective in the frequency domain, ensuring convergence at a
low number of iterative steps.

In spite of the great success of the finite and boundary element methods as effective
numerical tools for the solution of boundary-value problems on complex domains,
there is still a growing interest in the development of new advanced methods. In
this context, many meshless formulations are becoming popular due to their high
adaptivity and low cost to prepare input data for numerical analysis, as well as
mathematical simplicity and high accuracy and convergence rate features. In the
present work, two distinct meshless methods are considered in order to numerically
discretize the different sub-domains of the fluid-solid coupled model, namely: the
Method of Fundamental Solutions (MFS) [Fairweather and Karageorghis (1998);
Golberg and Chen (1999); Cho et al. (2004)], which is here applied to model the
acoustic fluids; and the Radial Basis Functions (RBF) collocation method or the
Kansa’s Method (KM) [Kansa (1990a; 1990b)], which is here applied to numeri-
cally discretize the elastodynamic solids. The MFS is mathematically simple and
is based on the prior knowledge of the Green’s functions of the propagation sub-
domains. As with the Boundary Element Method, this limitation poses problems
whenever inhomogeneous domains are to be analyzed, allowing, however, infinite
media to be analyzed quite elegantly. The KM, on the other hand, follows a differ-
ent approach by trying to reproduce the solution within a specific sub-domain as a
linear combination of RBFs, being a closed domain formulation.

The paper is organized as follows: first, the governing equations of the physical
problem are presented; then, the KM and the MFS are briefly discussed. In the
sequence, the iterative coupling technique is described, including the mathematical
derivation of the optimization methodology. At the end of the paper, numerical
applications are presented, illustrating the accuracy, performance and potentialities
of the proposed procedures.
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2 Governing equations

In the frequency domain, the propagation of sound waves in a fluid medium, with
sound speed v, assuming null initial conditions, is governed by the Helmholtz equa-
tion:

Vp+ (w/v)?p=yforx e Q ¢))

where p(x,®) is the acoustic pressure within the fluid and y(x,®) stands for domain
sources. The boundary conditions for the problem can be given by:

p=plorxel, (2a)
g=Vp-n=gforxecl, (2b)

where the prescribed values are indicated by over bars and g(x,®) represents the
fluxes along the boundary whose unit outward normal vector is represented by n.
The boundary of the model is denoted by I' (I' = I', UT';) and the domain by Q.
Equation (2a) stands for essential (or Dirichlet) boundary conditions and equation
(2b) stands for natural (or Neumann) boundary conditions.

For elastodynamic models the governing equations are given by:

(A+2u)VV-u—uVxVxu+ o’pu=pfforxeQ, (3)

where A and pu stand for the Lamé constants and p represents the density of the
elastic medium. Further in equation (3), u(x,w) is the displacement vector and
f(x,w) stands for domain forces. The boundary conditions for the problem are
given by:

u=1iaforxel,, (4a)
T=on=7Tforxel,, (4b)

where, once again, the prescribed values are indicated by over bars and T(x,®)
represents the traction vector along the boundary (6(x,®) stands for the stress
tensor).

At the interface between the acoustic fluid and elastodynamic solid sub-domains,
field continuity and equilibrium conditions are defined as:

uy+1/(pw?)g=0forx eI}, (5a)

tw+p=0forx eIy, (5b)
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7 =0forx €17, (5¢)

where I'; stands for the common interface boundary and subscripts N and T repre-
sent normal and tangential components, respectively. It is important to observe that,
in equations (5), the sign of the different sub-domain outward normal directions is
taken into account (outward normal vectors on the same interface point are oppo-
site for each sub-domain) and that p in equation (5a) stands for the mass density of
the interacting acoustic fluid sub-domain.

3 Meshless modelling

In the sub-sections that follow, the numerical treatment of the previously presented
governing equations is briefly discussed, taking into account the Kansa’s Method
(KM) and the Method of Fundamental Solutions (MFS), which are mathematically
simple formulations. Here, the KM is employed to discretize the solid sub-domain,
whereas the MFS is applied to model the fluid sub-domain. The MFS is based on
the prior knowledge of the Green’s functions of the model and it allows dealing
with infinite media quite elegantly. The Kansa’s Method, on the other hand, is
a closed domain technique and it is based on the use of radial basis functions to
describe the displacement fields within the solid sub-domains. In the next section,
the coupling of these different methodologies is discussed, aiming to analyse a
propagation domain with a limited zone modelled by the KM (designated as region
Q%) and an external infinite host medium modelled by the MFS (region Qb).

3.1 Formulation of the Kansa’s Method

In meshless methods relying on solution approximation with Radial Basis Func-
tions, as it is the case of the Kansa’s Method, the displacement u, in equation (3),
can be written as:

N M
u(x,0) = gan(w) Pu(x)+ Y en(®) Pu(x) (6)

m=1

where N and M represent the number of different basis functions used to build the
approximation, ¢,(x) and P,,(x) stands for radial and polynomial basis functions,
respectively, and a,(®) and e,,(®) represent coefficients to be determined. Al-
though the polynomial basis ensures consistency, it is possible to consider that the
solution u is approximated by using only the contribution of RBFs (as for example
in Tadeu, Godinho and Chen (2005)), so that the last term in equation (6) can be
ignored. In this case, which is adopted in the context of this paper, a number of
N collocation points is distributed throughout the domain and the boundary of the
model; although not mandatory, here the collocation points are enforced to coincide
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with the RBF centres. By applying this simplified version of approximation (6) to
the governing equations (3)-(4), a system of 2N linear algebraic equations can be
obtained, as is indicated below for 2D analysis (the sub-domains modelled by the
KM are referred here by the superscript a):

H% = F¢
or
N
e i), Ll )= 15
= for each x? , (N
1;1 { |:H)l’lx H)ay mn ay n Fya m "

where the entries of matrix H and vector F?are given by:

[Hd i =
L(A(1—cos(26))+ (A +2u)(1+cos(26)))(dal,/dx) + (usin(20)) (I, /Iy)

] =

[H,
%(l(1+cos(29))+(l +2u)(1—cos(20))) (da,, /dy)+ (1 sin(260)) (dos, /Ix)

[H5],,, = (105(26))) (9, /9) — (115in(26)) (90t /02)
[H;‘y] = (usin(20)))(da,/dy) + (cos(20))(day,/dx), forxi € I's;  (8a)

[HE), = [H;,]mn =al, [ny]mn = [Hy“x] o =0, forx;, € Ty (8b)

[Heyn = (2 +201) (9% 0,/ 0%) + 11 (9 015,/ 9Y%) + p @0 ()

[H3],,, = [H],, = (2 +1)(9% 0y, /0x9y)

[Hy“y] = (A +2u)(0%al,/dy*) +u(d%al,/ox*) + pw* (o), for x: € Q%

(80)

mn
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(F = [BY], = T, forx;, e Tg; (9a)
[F = iy [F] =y, forx;, € Ty; (9b)
[F{] = plen:  [F], = Pl forx;, € Q°. (%)

In equations (8)-(9), the following notation is adopted V¢ = V(x§,,®), 6 stands
for the boundary normal angle at point X}, and the term ¢, is given considering
multiquadric (MQ) radial basis functions, i.e.:

ol =\ (a8 =322+ (08— 22+ 2 (10)

where c is the shape parameter of MQ. It is worth noting that the MQ RBF is
probably the most widely used RBF, and it is also the most usual choice for the
KM. One known issue of using Kansa’s Method with the MQ RBFs is the adequate
definition of the free parameter c. In fact, ¢ must be previously estimated and can
significantly influence the condition-number of the system matrix and the accuracy
of the results. Many works have analyzed strategies for the definition of an optimal
shape parameter [Kansa and Hon (2000); Fasshauer and Zhang (2007); Sarra and
Sturgill (2009); etc.], but the definition of an efficient and accurate methodology for
the estimation of c is still an open discussion. Once the system of equations (7) is
solved (i.e., vector a is computed), the approximate solution at any point of interest
(and not only on nodal points — which is important when considering non-matching
nodes in coupled analysis) can be obtained using the simplified form of equation
(6), as described below:

mn

N
uy, =Y a,op, forx e "UQ” (1)
n=1

3.2 Formulation of the Method of Fundamental Solutions

In the MFS, the solution p is approximated by a linear combination of fundamental
solutions centred on N virtual sources, placed outside the domain of interest to
avoid singularities in the response, at x*:

N,
p(x,0) = Y by(©) G(x, %), ®) +7(x, 0) (12)

n=1

where G(x,x}, ®) stands for the Green’s function of the model, §(x, ®) is related

to domain source terms and b, (®) represents coefficients to be determined.
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By applying approximation (12) to the model, a system of algebraic equations can
be obtained, as is indicated below (the sub-domains modelled by the MFS are re-
ferred here by the superscript b):

N
H’b = F” or Z {[Hb]mn[b]n} = [F?),, for each x°, (13)
n=1

where the entries of matrix H” and vector F’are given by:

10 2/ © B,

() = 250 (55B0) o Tor % €T (14a)

b 1) (0 b b

[H ) = —HE (5585, » for x), € T (14b)
>

), = _aﬁ g, forxh, e T2; (152)

m
[F"ln =T+ ph, forx, € T); (15b)

and Hf)z) and H(lz) stand for second type Hankel’s functions of order O and 1, respec-
tively.

In the deduction of equations (14)-(15), the 2D Green’s function expression is con-
sidered (i.e., G(Xp, X}, @) = — (i/4)H(()2)((a)/v”)[3,f’m)) and the term B’ is given
by:

Bl = 1/ (o, — )2+ 0 — 33 (16)

where x; stands for the location of the virtual sources.

Once the system of equations (13) is solved (i.e., vector b is computed), the ap-
proximate solution at any point of interest can be obtained using definition (12), as
described below:

. N,
1 5 a) N
ph = ~7 ) b,HY (EB’Z’) + 9 forxb e TPUQP. a7
n=1

4 Coupling procedure

In order to enable the coupling between the fluid (MFS) and solid (KM) parts of
the model, an iterative procedure is employed here, which performs a successive
renewal of the relevant variables at the fluid-solid interface. The proposed approach
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is based on the imposition of prescribed fluxes at the fluid sub-domain and of pre-
scribed tractions at the solid sub-domain. Since the two sub-domains are analyzed
separately, the relevant systems of equations are formed independently, before the
iterative process starts, and are kept constant for each frequency along the iterative
process. The separate treatment of the two subdomains allows independent dis-
cretizations to be used on both parts, without any special requirement of matching
nodes along the common interface. Thus, the coupling algorithm can be presented
for a generic case, in which the interface nodes may not match, allowing exploiting
this benefit of the iterative coupling formulation.

To ensure and/or to speed up convergence, a relaxation parameter ¢ is introduced
in the iterative coupling algorithm. The effectiveness of the iterative process is
strongly related to the selection of this relaxation parameter, since an inappropriate
selection for ¢ can significantly increase the number of iterations in the analysis
or, even worse, make convergence unfeasible. At the end of the section, an opti-
mal relaxation parameter is calculated, taking into account the coupled fluid-solid
frequency-domain formulation.

4.1 Iterative coupling algorithm

Initially, in the k" iterative step of the MFS-KM acoustic-elastodynamic coupling,
the MFS sub-domain is analyzed and vector b®) (the superscript k stands for the it-
erative step) is computed according to equation (13), considering expressions (14a)
and (15a) for the entries of matrix H” and vector F?, respectively, related to the
common interfaces. Once vector b*) is computed, the pressures at the interface
nodes of the KM sub-domains can be evaluated as follows (see also equation (17)):

pe*) — Bapk) 4 g« (18)

where the entries of matrix B* and vector S* (which do not depend on the iterative
step and can be computed just once for each frequency) are given by:

By, = — 705 ((@/v") Biy) and 5, =7 (19)
The computed pressures can then be applied as prescribed Neumann boundary con-
ditions for the sub-domains modelled by the KM (see equations (5b-c)), and vector
a® can be calculated, according to equation (7), considering expressions (8a) and
(9a) for the entries of matrix H* and vector F¢, respectively, related to the common
interfaces. Once vector a*) is computed, the normal displacements at the interface
nodes of the MFS sub-domains can be evaluated as follows (see equation (11)):

04 (k+0) — Aba(k) (20)
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where the entries of matrix A” (which also do not depend on the iterative step) are
given by:

A’ —cos(0) sin(0)]a? 2y

mn mn?

in which 6 stands for the interface normal angle at point x2,.

In the sequence, a relaxation parameter ¢ is introduced in order to ensure and/or to
speed up convergence, such that:

UL D = (9) Ul 0 4 (1— ) UG ™. (22)

The computed normal displacements can then be applied as prescribed Neumann
boundary conditions for the sub-domains modelled by the MFS (see equation (5a)),
which are once again analysed, repeating the whole process until convergence is
achieved.

4.2 Optimal relaxation parameter

In order to evaluate an optimal relaxation parameter, the following square error
functional is here minimized:

£(9) = || () — U0 (9)], (23)

Taking into account the relaxation of the prescribed values for the (k41) and (k)
iterations, equations (24a) and (24b) may be written, regarding equation (22):

U]ii/(kJrl) _ (¢)U1i(,(k+¢) +(1- ¢)U5’v(k), (24a)
U = (@)U ED (1 - o)UY, (240)
Substituting equations (24) into equation (23) yields:

( )||Wk+¢|\2+2¢(1—¢)(W("+¢)7W(")) +(1—g)2[[WH2

where the inner product definition is employed (e.g.,(W,W) = ||W/||?) and new
variables, as defined in equation (26), are considered.
WkHo) — & (k+o) _ b (k=) (26)

To find the optimal ¢ that minimizes the functional f(¢), equation (25) is differen-
tiated with respect to ¢ and the result is set to zero, as described below:

(O)|[WED)12 4 (1-2¢) (WO Wh) 4 (¢ — 1)] [ WH |12 = 0. 7)
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Re-arranging the terms in equation (27), yields:

¢ = (W, W — WD) Wi — w2, (28)

which is an easy to implement expression that provides an optimal value for the
relaxation parameter ¢, at each iterative step.

It is important to note that expression (28) is deduced by a minimization of an
error functional (see equation (23)), which describes the result discrepancies along
the common interfaces at each iterative step. Several other methodologies may be
considered in order to try to achieve an optimal relaxation parameter, some being
quite computationally demanding (see Elleithy Al-Gahtani and El-Gebeily (2001),
for instance). The main advantage of expression (28) is its low computational cost
and, as is described in the section that follows, its good performance.

It is also important to observe that, since a frequency domain analysis is being per-
formed, equation (28) computes a complex number to represent the relaxation pa-
rameter. Although this complex number computation could be ranged (e.g., impos-
ing | ¢ | < 1), the authors have observed that faster convergence is usually achieved
in the iterative process if a non-restricted relaxation parameter selection, followed
by equation (28), is considered. For the first iterative step, a real value of ¢ = 0.5
is considered here for the relaxation parameter.

5 Numerical analyses

To better understand the behavior of the iterative coupling strategy and of the two
described methods (MFS and KM), two test problems are analyzed here. To allow
assessing the accuracy of the computed results, the chosen scenarios correspond to
systems in which the solid medium is composed of one or more circular inclusions,
filled with a homogeneous elastic material, and for which accurate reference results
can be used for comparison purposes. In all tests, the fluid medium is assumed to be
water, with a density of 1000 kg/m? and allowing sound waves to travel at 1500 m/s,
while two different solid materials are considered, with the properties described in
Table 1.

Table 1: Elastic properties of the solid media.
p (kg/m’) | E (GPa) | v

Solid1 | 2400.0 30.0 0.2
Solid 2 | 7000.0 2000 |03
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5.1 Test case 1 - solid circular inclusion

To initially assess the behavior of the proposed strategies, consider a circular in-
clusion with unit radius and made of an elastic material, submerged within a fluid
medium at position (0.0; 0.0), subject to the effect of a pressure source located
at (-2.0; 0.0). This system is first modeled making use of 30 boundary points for
the fluid medium (modeled using the MFS) and 50 boundary points for the solid
medium (with a total of 226 nodes being used for the KM), as illustrated in Fig-
ure 1. The response of this system has been computed at a receiver point, located
at (1.0; 1.0), for two different properties of the solid medium (corresponding to
Solid 1 and Solid 2), and the corresponding results are depicted in Figure 2; in
these calculation, a constant free parameter ¢ = 1.0 was used for KM, while the
virtual sources in the MFS are placed 0.3 m away from the interface. The pressure
response at the receiver is displayed in Figures 2al and 2a2 together with the ana-
lytical solution calculated for this problem, making use of the expressions defined
in Godinho, Tadeu and Branco (2004); observing these results, it is clear that there
is an excellent match between the analytical solution and the numerical calculation
performed making use of the iterative coupling procedure between the KM and the
MFS.

1l F g ®eg 1-—————
! @ o000y %0
|

|
|
|
e 0 ®® |
|

g sl RRRAAA 2

00 e 0000000
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Figure 1: Sketch of the point distribution for the coupled meshless numerical ap-
proach, using 30 boundary nodes for the MFS () and 50 boundary nodes (total of
226 nodes) for the KM (o).

To have a better picture of the accuracy associated with this calculation, the error
along the coupling interface was calculated for each frequency; this parameter was
calculated as the maximum relative error at a set of 50 points uniformly placed
along the interface. In plots 2bl and 2b2, two error curves are displayed, corre-
sponding to calculations performed making use of two different point distributions:
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the first corresponds to the one described before, with 50 boundary points for the
KM and 30 for the MFS, and in which the boundary nodes of the two distributions
do not match; the second corresponds to a situation in which coincident nodes are
used, with 40 boundary points being defined for both methods. Clearly, the two
curves in each plot follow similar trends, although smaller error levels are observ-
able when a higher number of points is used for the KM. This is expected, since
the KM is usually less accurate than the MFS, being necessary a higher number
of points in the sub-domains discretized by the KM in order to keep a more uni-
form error distribution along the model (highlighting the importance of coupling
methodologies that allow independent discretizations within each sub-domain). It
can also be seen in these curves that the error progressively increases with the fre-
quency, a trend which was expected since the number of points was kept constant
for all frequencies. However, for very low frequencies, higher errors are also regis-
tered, especially when Solid 2 is modeled. This effect can be due to the fixed value
of the free parameter used in this first analysis.

In Figures 2c1 and 2c2, the total number of iterations required to reach conver-
gence at the iterative process is displayed, for the two solids and for the two point
distributions described before. It is interesting to note that the number of itera-
tions is always relatively low, reaching a maximum peak of 42 for Solid 1 and
for coincident nodes; despite the occurrence of small peaks, the behavior of the
presented curves is essentially the same for the two point distributions. It can be
noted, however, that the properties of the solid inclusion play an important role in
the convergence rate of the iterative process, with significantly fewer iterations be-
ing required when Solid 2 is modeled. This is probably due to the fact that Solid
2 exhibits higher Young modulus and mass density, and consequently a weaker
solid-fluid interaction develops.

To understand the importance of calculating optimal relaxation parameters in the
iterative process, the same analysis was performed for Solid 1 considering fixed
values for the relaxation parameter (values of 0.3 and 0.7 are selected). Figure 3
depicts these results, evidencing that when a fixed value is ascribed to the param-
eter, convergence is not reached within 250 iterations for some frequencies (par-
ticularly higher frequencies). This effect clearly reveals how important it is to use
an optimization strategy for the calculation of the relaxation parameter. For the
frequencies in which convergence was attained with fixed values of the relaxation
parameter, accurate results were computed (see Figure 3b). To further reinforce the
importance of calculating an optimal relaxation parameter, its variation throughout
the iterative process can be analyzed in Figure 4. In this figure, results calculated
for three specific frequencies (500 Hz, 1000 Hz and 2000 Hz) along the solid-fluid
interface are displayed. For these frequencies, the superposition with the analyt-
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Figure 2: Numerical results in terms of real and imaginary response (a), maximum
relative error with respect to the analytical solution computed along the boundary
(b), and required number of iterations for convergence, when using two point dis-
tributions, and along the frequency domain; in (1) the elastic medium is considered
to be Solid 1, while in (2) Solid 2 is assumed.



Number of iterations

Frequency Domain Analysis of Fluid-Solid Interaction Problems 341

250

w Wik VTT T 10 3 I i K :', o
;\l,l IV ,lhl I; o g—-—g07| 1l i 'L: !
200 ¥~ —5 607 A il A ! 'n” ! %' M R iptaitoba :l | :' ': Vel !
& ---8¢=03 Hﬂ ! l\ Ve \ 107 —— — Opto | . X 8 i
— — — Optofs 1! I' ! " ! ’m 1 - " I Il [ A=
150 o) LET A | s v R ==
, 0 IR VAR R \ 5 ! I !
| | 1\ Iy iy \ 2 g7 ! A o
Y ,' RS T A g
100 [ R b Wiy T © i\
Vf’ l‘ " [FR il \ x il
oo ! l\ 1 N g
o R A T VS 107
T M
agEy AT~
— -4
% 500 1000 1500 2000 ) 500 1000 1500 2000
Frequency (Hz) a) Frequency (Hz)

Figure 3: Number of iterations required for convergence (a) and maximum relative
error along the boundary (b) when using an optimized versus a constant relaxation
parameter, calculated for the case of Solid 1, using 50 boundary nodes for the KM
and 30 boundary nodes for the MFS, and using ¢ = 1.0.

ical results reveals an excellent agreement, as can be confirmed in Figures 4al,
4b1 and 4cl. In Figures 4a2, 4b2 and 4c2 the evolution of the real and imaginary
components of the relaxation parameter throughout the iterative process is plotted,
revealing that it is indeed iteration-dependent, and exhibits strong variations.

A separate convergence analysis of the two methods (KM and MFS) was also con-
ducted, and is presented in Figures 5 and 6. In Figure 5, a fixed number of 60
boundary points is used for the MFS; as for the KM, an initial point distribution
with 16 points (considering both the boundary and internal points) is considered,
and is then progressively refined, up to a maximum of 850 points. Results are
displayed in Figure 5a for the same three frequencies analyzed before, and it can
be seen that, for all of them, the response progressively improves towards the cor-
rect solution. As expected, better results are computed for the lower frequencies,
since, for those frequencies, the same total number of points corresponds to a larger
number of points per wavelength. It should be mentioned that the convergence rate
depicted in the figure is, in fact, very good, being better than those usually observed
with classical numerical methods such as the FEM (Finite Element Method) or the
FDM (Finite Difference Method). Additionally, in Figure 5b the total number of
iterations required for each point distribution and for each frequency is also pre-
sented. Although some variability is observable for the higher frequency, the total
number of iterations is always small, and never exceeds 45. A similar study was
performed for the MFS point distribution, making use of a fixed point distribution
for the KM (with 50 boundary points), and starting with just 10 MFS boundary
points. The results are presented in Figure 6, and reveal a progressive improve-
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Figure 4: Behavior of the coupling algorithm at specific frequencies of 500 Hz
(a), 1000 Hz (b) and 2000 Hz (c), when ¢= 1.0 and using 30 boundary nodes for
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numerical responses along the boundary are shown; in (a2,b2,c2) the evolution of
the relaxation parameter along the iterative process is depicted.
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ment of the solution as the number of points is increased. However, a frequency-
dependent saturation level of the relative error is reached at some point, indicating
that above this point the solution quality is being controlled by the KM. As be-
fore, although the number of iterations exhibits some variability (see Figure 6b),
the number of iterations is always well-controlled.
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Figure 5: Results computed for frequencies of 500 Hz, 1000 Hz and 2000 Hz when
¢ = 1.0 using 60 boundary points for the MFS: a) Convergence curves representing
the relative error as a function of the number of KM collocation points; b) Number
of iterations for convergence, as a function of the number of KM collocation points.

A final parametric study was conducted to have some insight on the behavior of
the KM as a function of its free-parameter ¢. Thus, a full range of ¢ values was
considered (from 0.2 to 4.0, with increments of 0.2), and the maximum relative
error along the interface was evaluated for each of them. In an initial approach, the
KM problem is solved using a Gaussian solver; for that case, Figures 7a, 7b and
7c reveal that the response steadily improves up to a certain value of ¢, and then
suddenly degrades. Although some frequency-dependence is observed, the limit
value of ¢ is always between 1.2 and 1.6, after which the response gets consider-
ably worse. To better understand this behavior, the KM system condition number
was calculated for each case, and is depicted in Figure 7d. As expected, this num-
ber grows with the increase in the values of ¢, and around ¢ = 1.8 reaches very
high values (around 10%!), indicating a very ill-conditioned system; indeed, the ill-



344 Copyright © 2012 Tech Science Press ~ CMES, vol.87, no.4, pp.327-354, 2012

‘ —
100 g ¥— — —¥/ 500 Hz V— — —¥ 500 Hz
BRI G— — —© 1000 Hz G— — —© 1000 Hz
N | 3 — - - E] 2000 Hz 60 f------- 3 — — — E] 2000 Hz
N L j
| | | 1
ot \ ,
AN 0 Bl
N AN s 5 \ PEEA)
5 N W 5 a0l S
5 Ik ' !
S o N \® 3 3 S \\ /I
E R oo ey g \ @
& : : € - = ~
| | | E — Y,
i i i £
| | 20 a,/ o -G o9
10° \% ———————
i 7~
| -E?/V i - Y Y ¥
10* . ‘ ‘ 0
10 20 30 40 50 10 20 30 40 50
Number of boundary points (MFS) a) Number of boundary points (MFS) b)

Figure 6: Results computed for frequencies of 500 Hz, 1000 Hz and 2000 Hz when
¢ = 1.0 using 50 boundary points for the KM: a) Convergence curves representing
the relative error as a function of the number of MFS boundary points; b) Number
of iterations for convergence, as a function of the number of MFS boundary points.

conditioning is a known cause of problems in the KM (see, for example, Kansa and
Hon (2000)), which is responsible for the degradation of the response for higher ¢
values. In an attempt to help circumventing this problem, the use of an SVD solver
was also addressed, and the calculated curves are included in Figures 7a, 7b and
7c. Clearly, this solver can help in the stabilization of the solution, allowing higher
values of ¢ to be used with accurate results; however, particularly for the higher
frequency, it is not sufficient to guarantee that good results are obtained for high
values of c. Although this ill-conditioning issue has been addressed in multiple
works, and for several physical problems, for the case of elastodynamic problems
very few information is presently available in the literature.

5.2 Test case 2 — multiple solid inclusions in a fluid half-space

One particularly interesting application of the proposed iterative scheme corre-
sponds to the case in which multiple separate solid sub-domains are present within
a host fluid medium. Indeed, for this case, application of a direct coupling strategy
implies forming very large system matrices, incorporating simultaneously the con-
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Figure 7: Behavior of the coupled approach for varying values of the shape param-
eter ¢: a) Maximum relative error at the boundary for 500 Hz; b) Maximum relative
error at the boundary for 1000 Hz; ¢) Maximum relative error at the boundary for
2000 Hz; d) Condition number of the KM system for the analyzed frequencies. In
(a), (b) and (c), missing points correspond to values of the free parameter for which
convergence was not reached. 40 boundary nodes were used for the MFS, and 50
boundary nodes were used for the KM.

tribution of all sub-domains. By portioning the problem, and separately analyzing
each solid sub-domain and the host fluid, a much more efficient implementation
can be obtained, requiring considerably fewer computational resources.

To illustrate this application, consider a physical system consisting of a half-space
fluid medium (which is here assumed, once again, to be water) within which four
circular solid inclusions are embedded. The material composing these inclusions
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is assumed to have the properties of Solid 1, each inclusion having a unit radius,
and the system is illuminated by an acoustic source positioned at (-2.0; 5.0). The
numerical model defined for the analysis of this problem is based on the application
of the KM with 50 boundary nodes and a total of 226 nodes for each inclusion, and
of the MFS with 30 boundary nodes to define each inclusion. This configuration
is schematically represented in Figure 8. In what follows, and given the results
obtained in the previous section, a constant value of the free parameter c=1.0 is
used for KM, and the virtual sources of the MFS are positioned at a distance of
0.3 m from the boundary of each inclusion.

x(m)

Figure 8: Sketch of the model for the second test problem, including the point
distribution for the coupled numerical approach. For each inclusion, 30 boundary
nodes are used in the MFS (), and 50 boundary nodes (total of 226 nodes) are
used in the KM (e). The solid inclusion is assumed to have the properties of Solid
1.

Figure 9 illustrates the results calculated using the proposed model at a receiver
positioned at (6.0; 3.5), for 128 frequencies ranging from 5 Hz to 640 Hz. In Fig-
ure 9a, the real and imaginary components of the pressure response are illustrated,
plotting the numerical results calculated using the proposed coupled approach to-
gether with a reference solution calculated using the hybrid analytical-numerical
strategy proposed by Godinho, Amado-Mendes and Pereira (2011). As can be seen
in the figure, the responses agree very well, with the results provided by the KM-
MES approach following the reference results throughout the frequency domain. In
Figure 9b, the required number of iterations for the iterative process to converge,
at each frequency, is plotted. As can be seen, a maximum of around 70 iterations
is required for the frequency of 10 Hz, and this number then lowers to around 20
iterations. For the higher frequencies, above 600 Hz, the number of iterations in-



Frequency Domain Analysis of Fluid-Solid Interaction Problems 347

creases and, in that range, around 50 iterations are required for convergence. These
numbers reveal that the required number of iterations is relatively small, with the
iterative process revealing a good convergent behavior. To once again demonstrate
the importance of using an optimized relaxation parameter, the same calculation
was also performed making use of a constant relaxation parameter with value of
0.5. The corresponding results, in terms of the number of iterations, are also shown
in Figure 9b. Clearly, the use of optimal relaxation parameters always leads to a
better convergence of the algorithm. Additionally, for some frequencies, conver-
gence is not reached with a fixed relaxation parameter, and the use of optimized
parameters is necessary for that purpose.

To verify the accuracy of the approach in the spatial domain, the response was
also computed at a number of receiver points located in the fluid, between x=0.0
and x=12.0. Figure 10 illustrates the calculated results for frequencies of 100 Hz,
500 Hz and 640 Hz. For all cases, a reference solution computed making use of
the hybrid approach described by Godinho, Amado-Mendes and Pereira (2011)
is also displayed. Indeed, for the three analyzed frequencies, both the real and
the imaginary parts of the response calculated by the two methods coincide for
the full set of receivers. To give some more insight on the iterative process for
these frequencies, the evolution of the optimal value of the relaxation parameter
is presented in Figure 11. As can be seen in Figures 11a, 11b and 1lc, a strong
variation of this parameter can occur between consecutive iterations, with absolute
values ranging from O to 6.

As mentioned at the beginning of this section, one of the most significant advan-
tages of performing a separated analysis of each sub-domain is that the resulting
matrices are of reduced size and can be handled with more simplicity. For the
present case, the solution of the problem making use of the iterative process re-
quires, for each frequency, assembling 4 matrices (one for each solid sub-domain)
for the KM, each of them being a square matrix with (226x2)>=452 entries, and
one matrix for the MFS, with (30x4)?=120? entries; given the nature of the in-
volved methods, these are fully populated matrices. If the problem was to be solved
by means of a direct coupling between the two numerical methods, a very large
system with (226x2x4)?=1808? entries would be required, keeping the same dis-
cretization for the KM sub-domains and improving the discretization of the MFS
sub-domain (which already implicates in a more demanding computational proce-
dure), in order to have matching nodes at the common interfaces (as it has been
described along this work, the discretization of the KM sub-domain is dominant
for the accuracy of the methodology). In this case, taking into account standard
direct solvers for instance, savings in computational costs are substantial, since ad-
ditional triangular solutions cost only O(n?) work, in contrast to O(n*) cost of fac-
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Figure 9: Behavior of the response at the receiver placed at x=6.0 m and y=3.5 m
for frequencies ranging from 5 Hz to 640 Hz. In (a) the real and the imaginary
components of the response are shown, while (b) illustrates the number of iterations
required at each frequency to attain convergence.

torization. Thus, in this context, for the present application, the cost of the iterative
analysis can be represented by [40(ni>) + O (115> )] +m[40(ngm?) + O (i gs2)),
where ny,, and n,,, stand for the dimension of the KM and MFS matrices, re-
spectively, and m represents the number of iterative steps in the analysis. On the
other hand, the cost of the standard direct coupling solution can be represented by
[O(nwupled3) + O(ncoupledz)], where 7¢oupieq Stands for the dimension of the cou-
pled matrix. Since here one has ny,, = 452, ny,r; = 120 and nepyprea = 1808, the
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Figure 10: Response for frequencies of 100 Hz (a), 500 Hz (b) and 640 Hz (c) calcu-
lated using the proposed approach and the hybrid approach of reference [Godinho,
Amado-Mendes and Pereira (2011)], along the line of receivers.

iterative analysis is expected to be more efficient than the standard coupling ap-
proach even if more than 6000 iterations are necessary for convergence, which is
quite an expressive amount. This obviously leads to very different requirements



350 Copyright © 2012 Tech Science Press ~ CMES, vol.87, no.4, pp.327-354, 2012

Amplitude
o
]
u

A e B ——g A
F--01
66— —o R

Iteration a)

Amplitude

@ - -8 Imag. !
G— —o Real

0 5 10 15 20

Iteration b)

Amplitude

¥——= Absolute
& - — 8 Imag.
G— —>o Real

0 20 40 60

Iteration
c)

Figure 11: Evolution of the relaxation parameter along the iterative process for
frequencies of 100 Hz (a), 500 Hz (b) and 640 Hz (c).

from the computational point of view, with the iterative process being much more
efficient for this type of problems.

6 Conclusions

This work proposes an iterative coupling algorithm between the MFS and KM for
the analysis of interacting acoustic-elastodynamic problems. The coupled fluid-
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solid model is solved in the frequency domain, separately analyzing the acoustic
fluid and the elastodynamic solid sub-domains, resulting in simpler and better con-
ditioned systems of equations, improving the accuracy of the methodology. More-
over, by performing the separate analysis of the two media, large savings in compu-
tational resources can be made, and the proposed strategy may become much more
efficient than standard direct coupling approaches. The iterative coupling is also
more flexible, easily allowing the adoption of totally independent discretizations
for each sub-domain, not requiring matching nodes at common interfaces. As a
consequence, only interface routines are required when one wishes to use existing
codes to build coupling algorithms, taking full advantage of specialized features
and disciplinary expertise built into single-field models.

As it was discussed along the paper, the effectiveness of the iterative coupling algo-
rithm is closely related to the introduction of relaxation parameters in the analyses.
In this work, an efficient and easy to implement expression to compute optimal val-
ues for the relaxation parameter, at each iterative step, is presented, considerably
improving the performance and the robustness of the methodology. As a matter of
fact, acoustic-elastodynamic iterative coupled analyses in the frequency domain are
well-known ill-posed problems, and the introduction of optimal relaxation param-
eters was able to properly deal with this complex numerical drawback, allowing
convergence to be usually obtained at few iterative steps.

Although the coupling of meshless formulations was focused here, the discussed
iterative coupling algorithm is generic, and can be easily applied considering the
coupling of any numerical method, more properly dealing with the specific physi-
cal and geometrical characteristics of the sub-domains of the coupled model. The
framework presented here is very appropriate to analyze problems where adaptive
discretization techniques are required (which is intended as future works). In this
case, the renewal of point distribution can be carried out within the iterative steps
of the coupling solution, taking full advantage of the geometrical flexibility of the
meshless formulations and of the independent sub-domains solution.
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